213 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			213 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "kernel/ifftw.h"
 | ||
|  | 
 | ||
|  | /***************************************************************************/ | ||
|  | 
 | ||
|  | /* Rader's algorithm requires lots of modular arithmetic, and if we
 | ||
|  |    aren't careful we can have errors due to integer overflows. */ | ||
|  | 
 | ||
|  | /* Compute (x * y) mod p, but watch out for integer overflows; we must
 | ||
|  |    have 0 <= {x, y} < p. | ||
|  | 
 | ||
|  |    If overflow is common, this routine is somewhat slower than | ||
|  |    e.g. using 'long long' arithmetic.  However, it has the advantage | ||
|  |    of working when INT is 64 bits, and is also faster when overflow is | ||
|  |    rare.  FFTW calls this via the MULMOD macro, which further | ||
|  |    optimizes for the case of small integers.  | ||
|  | */ | ||
|  | 
 | ||
|  | #define ADD_MOD(x, y, p) ((x) >= (p) - (y)) ? ((x) + ((y) - (p))) : ((x) + (y))
 | ||
|  | 
 | ||
|  | INT X(safe_mulmod)(INT x, INT y, INT p) | ||
|  | { | ||
|  |      INT r; | ||
|  | 
 | ||
|  |      if (y > x)  | ||
|  | 	  return X(safe_mulmod)(y, x, p); | ||
|  | 
 | ||
|  |      A(0 <= y && x < p); | ||
|  | 
 | ||
|  |      r = 0; | ||
|  |      while (y) { | ||
|  | 	  r = ADD_MOD(r, x*(y&1), p); y >>= 1; | ||
|  | 	  x = ADD_MOD(x, x, p); | ||
|  |      } | ||
|  | 
 | ||
|  |      return r; | ||
|  | } | ||
|  | 
 | ||
|  | /***************************************************************************/ | ||
|  | 
 | ||
|  | /* Compute n^m mod p, where m >= 0 and p > 0.  If we really cared, we
 | ||
|  |    could make this tail-recursive. */ | ||
|  | 
 | ||
|  | INT X(power_mod)(INT n, INT m, INT p) | ||
|  | { | ||
|  |      A(p > 0); | ||
|  |      if (m == 0) | ||
|  | 	  return 1; | ||
|  |      else if (m % 2 == 0) { | ||
|  | 	  INT x = X(power_mod)(n, m / 2, p); | ||
|  | 	  return MULMOD(x, x, p); | ||
|  |      } | ||
|  |      else | ||
|  | 	  return MULMOD(n, X(power_mod)(n, m - 1, p), p); | ||
|  | } | ||
|  | 
 | ||
|  | /* the following two routines were contributed by Greg Dionne. */ | ||
|  | static INT get_prime_factors(INT n, INT *primef) | ||
|  | { | ||
|  |      INT i; | ||
|  |      INT size = 0; | ||
|  | 
 | ||
|  |      A(n % 2 == 0); /* this routine is designed only for even n */ | ||
|  |      primef[size++] = (INT)2; | ||
|  |      do { | ||
|  | 	  n >>= 1; | ||
|  |      } while ((n & 1) == 0); | ||
|  | 
 | ||
|  |      if (n == 1) | ||
|  | 	  return size; | ||
|  | 
 | ||
|  |      for (i = 3; i * i <= n; i += 2) | ||
|  | 	  if (!(n % i)) { | ||
|  | 	       primef[size++] = i; | ||
|  | 	       do { | ||
|  | 		    n /= i; | ||
|  | 	       } while (!(n % i)); | ||
|  | 	  } | ||
|  |      if (n == 1) | ||
|  | 	  return size; | ||
|  |      primef[size++] = n; | ||
|  |      return size; | ||
|  | } | ||
|  | 
 | ||
|  | INT X(find_generator)(INT p) | ||
|  | { | ||
|  |     INT n, i, size; | ||
|  |     INT primef[16];     /* smallest number = 32589158477190044730 > 2^64 */ | ||
|  |     INT pm1 = p - 1; | ||
|  | 
 | ||
|  |     if (p == 2) | ||
|  | 	 return 1; | ||
|  | 
 | ||
|  |     size = get_prime_factors(pm1, primef); | ||
|  |     n = 2; | ||
|  |     for (i = 0; i < size; i++) | ||
|  |         if (X(power_mod)(n, pm1 / primef[i], p) == 1) { | ||
|  |             i = -1; | ||
|  |             n++; | ||
|  |         } | ||
|  |     return n; | ||
|  | } | ||
|  | 
 | ||
|  | /* Return first prime divisor of n  (It would be at best slightly faster to
 | ||
|  |    search a static table of primes; there are 6542 primes < 2^16.)  */ | ||
|  | INT X(first_divisor)(INT n) | ||
|  | { | ||
|  |      INT i; | ||
|  |      if (n <= 1) | ||
|  | 	  return n; | ||
|  |      if (n % 2 == 0) | ||
|  | 	  return 2; | ||
|  |      for (i = 3; i*i <= n; i += 2) | ||
|  | 	  if (n % i == 0) | ||
|  | 	       return i; | ||
|  |      return n; | ||
|  | } | ||
|  | 
 | ||
|  | int X(is_prime)(INT n) | ||
|  | { | ||
|  |      return(n > 1 && X(first_divisor)(n) == n); | ||
|  | } | ||
|  | 
 | ||
|  | INT X(next_prime)(INT n) | ||
|  | { | ||
|  |      while (!X(is_prime)(n)) ++n; | ||
|  |      return n; | ||
|  | } | ||
|  | 
 | ||
|  | int X(factors_into)(INT n, const INT *primes) | ||
|  | { | ||
|  |      for (; *primes != 0; ++primes)  | ||
|  | 	  while ((n % *primes) == 0)  | ||
|  | 	       n /= *primes; | ||
|  |      return (n == 1); | ||
|  | } | ||
|  | 
 | ||
|  | /* integer square root.  Return floor(sqrt(N)) */ | ||
|  | INT X(isqrt)(INT n) | ||
|  | { | ||
|  |      INT guess, iguess; | ||
|  | 
 | ||
|  |      A(n >= 0); | ||
|  |      if (n == 0) return 0; | ||
|  | 
 | ||
|  |      guess = n; iguess = 1; | ||
|  | 
 | ||
|  |      do { | ||
|  |           guess = (guess + iguess) / 2; | ||
|  | 	  iguess = n / guess; | ||
|  |      } while (guess > iguess); | ||
|  | 
 | ||
|  |      return guess; | ||
|  | } | ||
|  | 
 | ||
|  | static INT isqrt_maybe(INT n) | ||
|  | { | ||
|  |      INT guess = X(isqrt)(n); | ||
|  |      return guess * guess == n ? guess : 0; | ||
|  | } | ||
|  | 
 | ||
|  | #define divides(a, b) (((b) % (a)) == 0)
 | ||
|  | INT X(choose_radix)(INT r, INT n) | ||
|  | { | ||
|  |      if (r > 0) { | ||
|  | 	  if (divides(r, n)) return r; | ||
|  | 	  return 0; | ||
|  |      } else if (r == 0) { | ||
|  | 	  return X(first_divisor)(n); | ||
|  |      } else { | ||
|  | 	  /* r is negative.  If n = (-r) * q^2, take q as the radix */ | ||
|  | 	  r = 0 - r; | ||
|  | 	  return (n > r && divides(r, n)) ? isqrt_maybe(n / r) : 0; | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | /* return A mod N, works for all A including A < 0 */ | ||
|  | INT X(modulo)(INT a, INT n) | ||
|  | { | ||
|  |      A(n > 0); | ||
|  |      if (a >= 0) | ||
|  | 	  return a % n; | ||
|  |      else | ||
|  | 	  return (n - 1) - ((-(a + (INT)1)) % n); | ||
|  | } | ||
|  | 
 | ||
|  | /* TRUE if N factors into small primes */ | ||
|  | int X(factors_into_small_primes)(INT n) | ||
|  | { | ||
|  |      static const INT primes[] = { 2, 3, 5, 0 }; | ||
|  |      return X(factors_into)(n, primes); | ||
|  | } |