433 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			433 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include rdft/simd/hc2cfv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 103 FP additions, 96 FP multiplications, | ||
|  |  * (or, 53 additions, 46 multiplications, 50 fused multiply/add), | ||
|  |  * 92 stack variables, 4 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cfv.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       V T8, TZ, TH, T12, T1q, T1I, T1x, T1J, Tr, T10, T1A, T1K, TS, T13, T1t; | ||
|  | 	       V T1N, T3, Tw, TF, TW, T7, Tu, TB, TY, T1, T2, Tv, TD, TE, TC; | ||
|  | 	       V TV, T5, T6, T4, Tt, Tz, TA, Ty, TX, Tx, TG, T1o, T1p, T1v, T1w; | ||
|  | 	       V T1C, T1D, T1u, T1B, T1G, T1H, T1E, T1F; | ||
|  | 	       T1 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T3 = VFMACONJ(T2, T1); | ||
|  | 	       Tv = LDW(&(W[0])); | ||
|  | 	       Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1)); | ||
|  | 	       TD = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       TE = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       TC = LDW(&(W[TWVL * 8])); | ||
|  | 	       TF = VZMULIJ(TC, VFNMSCONJ(TE, TD)); | ||
|  | 	       TV = LDW(&(W[TWVL * 6])); | ||
|  | 	       TW = VZMULJ(TV, VFMACONJ(TE, TD)); | ||
|  | 	       T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | ||
|  | 	       T6 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | ||
|  | 	       T4 = LDW(&(W[TWVL * 14])); | ||
|  | 	       T7 = VZMULJ(T4, VFMACONJ(T6, T5)); | ||
|  | 	       Tt = LDW(&(W[TWVL * 16])); | ||
|  | 	       Tu = VZMULIJ(Tt, VFNMSCONJ(T6, T5)); | ||
|  | 	       Tz = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | ||
|  | 	       TA = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | ||
|  | 	       Ty = LDW(&(W[TWVL * 24])); | ||
|  | 	       TB = VZMULIJ(Ty, VFNMSCONJ(TA, Tz)); | ||
|  | 	       TX = LDW(&(W[TWVL * 22])); | ||
|  | 	       TY = VZMULJ(TX, VFMACONJ(TA, Tz)); | ||
|  | 	       T8 = VSUB(T3, T7); | ||
|  | 	       TZ = VSUB(TW, TY); | ||
|  | 	       Tx = VSUB(Tu, Tw); | ||
|  | 	       TG = VSUB(TB, TF); | ||
|  | 	       TH = VFNMS(LDK(KP414213562), TG, Tx); | ||
|  | 	       T12 = VFMA(LDK(KP414213562), Tx, TG); | ||
|  | 	       T1o = VADD(T3, T7); | ||
|  | 	       T1p = VADD(TW, TY); | ||
|  | 	       T1q = VADD(T1o, T1p); | ||
|  | 	       T1I = VSUB(T1o, T1p); | ||
|  | 	       T1v = VADD(Tw, Tu); | ||
|  | 	       T1w = VADD(TF, TB); | ||
|  | 	       T1x = VADD(T1v, T1w); | ||
|  | 	       T1J = VSUB(T1w, T1v); | ||
|  | 	       { | ||
|  | 		    V Tc, TQ, Tp, TJ, Tg, TO, Tl, TL, Ta, Tb, T9, TP, Tn, To, Tm; | ||
|  | 		    V TI, Te, Tf, Td, TN, Tj, Tk, Ti, TK, Th, Tq, T1y, T1z, TM, TR; | ||
|  | 		    V T1r, T1s; | ||
|  | 		    Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T9 = LDW(&(W[TWVL * 2])); | ||
|  | 		    Tc = VZMULJ(T9, VFMACONJ(Tb, Ta)); | ||
|  | 		    TP = LDW(&(W[TWVL * 4])); | ||
|  | 		    TQ = VZMULIJ(TP, VFNMSCONJ(Tb, Ta)); | ||
|  | 		    Tn = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    To = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Tm = LDW(&(W[TWVL * 10])); | ||
|  | 		    Tp = VZMULJ(Tm, VFMACONJ(To, Tn)); | ||
|  | 		    TI = LDW(&(W[TWVL * 12])); | ||
|  | 		    TJ = VZMULIJ(TI, VFNMSCONJ(To, Tn)); | ||
|  | 		    Te = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tf = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Td = LDW(&(W[TWVL * 18])); | ||
|  | 		    Tg = VZMULJ(Td, VFMACONJ(Tf, Te)); | ||
|  | 		    TN = LDW(&(W[TWVL * 20])); | ||
|  | 		    TO = VZMULIJ(TN, VFNMSCONJ(Tf, Te)); | ||
|  | 		    Tj = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tk = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Ti = LDW(&(W[TWVL * 26])); | ||
|  | 		    Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj)); | ||
|  | 		    TK = LDW(&(W[TWVL * 28])); | ||
|  | 		    TL = VZMULIJ(TK, VFNMSCONJ(Tk, Tj)); | ||
|  | 		    Th = VSUB(Tc, Tg); | ||
|  | 		    Tq = VSUB(Tl, Tp); | ||
|  | 		    Tr = VADD(Th, Tq); | ||
|  | 		    T10 = VSUB(Tq, Th); | ||
|  | 		    T1y = VADD(TQ, TO); | ||
|  | 		    T1z = VADD(TL, TJ); | ||
|  | 		    T1A = VADD(T1y, T1z); | ||
|  | 		    T1K = VSUB(T1y, T1z); | ||
|  | 		    TM = VSUB(TJ, TL); | ||
|  | 		    TR = VSUB(TO, TQ); | ||
|  | 		    TS = VFMA(LDK(KP414213562), TR, TM); | ||
|  | 		    T13 = VFNMS(LDK(KP414213562), TM, TR); | ||
|  | 		    T1r = VADD(Tc, Tg); | ||
|  | 		    T1s = VADD(Tl, Tp); | ||
|  | 		    T1t = VADD(T1r, T1s); | ||
|  | 		    T1N = VSUB(T1s, T1r); | ||
|  | 	       } | ||
|  | 	       T1u = VSUB(T1q, T1t); | ||
|  | 	       T1B = VSUB(T1x, T1A); | ||
|  | 	       T1C = VMUL(LDK(KP500000000), VFMAI(T1B, T1u)); | ||
|  | 	       T1D = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1B, T1u))); | ||
|  | 	       ST(&(Rp[WS(rs, 4)]), T1C, ms, &(Rp[0])); | ||
|  | 	       ST(&(Rm[WS(rs, 3)]), T1D, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       T1E = VADD(T1q, T1t); | ||
|  | 	       T1F = VADD(T1x, T1A); | ||
|  | 	       T1G = VMUL(LDK(KP500000000), VSUB(T1E, T1F)); | ||
|  | 	       T1H = VCONJ(VMUL(LDK(KP500000000), VADD(T1F, T1E))); | ||
|  | 	       ST(&(Rp[0]), T1G, ms, &(Rp[0])); | ||
|  | 	       ST(&(Rm[WS(rs, 7)]), T1H, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       { | ||
|  | 		    V T1M, T1S, T1P, T1T, T1L, T1O, T1Q, T1V, T1R, T1U, TU, T18, T15, T19, Ts; | ||
|  | 		    V TT, T11, T14, T16, T1b, T17, T1a, T1e, T1k, T1h, T1l, T1c, T1d, T1f, T1g; | ||
|  | 		    V T1i, T1n, T1j, T1m; | ||
|  | 		    T1L = VADD(T1J, T1K); | ||
|  | 		    T1M = VFMA(LDK(KP707106781), T1L, T1I); | ||
|  | 		    T1S = VFNMS(LDK(KP707106781), T1L, T1I); | ||
|  | 		    T1O = VSUB(T1K, T1J); | ||
|  | 		    T1P = VFMA(LDK(KP707106781), T1O, T1N); | ||
|  | 		    T1T = VFNMS(LDK(KP707106781), T1O, T1N); | ||
|  | 		    T1Q = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1P, T1M))); | ||
|  | 		    ST(&(Rm[WS(rs, 1)]), T1Q, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1V = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1T, T1S))); | ||
|  | 		    ST(&(Rm[WS(rs, 5)]), T1V, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1R = VMUL(LDK(KP500000000), VFMAI(T1P, T1M)); | ||
|  | 		    ST(&(Rp[WS(rs, 2)]), T1R, ms, &(Rp[0])); | ||
|  | 		    T1U = VMUL(LDK(KP500000000), VFNMSI(T1T, T1S)); | ||
|  | 		    ST(&(Rp[WS(rs, 6)]), T1U, ms, &(Rp[0])); | ||
|  | 		    Ts = VFMA(LDK(KP707106781), Tr, T8); | ||
|  | 		    TT = VADD(TH, TS); | ||
|  | 		    TU = VFMA(LDK(KP923879532), TT, Ts); | ||
|  | 		    T18 = VFNMS(LDK(KP923879532), TT, Ts); | ||
|  | 		    T11 = VFNMS(LDK(KP707106781), T10, TZ); | ||
|  | 		    T14 = VADD(T12, T13); | ||
|  | 		    T15 = VFMA(LDK(KP923879532), T14, T11); | ||
|  | 		    T19 = VFNMS(LDK(KP923879532), T14, T11); | ||
|  | 		    T16 = VMUL(LDK(KP500000000), VFNMSI(T15, TU)); | ||
|  | 		    ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1b = VMUL(LDK(KP500000000), VFMAI(T19, T18)); | ||
|  | 		    ST(&(Rp[WS(rs, 7)]), T1b, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T17 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T15, TU))); | ||
|  | 		    ST(&(Rm[0]), T17, -ms, &(Rm[0])); | ||
|  | 		    T1a = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T19, T18))); | ||
|  | 		    ST(&(Rm[WS(rs, 6)]), T1a, -ms, &(Rm[0])); | ||
|  | 		    T1c = VFNMS(LDK(KP707106781), Tr, T8); | ||
|  | 		    T1d = VSUB(T12, T13); | ||
|  | 		    T1e = VFMA(LDK(KP923879532), T1d, T1c); | ||
|  | 		    T1k = VFNMS(LDK(KP923879532), T1d, T1c); | ||
|  | 		    T1f = VFMA(LDK(KP707106781), T10, TZ); | ||
|  | 		    T1g = VSUB(TS, TH); | ||
|  | 		    T1h = VFMA(LDK(KP923879532), T1g, T1f); | ||
|  | 		    T1l = VFNMS(LDK(KP923879532), T1g, T1f); | ||
|  | 		    T1i = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1h, T1e))); | ||
|  | 		    ST(&(Rm[WS(rs, 2)]), T1i, -ms, &(Rm[0])); | ||
|  | 		    T1n = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1l, T1k))); | ||
|  | 		    ST(&(Rm[WS(rs, 4)]), T1n, -ms, &(Rm[0])); | ||
|  | 		    T1j = VMUL(LDK(KP500000000), VFMAI(T1h, T1e)); | ||
|  | 		    ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1m = VMUL(LDK(KP500000000), VFNMSI(T1l, T1k)); | ||
|  | 		    ST(&(Rp[WS(rs, 5)]), T1m, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      VTW(1, 8), | ||
|  |      VTW(1, 9), | ||
|  |      VTW(1, 10), | ||
|  |      VTW(1, 11), | ||
|  |      VTW(1, 12), | ||
|  |      VTW(1, 13), | ||
|  |      VTW(1, 14), | ||
|  |      VTW(1, 15), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, { 53, 46, 50, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cfdftv_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include rdft/simd/hc2cfv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 103 FP additions, 56 FP multiplications, | ||
|  |  * (or, 99 additions, 52 multiplications, 4 fused multiply/add), | ||
|  |  * 101 stack variables, 5 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cfv.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      DVK(KP353553390, +0.353553390593273762200422181052424519642417969); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       V T1D, T1E, T1R, TP, T1b, Ta, T1w, T18, T1x, T1z, T1A, T1G, T1H, T1S, Tx; | ||
|  | 	       V T13, T10, T1a, T1, T3, TA, TM, TL, TN, T6, T8, TC, TH, TG, TI; | ||
|  | 	       V T2, Tz, TK, TJ, T7, TB, TF, TE, TD, TO, T4, T9, T5, T15, T17; | ||
|  | 	       V T14, T16; | ||
|  | 	       T1 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T3 = VCONJ(T2); | ||
|  | 	       Tz = LDW(&(W[0])); | ||
|  | 	       TA = VZMULIJ(Tz, VSUB(T3, T1)); | ||
|  | 	       TM = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | ||
|  | 	       TK = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | ||
|  | 	       TL = VCONJ(TK); | ||
|  | 	       TJ = LDW(&(W[TWVL * 24])); | ||
|  | 	       TN = VZMULIJ(TJ, VSUB(TL, TM)); | ||
|  | 	       T6 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | ||
|  | 	       T7 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | ||
|  | 	       T8 = VCONJ(T7); | ||
|  | 	       TB = LDW(&(W[TWVL * 16])); | ||
|  | 	       TC = VZMULIJ(TB, VSUB(T8, T6)); | ||
|  | 	       TH = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       TF = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       TG = VCONJ(TF); | ||
|  | 	       TE = LDW(&(W[TWVL * 8])); | ||
|  | 	       TI = VZMULIJ(TE, VSUB(TG, TH)); | ||
|  | 	       T1D = VADD(TA, TC); | ||
|  | 	       T1E = VADD(TI, TN); | ||
|  | 	       T1R = VSUB(T1D, T1E); | ||
|  | 	       TD = VSUB(TA, TC); | ||
|  | 	       TO = VSUB(TI, TN); | ||
|  | 	       TP = VFNMS(LDK(KP382683432), TO, VMUL(LDK(KP923879532), TD)); | ||
|  | 	       T1b = VFMA(LDK(KP382683432), TD, VMUL(LDK(KP923879532), TO)); | ||
|  | 	       T4 = VADD(T1, T3); | ||
|  | 	       T5 = LDW(&(W[TWVL * 14])); | ||
|  | 	       T9 = VZMULJ(T5, VADD(T6, T8)); | ||
|  | 	       Ta = VMUL(LDK(KP500000000), VSUB(T4, T9)); | ||
|  | 	       T1w = VADD(T4, T9); | ||
|  | 	       T14 = LDW(&(W[TWVL * 6])); | ||
|  | 	       T15 = VZMULJ(T14, VADD(TH, TG)); | ||
|  | 	       T16 = LDW(&(W[TWVL * 22])); | ||
|  | 	       T17 = VZMULJ(T16, VADD(TM, TL)); | ||
|  | 	       T18 = VSUB(T15, T17); | ||
|  | 	       T1x = VADD(T15, T17); | ||
|  | 	       { | ||
|  | 		    V Tf, TR, Tv, TY, Tk, TT, Tq, TW, Tc, Te, Td, Tb, TQ, Ts, Tu; | ||
|  | 		    V Tt, Tr, TX, Th, Tj, Ti, Tg, TS, Tn, Tp, To, Tm, TV, Tl, Tw; | ||
|  | 		    V TU, TZ; | ||
|  | 		    Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Te = VCONJ(Td); | ||
|  | 		    Tb = LDW(&(W[TWVL * 2])); | ||
|  | 		    Tf = VZMULJ(Tb, VADD(Tc, Te)); | ||
|  | 		    TQ = LDW(&(W[TWVL * 4])); | ||
|  | 		    TR = VZMULIJ(TQ, VSUB(Te, Tc)); | ||
|  | 		    Ts = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tt = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Tu = VCONJ(Tt); | ||
|  | 		    Tr = LDW(&(W[TWVL * 10])); | ||
|  | 		    Tv = VZMULJ(Tr, VADD(Ts, Tu)); | ||
|  | 		    TX = LDW(&(W[TWVL * 12])); | ||
|  | 		    TY = VZMULIJ(TX, VSUB(Tu, Ts)); | ||
|  | 		    Th = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Ti = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Tj = VCONJ(Ti); | ||
|  | 		    Tg = LDW(&(W[TWVL * 18])); | ||
|  | 		    Tk = VZMULJ(Tg, VADD(Th, Tj)); | ||
|  | 		    TS = LDW(&(W[TWVL * 20])); | ||
|  | 		    TT = VZMULIJ(TS, VSUB(Tj, Th)); | ||
|  | 		    Tn = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    To = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Tp = VCONJ(To); | ||
|  | 		    Tm = LDW(&(W[TWVL * 26])); | ||
|  | 		    Tq = VZMULJ(Tm, VADD(Tn, Tp)); | ||
|  | 		    TV = LDW(&(W[TWVL * 28])); | ||
|  | 		    TW = VZMULIJ(TV, VSUB(Tp, Tn)); | ||
|  | 		    T1z = VADD(Tf, Tk); | ||
|  | 		    T1A = VADD(Tq, Tv); | ||
|  | 		    T1G = VADD(TR, TT); | ||
|  | 		    T1H = VADD(TW, TY); | ||
|  | 		    T1S = VSUB(T1H, T1G); | ||
|  | 		    Tl = VSUB(Tf, Tk); | ||
|  | 		    Tw = VSUB(Tq, Tv); | ||
|  | 		    Tx = VMUL(LDK(KP353553390), VADD(Tl, Tw)); | ||
|  | 		    T13 = VMUL(LDK(KP707106781), VSUB(Tw, Tl)); | ||
|  | 		    TU = VSUB(TR, TT); | ||
|  | 		    TZ = VSUB(TW, TY); | ||
|  | 		    T10 = VFMA(LDK(KP382683432), TU, VMUL(LDK(KP923879532), TZ)); | ||
|  | 		    T1a = VFNMS(LDK(KP923879532), TU, VMUL(LDK(KP382683432), TZ)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T1U, T20, T1X, T21, T1Q, T1T, T1V, T1W, T1Y, T23, T1Z, T22, T1C, T1M, T1J; | ||
|  | 		    V T1N, T1y, T1B, T1F, T1I, T1K, T1P, T1L, T1O, T12, T1g, T1d, T1h, Ty, T11; | ||
|  | 		    V T19, T1c, T1e, T1j, T1f, T1i, T1m, T1s, T1p, T1t, T1k, T1l, T1n, T1o, T1q; | ||
|  | 		    V T1v, T1r, T1u; | ||
|  | 		    T1Q = VMUL(LDK(KP500000000), VSUB(T1w, T1x)); | ||
|  | 		    T1T = VMUL(LDK(KP353553390), VADD(T1R, T1S)); | ||
|  | 		    T1U = VADD(T1Q, T1T); | ||
|  | 		    T20 = VSUB(T1Q, T1T); | ||
|  | 		    T1V = VSUB(T1A, T1z); | ||
|  | 		    T1W = VMUL(LDK(KP707106781), VSUB(T1S, T1R)); | ||
|  | 		    T1X = VMUL(LDK(KP500000000), VBYI(VADD(T1V, T1W))); | ||
|  | 		    T21 = VMUL(LDK(KP500000000), VBYI(VSUB(T1W, T1V))); | ||
|  | 		    T1Y = VCONJ(VSUB(T1U, T1X)); | ||
|  | 		    ST(&(Rm[WS(rs, 1)]), T1Y, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T23 = VADD(T20, T21); | ||
|  | 		    ST(&(Rp[WS(rs, 6)]), T23, ms, &(Rp[0])); | ||
|  | 		    T1Z = VADD(T1U, T1X); | ||
|  | 		    ST(&(Rp[WS(rs, 2)]), T1Z, ms, &(Rp[0])); | ||
|  | 		    T22 = VCONJ(VSUB(T20, T21)); | ||
|  | 		    ST(&(Rm[WS(rs, 5)]), T22, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1y = VADD(T1w, T1x); | ||
|  | 		    T1B = VADD(T1z, T1A); | ||
|  | 		    T1C = VADD(T1y, T1B); | ||
|  | 		    T1M = VSUB(T1y, T1B); | ||
|  | 		    T1F = VADD(T1D, T1E); | ||
|  | 		    T1I = VADD(T1G, T1H); | ||
|  | 		    T1J = VADD(T1F, T1I); | ||
|  | 		    T1N = VBYI(VSUB(T1I, T1F)); | ||
|  | 		    T1K = VCONJ(VMUL(LDK(KP500000000), VSUB(T1C, T1J))); | ||
|  | 		    ST(&(Rm[WS(rs, 7)]), T1K, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1P = VMUL(LDK(KP500000000), VADD(T1M, T1N)); | ||
|  | 		    ST(&(Rp[WS(rs, 4)]), T1P, ms, &(Rp[0])); | ||
|  | 		    T1L = VMUL(LDK(KP500000000), VADD(T1C, T1J)); | ||
|  | 		    ST(&(Rp[0]), T1L, ms, &(Rp[0])); | ||
|  | 		    T1O = VCONJ(VMUL(LDK(KP500000000), VSUB(T1M, T1N))); | ||
|  | 		    ST(&(Rm[WS(rs, 3)]), T1O, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Ty = VADD(Ta, Tx); | ||
|  | 		    T11 = VMUL(LDK(KP500000000), VADD(TP, T10)); | ||
|  | 		    T12 = VADD(Ty, T11); | ||
|  | 		    T1g = VSUB(Ty, T11); | ||
|  | 		    T19 = VSUB(T13, T18); | ||
|  | 		    T1c = VSUB(T1a, T1b); | ||
|  | 		    T1d = VMUL(LDK(KP500000000), VBYI(VADD(T19, T1c))); | ||
|  | 		    T1h = VMUL(LDK(KP500000000), VBYI(VSUB(T1c, T19))); | ||
|  | 		    T1e = VCONJ(VSUB(T12, T1d)); | ||
|  | 		    ST(&(Rm[0]), T1e, -ms, &(Rm[0])); | ||
|  | 		    T1j = VADD(T1g, T1h); | ||
|  | 		    ST(&(Rp[WS(rs, 7)]), T1j, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1f = VADD(T12, T1d); | ||
|  | 		    ST(&(Rp[WS(rs, 1)]), T1f, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1i = VCONJ(VSUB(T1g, T1h)); | ||
|  | 		    ST(&(Rm[WS(rs, 6)]), T1i, -ms, &(Rm[0])); | ||
|  | 		    T1k = VSUB(T10, TP); | ||
|  | 		    T1l = VADD(T18, T13); | ||
|  | 		    T1m = VMUL(LDK(KP500000000), VBYI(VSUB(T1k, T1l))); | ||
|  | 		    T1s = VMUL(LDK(KP500000000), VBYI(VADD(T1l, T1k))); | ||
|  | 		    T1n = VSUB(Ta, Tx); | ||
|  | 		    T1o = VMUL(LDK(KP500000000), VADD(T1b, T1a)); | ||
|  | 		    T1p = VSUB(T1n, T1o); | ||
|  | 		    T1t = VADD(T1n, T1o); | ||
|  | 		    T1q = VADD(T1m, T1p); | ||
|  | 		    ST(&(Rp[WS(rs, 5)]), T1q, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1v = VCONJ(VSUB(T1t, T1s)); | ||
|  | 		    ST(&(Rm[WS(rs, 2)]), T1v, -ms, &(Rm[0])); | ||
|  | 		    T1r = VCONJ(VSUB(T1p, T1m)); | ||
|  | 		    ST(&(Rm[WS(rs, 4)]), T1r, -ms, &(Rm[0])); | ||
|  | 		    T1u = VADD(T1s, T1t); | ||
|  | 		    ST(&(Rp[WS(rs, 3)]), T1u, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      VTW(1, 8), | ||
|  |      VTW(1, 9), | ||
|  |      VTW(1, 10), | ||
|  |      VTW(1, 11), | ||
|  |      VTW(1, 12), | ||
|  |      VTW(1, 13), | ||
|  |      VTW(1, 14), | ||
|  |      VTW(1, 15), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, { 99, 52, 4, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cfdftv_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |