438 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			438 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:36 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 82 FP additions, 52 FP multiplications, | ||
|  |  * (or, 60 additions, 30 multiplications, 22 fused multiply/add), | ||
|  |  * 31 stack variables, 2 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cf.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { | ||
|  | 	       E Ty, T14, TO, T1o, Tv, T16, TG, T1m, Ta, T19, TV, T1h, Tk, T1b, T11; | ||
|  | 	       E T1j; | ||
|  | 	       { | ||
|  | 		    E Tw, Tx, TN, TI, TJ, TK; | ||
|  | 		    Tw = Ip[0]; | ||
|  | 		    Tx = Im[0]; | ||
|  | 		    TN = Tw + Tx; | ||
|  | 		    TI = Rm[0]; | ||
|  | 		    TJ = Rp[0]; | ||
|  | 		    TK = TI - TJ; | ||
|  | 		    Ty = Tw - Tx; | ||
|  | 		    T14 = TJ + TI; | ||
|  | 		    { | ||
|  | 			 E TH, TL, TM, T1n; | ||
|  | 			 TH = W[0]; | ||
|  | 			 TL = TH * TK; | ||
|  | 			 TM = W[1]; | ||
|  | 			 T1n = TM * TK; | ||
|  | 			 TO = FNMS(TM, TN, TL); | ||
|  | 			 T1o = FMA(TH, TN, T1n); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tp, TF, Tu, TC; | ||
|  | 		    { | ||
|  | 			 E Tn, To, Ts, Tt; | ||
|  | 			 Tn = Ip[WS(rs, 2)]; | ||
|  | 			 To = Im[WS(rs, 2)]; | ||
|  | 			 Tp = Tn - To; | ||
|  | 			 TF = Tn + To; | ||
|  | 			 Ts = Rp[WS(rs, 2)]; | ||
|  | 			 Tt = Rm[WS(rs, 2)]; | ||
|  | 			 Tu = Ts + Tt; | ||
|  | 			 TC = Tt - Ts; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, T15, Tm, Tr; | ||
|  | 			 Tm = W[6]; | ||
|  | 			 Tq = Tm * Tp; | ||
|  | 			 T15 = Tm * Tu; | ||
|  | 			 Tr = W[7]; | ||
|  | 			 Tv = FNMS(Tr, Tu, Tq); | ||
|  | 			 T16 = FMA(Tr, Tp, T15); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TB, TD, TE, T1l; | ||
|  | 			 TB = W[8]; | ||
|  | 			 TD = TB * TC; | ||
|  | 			 TE = W[9]; | ||
|  | 			 T1l = TE * TC; | ||
|  | 			 TG = FNMS(TE, TF, TD); | ||
|  | 			 T1m = FMA(TB, TF, T1l); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4, TU, T9, TR; | ||
|  | 		    { | ||
|  | 			 E T2, T3, T7, T8; | ||
|  | 			 T2 = Ip[WS(rs, 1)]; | ||
|  | 			 T3 = Im[WS(rs, 1)]; | ||
|  | 			 T4 = T2 - T3; | ||
|  | 			 TU = T2 + T3; | ||
|  | 			 T7 = Rp[WS(rs, 1)]; | ||
|  | 			 T8 = Rm[WS(rs, 1)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 TR = T7 - T8; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5, T18, T1, T6; | ||
|  | 			 T1 = W[2]; | ||
|  | 			 T5 = T1 * T4; | ||
|  | 			 T18 = T1 * T9; | ||
|  | 			 T6 = W[3]; | ||
|  | 			 Ta = FNMS(T6, T9, T5); | ||
|  | 			 T19 = FMA(T6, T4, T18); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TS, T1g, TQ, TT; | ||
|  | 			 TQ = W[4]; | ||
|  | 			 TS = TQ * TR; | ||
|  | 			 T1g = TQ * TU; | ||
|  | 			 TT = W[5]; | ||
|  | 			 TV = FMA(TT, TU, TS); | ||
|  | 			 T1h = FNMS(TT, TR, T1g); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Te, T10, Tj, TX; | ||
|  | 		    { | ||
|  | 			 E Tc, Td, Th, Ti; | ||
|  | 			 Tc = Ip[WS(rs, 3)]; | ||
|  | 			 Td = Im[WS(rs, 3)]; | ||
|  | 			 Te = Tc - Td; | ||
|  | 			 T10 = Tc + Td; | ||
|  | 			 Th = Rp[WS(rs, 3)]; | ||
|  | 			 Ti = Rm[WS(rs, 3)]; | ||
|  | 			 Tj = Th + Ti; | ||
|  | 			 TX = Th - Ti; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tf, T1a, Tb, Tg; | ||
|  | 			 Tb = W[10]; | ||
|  | 			 Tf = Tb * Te; | ||
|  | 			 T1a = Tb * Tj; | ||
|  | 			 Tg = W[11]; | ||
|  | 			 Tk = FNMS(Tg, Tj, Tf); | ||
|  | 			 T1b = FMA(Tg, Te, T1a); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TY, T1i, TW, TZ; | ||
|  | 			 TW = W[12]; | ||
|  | 			 TY = TW * TX; | ||
|  | 			 T1i = TW * T10; | ||
|  | 			 TZ = W[13]; | ||
|  | 			 T11 = FMA(TZ, T10, TY); | ||
|  | 			 T1j = FNMS(TZ, TX, T1i); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TA, T1f, T1q, T1s, T13, T1e, T1d, T1r; | ||
|  | 		    { | ||
|  | 			 E Tl, Tz, T1k, T1p; | ||
|  | 			 Tl = Ta + Tk; | ||
|  | 			 Tz = Tv + Ty; | ||
|  | 			 TA = Tl + Tz; | ||
|  | 			 T1f = Tz - Tl; | ||
|  | 			 T1k = T1h + T1j; | ||
|  | 			 T1p = T1m + T1o; | ||
|  | 			 T1q = T1k - T1p; | ||
|  | 			 T1s = T1k + T1p; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TP, T12, T17, T1c; | ||
|  | 			 TP = TG + TO; | ||
|  | 			 T12 = TV + T11; | ||
|  | 			 T13 = TP - T12; | ||
|  | 			 T1e = T12 + TP; | ||
|  | 			 T17 = T14 + T16; | ||
|  | 			 T1c = T19 + T1b; | ||
|  | 			 T1d = T17 - T1c; | ||
|  | 			 T1r = T17 + T1c; | ||
|  | 		    } | ||
|  | 		    Ip[0] = KP500000000 * (TA + T13); | ||
|  | 		    Rp[0] = KP500000000 * (T1r + T1s); | ||
|  | 		    Im[WS(rs, 3)] = KP500000000 * (T13 - TA); | ||
|  | 		    Rm[WS(rs, 3)] = KP500000000 * (T1r - T1s); | ||
|  | 		    Rm[WS(rs, 1)] = KP500000000 * (T1d - T1e); | ||
|  | 		    Im[WS(rs, 1)] = KP500000000 * (T1q - T1f); | ||
|  | 		    Rp[WS(rs, 2)] = KP500000000 * (T1d + T1e); | ||
|  | 		    Ip[WS(rs, 2)] = KP500000000 * (T1f + T1q); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1v, T1H, T1F, T1L, T1y, T1I, T1B, T1J; | ||
|  | 		    { | ||
|  | 			 E T1t, T1u, T1D, T1E; | ||
|  | 			 T1t = Ty - Tv; | ||
|  | 			 T1u = T19 - T1b; | ||
|  | 			 T1v = T1t - T1u; | ||
|  | 			 T1H = T1u + T1t; | ||
|  | 			 T1D = T14 - T16; | ||
|  | 			 T1E = Ta - Tk; | ||
|  | 			 T1F = T1D - T1E; | ||
|  | 			 T1L = T1D + T1E; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1w, T1x, T1z, T1A; | ||
|  | 			 T1w = T1j - T1h; | ||
|  | 			 T1x = TV - T11; | ||
|  | 			 T1y = T1w + T1x; | ||
|  | 			 T1I = T1w - T1x; | ||
|  | 			 T1z = TO - TG; | ||
|  | 			 T1A = T1o - T1m; | ||
|  | 			 T1B = T1z - T1A; | ||
|  | 			 T1J = T1z + T1A; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1C, T1M, T1G, T1K; | ||
|  | 			 T1C = T1y + T1B; | ||
|  | 			 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1C, T1v)); | ||
|  | 			 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1C, T1v))); | ||
|  | 			 T1M = T1I + T1J; | ||
|  | 			 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1M, T1L)); | ||
|  | 			 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1M, T1L)); | ||
|  | 			 T1G = T1B - T1y; | ||
|  | 			 Rm[0] = KP500000000 * (FNMS(KP707106781, T1G, T1F)); | ||
|  | 			 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1G, T1F)); | ||
|  | 			 T1K = T1I - T1J; | ||
|  | 			 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1K, T1H)); | ||
|  | 			 Im[0] = -(KP500000000 * (FNMS(KP707106781, T1K, T1H))); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 8 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, { 60, 30, 22, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cfdft_8) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 82 FP additions, 44 FP multiplications, | ||
|  |  * (or, 68 additions, 30 multiplications, 14 fused multiply/add), | ||
|  |  * 39 stack variables, 2 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cf.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP353553390, +0.353553390593273762200422181052424519642417969); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { | ||
|  | 	       E Tv, TX, Ts, TY, TE, T1a, TJ, T19, T1l, T1m, T9, T10, Ti, T11, TP; | ||
|  | 	       E T16, TU, T17, T1i, T1j; | ||
|  | 	       { | ||
|  | 		    E Tt, Tu, TD, Tz, TA, TB, Tn, TI, Tr, TG, Tk, To; | ||
|  | 		    Tt = Ip[0]; | ||
|  | 		    Tu = Im[0]; | ||
|  | 		    TD = Tt + Tu; | ||
|  | 		    Tz = Rm[0]; | ||
|  | 		    TA = Rp[0]; | ||
|  | 		    TB = Tz - TA; | ||
|  | 		    { | ||
|  | 			 E Tl, Tm, Tp, Tq; | ||
|  | 			 Tl = Ip[WS(rs, 2)]; | ||
|  | 			 Tm = Im[WS(rs, 2)]; | ||
|  | 			 Tn = Tl - Tm; | ||
|  | 			 TI = Tl + Tm; | ||
|  | 			 Tp = Rp[WS(rs, 2)]; | ||
|  | 			 Tq = Rm[WS(rs, 2)]; | ||
|  | 			 Tr = Tp + Tq; | ||
|  | 			 TG = Tp - Tq; | ||
|  | 		    } | ||
|  | 		    Tv = Tt - Tu; | ||
|  | 		    TX = TA + Tz; | ||
|  | 		    Tk = W[6]; | ||
|  | 		    To = W[7]; | ||
|  | 		    Ts = FNMS(To, Tr, Tk * Tn); | ||
|  | 		    TY = FMA(Tk, Tr, To * Tn); | ||
|  | 		    { | ||
|  | 			 E Ty, TC, TF, TH; | ||
|  | 			 Ty = W[0]; | ||
|  | 			 TC = W[1]; | ||
|  | 			 TE = FNMS(TC, TD, Ty * TB); | ||
|  | 			 T1a = FMA(TC, TB, Ty * TD); | ||
|  | 			 TF = W[8]; | ||
|  | 			 TH = W[9]; | ||
|  | 			 TJ = FMA(TF, TG, TH * TI); | ||
|  | 			 T19 = FNMS(TH, TG, TF * TI); | ||
|  | 		    } | ||
|  | 		    T1l = TJ + TE; | ||
|  | 		    T1m = T1a - T19; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4, TO, T8, TM, Td, TT, Th, TR; | ||
|  | 		    { | ||
|  | 			 E T2, T3, T6, T7; | ||
|  | 			 T2 = Ip[WS(rs, 1)]; | ||
|  | 			 T3 = Im[WS(rs, 1)]; | ||
|  | 			 T4 = T2 - T3; | ||
|  | 			 TO = T2 + T3; | ||
|  | 			 T6 = Rp[WS(rs, 1)]; | ||
|  | 			 T7 = Rm[WS(rs, 1)]; | ||
|  | 			 T8 = T6 + T7; | ||
|  | 			 TM = T6 - T7; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Tf, Tg; | ||
|  | 			 Tb = Ip[WS(rs, 3)]; | ||
|  | 			 Tc = Im[WS(rs, 3)]; | ||
|  | 			 Td = Tb - Tc; | ||
|  | 			 TT = Tb + Tc; | ||
|  | 			 Tf = Rp[WS(rs, 3)]; | ||
|  | 			 Tg = Rm[WS(rs, 3)]; | ||
|  | 			 Th = Tf + Tg; | ||
|  | 			 TR = Tf - Tg; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1, T5, Ta, Te; | ||
|  | 			 T1 = W[2]; | ||
|  | 			 T5 = W[3]; | ||
|  | 			 T9 = FNMS(T5, T8, T1 * T4); | ||
|  | 			 T10 = FMA(T1, T8, T5 * T4); | ||
|  | 			 Ta = W[10]; | ||
|  | 			 Te = W[11]; | ||
|  | 			 Ti = FNMS(Te, Th, Ta * Td); | ||
|  | 			 T11 = FMA(Ta, Th, Te * Td); | ||
|  | 			 { | ||
|  | 			      E TL, TN, TQ, TS; | ||
|  | 			      TL = W[4]; | ||
|  | 			      TN = W[5]; | ||
|  | 			      TP = FMA(TL, TM, TN * TO); | ||
|  | 			      T16 = FNMS(TN, TM, TL * TO); | ||
|  | 			      TQ = W[12]; | ||
|  | 			      TS = W[13]; | ||
|  | 			      TU = FMA(TQ, TR, TS * TT); | ||
|  | 			      T17 = FNMS(TS, TR, TQ * TT); | ||
|  | 			 } | ||
|  | 			 T1i = T17 - T16; | ||
|  | 			 T1j = TP - TU; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1h, T1t, T1w, T1y, T1o, T1s, T1r, T1x; | ||
|  | 		    { | ||
|  | 			 E T1f, T1g, T1u, T1v; | ||
|  | 			 T1f = Tv - Ts; | ||
|  | 			 T1g = T10 - T11; | ||
|  | 			 T1h = KP500000000 * (T1f - T1g); | ||
|  | 			 T1t = KP500000000 * (T1g + T1f); | ||
|  | 			 T1u = T1i - T1j; | ||
|  | 			 T1v = T1l + T1m; | ||
|  | 			 T1w = KP353553390 * (T1u - T1v); | ||
|  | 			 T1y = KP353553390 * (T1u + T1v); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1k, T1n, T1p, T1q; | ||
|  | 			 T1k = T1i + T1j; | ||
|  | 			 T1n = T1l - T1m; | ||
|  | 			 T1o = KP353553390 * (T1k + T1n); | ||
|  | 			 T1s = KP353553390 * (T1n - T1k); | ||
|  | 			 T1p = TX - TY; | ||
|  | 			 T1q = T9 - Ti; | ||
|  | 			 T1r = KP500000000 * (T1p - T1q); | ||
|  | 			 T1x = KP500000000 * (T1p + T1q); | ||
|  | 		    } | ||
|  | 		    Ip[WS(rs, 1)] = T1h + T1o; | ||
|  | 		    Rp[WS(rs, 1)] = T1x + T1y; | ||
|  | 		    Im[WS(rs, 2)] = T1o - T1h; | ||
|  | 		    Rm[WS(rs, 2)] = T1x - T1y; | ||
|  | 		    Rm[0] = T1r - T1s; | ||
|  | 		    Im[0] = T1w - T1t; | ||
|  | 		    Rp[WS(rs, 3)] = T1r + T1s; | ||
|  | 		    Ip[WS(rs, 3)] = T1t + T1w; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tx, T15, T1c, T1e, TW, T14, T13, T1d; | ||
|  | 		    { | ||
|  | 			 E Tj, Tw, T18, T1b; | ||
|  | 			 Tj = T9 + Ti; | ||
|  | 			 Tw = Ts + Tv; | ||
|  | 			 Tx = Tj + Tw; | ||
|  | 			 T15 = Tw - Tj; | ||
|  | 			 T18 = T16 + T17; | ||
|  | 			 T1b = T19 + T1a; | ||
|  | 			 T1c = T18 - T1b; | ||
|  | 			 T1e = T18 + T1b; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TK, TV, TZ, T12; | ||
|  | 			 TK = TE - TJ; | ||
|  | 			 TV = TP + TU; | ||
|  | 			 TW = TK - TV; | ||
|  | 			 T14 = TV + TK; | ||
|  | 			 TZ = TX + TY; | ||
|  | 			 T12 = T10 + T11; | ||
|  | 			 T13 = TZ - T12; | ||
|  | 			 T1d = TZ + T12; | ||
|  | 		    } | ||
|  | 		    Ip[0] = KP500000000 * (Tx + TW); | ||
|  | 		    Rp[0] = KP500000000 * (T1d + T1e); | ||
|  | 		    Im[WS(rs, 3)] = KP500000000 * (TW - Tx); | ||
|  | 		    Rm[WS(rs, 3)] = KP500000000 * (T1d - T1e); | ||
|  | 		    Rm[WS(rs, 1)] = KP500000000 * (T13 - T14); | ||
|  | 		    Im[WS(rs, 1)] = KP500000000 * (T1c - T15); | ||
|  | 		    Rp[WS(rs, 2)] = KP500000000 * (T13 + T14); | ||
|  | 		    Ip[WS(rs, 2)] = KP500000000 * (T15 + T1c); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 8 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, { 68, 30, 14, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cfdft_8) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |