147 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			147 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include rdft/simd/hc2cfv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 15 FP additions, 16 FP multiplications, | ||
|  |  * (or, 9 additions, 10 multiplications, 6 fused multiply/add), | ||
|  |  * 21 stack variables, 1 constants, and 8 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cfv.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { | ||
|  | 	       V T8, Th, Td, Tg, T3, Tc, T7, Ta, T1, T2, Tb, T5, T6, T4, T9; | ||
|  | 	       V Te, Tj, Tf, Ti; | ||
|  | 	       T1 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T3 = VFMACONJ(T2, T1); | ||
|  | 	       Tb = LDW(&(W[0])); | ||
|  | 	       Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1)); | ||
|  | 	       T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       T4 = LDW(&(W[TWVL * 2])); | ||
|  | 	       T7 = VZMULJ(T4, VFMACONJ(T6, T5)); | ||
|  | 	       T9 = LDW(&(W[TWVL * 4])); | ||
|  | 	       Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5)); | ||
|  | 	       T8 = VSUB(T3, T7); | ||
|  | 	       Th = VADD(Tc, Ta); | ||
|  | 	       Td = VSUB(Ta, Tc); | ||
|  | 	       Tg = VADD(T3, T7); | ||
|  | 	       Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8)); | ||
|  | 	       ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg))); | ||
|  | 	       ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8))); | ||
|  | 	       ST(&(Rm[0]), Tf, -ms, &(Rm[0])); | ||
|  | 	       Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th)); | ||
|  | 	       ST(&(Rp[0]), Ti, ms, &(Rp[0])); | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, { 9, 10, 6, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cfdftv_4) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include rdft/simd/hc2cfv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 15 FP additions, 10 FP multiplications, | ||
|  |  * (or, 15 additions, 10 multiplications, 0 fused multiply/add), | ||
|  |  * 23 stack variables, 1 constants, and 8 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cfv.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { | ||
|  | 	       V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th; | ||
|  | 	       V Ta, Tf, Tk, Tl, Ti, Tj; | ||
|  | 	       T1 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T3 = VCONJ(T2); | ||
|  | 	       T4 = VADD(T1, T3); | ||
|  | 	       Tb = LDW(&(W[0])); | ||
|  | 	       Tc = VZMULIJ(Tb, VSUB(T3, T1)); | ||
|  | 	       T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       T8 = VCONJ(T7); | ||
|  | 	       T5 = LDW(&(W[TWVL * 2])); | ||
|  | 	       T9 = VZMULJ(T5, VADD(T6, T8)); | ||
|  | 	       Td = LDW(&(W[TWVL * 4])); | ||
|  | 	       Te = VZMULIJ(Td, VSUB(T8, T6)); | ||
|  | 	       Ta = VSUB(T4, T9); | ||
|  | 	       Tf = VBYI(VSUB(Tc, Te)); | ||
|  | 	       Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf)); | ||
|  | 	       Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf))); | ||
|  | 	       ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       ST(&(Rm[0]), Th, -ms, &(Rm[0])); | ||
|  | 	       Ti = VADD(T4, T9); | ||
|  | 	       Tj = VADD(Tc, Te); | ||
|  | 	       Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj))); | ||
|  | 	       Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj)); | ||
|  | 	       ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       ST(&(Rp[0]), Tl, ms, &(Rp[0])); | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, { 15, 10, 0, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cfdftv_4) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |