355 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			355 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:12 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include rdft/scalar/hf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 72 FP additions, 66 FP multiplications, | ||
|  |  * (or, 18 additions, 12 multiplications, 54 fused multiply/add), | ||
|  |  * 37 stack variables, 6 constants, and 28 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hf.h"
 | ||
|  | 
 | ||
|  | static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP801937735, +0.801937735804838252472204639014890102331838324); | ||
|  |      DK(KP554958132, +0.554958132087371191422194871006410481067288862); | ||
|  |      DK(KP692021471, +0.692021471630095869627814897002069140197260599); | ||
|  |      DK(KP356895867, +0.356895867892209443894399510021300583399127187); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | ||
|  | 	       E T1, T19, Te, T1i, TR, T1a, Tr, T1h, TM, T1b, TE, T1g, TW, T1c; | ||
|  | 	       T1 = cr[0]; | ||
|  | 	       T19 = ci[0]; | ||
|  | 	       { | ||
|  | 		    E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8; | ||
|  | 		    T3 = cr[WS(rs, 1)]; | ||
|  | 		    T6 = ci[WS(rs, 1)]; | ||
|  | 		    T2 = W[0]; | ||
|  | 		    T4 = T2 * T3; | ||
|  | 		    TN = T2 * T6; | ||
|  | 		    T9 = cr[WS(rs, 6)]; | ||
|  | 		    Tc = ci[WS(rs, 6)]; | ||
|  | 		    T8 = W[10]; | ||
|  | 		    Ta = T8 * T9; | ||
|  | 		    TP = T8 * Tc; | ||
|  | 		    { | ||
|  | 			 E T7, TO, Td, TQ, T5, Tb; | ||
|  | 			 T5 = W[1]; | ||
|  | 			 T7 = FMA(T5, T6, T4); | ||
|  | 			 TO = FNMS(T5, T3, TN); | ||
|  | 			 Tb = W[11]; | ||
|  | 			 Td = FMA(Tb, Tc, Ta); | ||
|  | 			 TQ = FNMS(Tb, T9, TP); | ||
|  | 			 Te = T7 + Td; | ||
|  | 			 T1i = Td - T7; | ||
|  | 			 TR = TO - TQ; | ||
|  | 			 T1a = TO + TQ; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl; | ||
|  | 		    Tg = cr[WS(rs, 2)]; | ||
|  | 		    Tj = ci[WS(rs, 2)]; | ||
|  | 		    Tf = W[2]; | ||
|  | 		    Th = Tf * Tg; | ||
|  | 		    TI = Tf * Tj; | ||
|  | 		    Tm = cr[WS(rs, 5)]; | ||
|  | 		    Tp = ci[WS(rs, 5)]; | ||
|  | 		    Tl = W[8]; | ||
|  | 		    Tn = Tl * Tm; | ||
|  | 		    TK = Tl * Tp; | ||
|  | 		    { | ||
|  | 			 E Tk, TJ, Tq, TL, Ti, To; | ||
|  | 			 Ti = W[3]; | ||
|  | 			 Tk = FMA(Ti, Tj, Th); | ||
|  | 			 TJ = FNMS(Ti, Tg, TI); | ||
|  | 			 To = W[9]; | ||
|  | 			 Tq = FMA(To, Tp, Tn); | ||
|  | 			 TL = FNMS(To, Tm, TK); | ||
|  | 			 Tr = Tk + Tq; | ||
|  | 			 T1h = Tq - Tk; | ||
|  | 			 TM = TJ - TL; | ||
|  | 			 T1b = TJ + TL; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty; | ||
|  | 		    Tt = cr[WS(rs, 3)]; | ||
|  | 		    Tw = ci[WS(rs, 3)]; | ||
|  | 		    Ts = W[4]; | ||
|  | 		    Tu = Ts * Tt; | ||
|  | 		    TS = Ts * Tw; | ||
|  | 		    Tz = cr[WS(rs, 4)]; | ||
|  | 		    TC = ci[WS(rs, 4)]; | ||
|  | 		    Ty = W[6]; | ||
|  | 		    TA = Ty * Tz; | ||
|  | 		    TU = Ty * TC; | ||
|  | 		    { | ||
|  | 			 E Tx, TT, TD, TV, Tv, TB; | ||
|  | 			 Tv = W[5]; | ||
|  | 			 Tx = FMA(Tv, Tw, Tu); | ||
|  | 			 TT = FNMS(Tv, Tt, TS); | ||
|  | 			 TB = W[7]; | ||
|  | 			 TD = FMA(TB, TC, TA); | ||
|  | 			 TV = FNMS(TB, Tz, TU); | ||
|  | 			 TE = Tx + TD; | ||
|  | 			 T1g = TD - Tx; | ||
|  | 			 TW = TT - TV; | ||
|  | 			 T1c = TT + TV; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       cr[0] = T1 + Te + Tr + TE; | ||
|  | 	       { | ||
|  | 		    E TG, TY, TF, TX, TH; | ||
|  | 		    TF = FNMS(KP356895867, Tr, Te); | ||
|  | 		    TG = FNMS(KP692021471, TF, TE); | ||
|  | 		    TX = FMA(KP554958132, TW, TR); | ||
|  | 		    TY = FMA(KP801937735, TX, TM); | ||
|  | 		    TH = FNMS(KP900968867, TG, T1); | ||
|  | 		    ci[0] = FNMS(KP974927912, TY, TH); | ||
|  | 		    cr[WS(rs, 1)] = FMA(KP974927912, TY, TH); | ||
|  | 	       } | ||
|  | 	       ci[WS(rs, 6)] = T1a + T1b + T1c + T19; | ||
|  | 	       { | ||
|  | 		    E T1r, T1u, T1q, T1t, T1s; | ||
|  | 		    T1q = FNMS(KP356895867, T1b, T1a); | ||
|  | 		    T1r = FNMS(KP692021471, T1q, T1c); | ||
|  | 		    T1t = FMA(KP554958132, T1g, T1i); | ||
|  | 		    T1u = FMA(KP801937735, T1t, T1h); | ||
|  | 		    T1s = FNMS(KP900968867, T1r, T19); | ||
|  | 		    cr[WS(rs, 6)] = FMS(KP974927912, T1u, T1s); | ||
|  | 		    ci[WS(rs, 5)] = FMA(KP974927912, T1u, T1s); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1m, T1p, T1l, T1o, T1n; | ||
|  | 		    T1l = FNMS(KP356895867, T1a, T1c); | ||
|  | 		    T1m = FNMS(KP692021471, T1l, T1b); | ||
|  | 		    T1o = FMA(KP554958132, T1h, T1g); | ||
|  | 		    T1p = FNMS(KP801937735, T1o, T1i); | ||
|  | 		    T1n = FNMS(KP900968867, T1m, T19); | ||
|  | 		    cr[WS(rs, 5)] = FMS(KP974927912, T1p, T1n); | ||
|  | 		    ci[WS(rs, 4)] = FMA(KP974927912, T1p, T1n); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1e, T1k, T1d, T1j, T1f; | ||
|  | 		    T1d = FNMS(KP356895867, T1c, T1b); | ||
|  | 		    T1e = FNMS(KP692021471, T1d, T1a); | ||
|  | 		    T1j = FNMS(KP554958132, T1i, T1h); | ||
|  | 		    T1k = FNMS(KP801937735, T1j, T1g); | ||
|  | 		    T1f = FNMS(KP900968867, T1e, T19); | ||
|  | 		    cr[WS(rs, 4)] = FMS(KP974927912, T1k, T1f); | ||
|  | 		    ci[WS(rs, 3)] = FMA(KP974927912, T1k, T1f); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T15, T18, T14, T17, T16; | ||
|  | 		    T14 = FNMS(KP356895867, TE, Tr); | ||
|  | 		    T15 = FNMS(KP692021471, T14, Te); | ||
|  | 		    T17 = FNMS(KP554958132, TR, TM); | ||
|  | 		    T18 = FNMS(KP801937735, T17, TW); | ||
|  | 		    T16 = FNMS(KP900968867, T15, T1); | ||
|  | 		    ci[WS(rs, 2)] = FNMS(KP974927912, T18, T16); | ||
|  | 		    cr[WS(rs, 3)] = FMA(KP974927912, T18, T16); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T10, T13, TZ, T12, T11; | ||
|  | 		    TZ = FNMS(KP356895867, Te, TE); | ||
|  | 		    T10 = FNMS(KP692021471, TZ, Tr); | ||
|  | 		    T12 = FMA(KP554958132, TM, TW); | ||
|  | 		    T13 = FNMS(KP801937735, T12, TR); | ||
|  | 		    T11 = FNMS(KP900968867, T10, T1); | ||
|  | 		    ci[WS(rs, 1)] = FNMS(KP974927912, T13, T11); | ||
|  | 		    cr[WS(rs, 2)] = FMA(KP974927912, T13, T11); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 7 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, { 18, 12, 54, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hf_7) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hf_7, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include rdft/scalar/hf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 72 FP additions, 60 FP multiplications, | ||
|  |  * (or, 36 additions, 24 multiplications, 36 fused multiply/add), | ||
|  |  * 29 stack variables, 6 constants, and 28 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hf.h"
 | ||
|  | 
 | ||
|  | static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP222520933, +0.222520933956314404288902564496794759466355569); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP623489801, +0.623489801858733530525004884004239810632274731); | ||
|  |      DK(KP433883739, +0.433883739117558120475768332848358754609990728); | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      DK(KP781831482, +0.781831482468029808708444526674057750232334519); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | ||
|  | 	       E T1, TT, Tc, TV, TC, TO, Tn, TS, TI, TP, Ty, TU, TF, TQ; | ||
|  | 	       T1 = cr[0]; | ||
|  | 	       TT = ci[0]; | ||
|  | 	       { | ||
|  | 		    E T6, TA, Tb, TB; | ||
|  | 		    { | ||
|  | 			 E T3, T5, T2, T4; | ||
|  | 			 T3 = cr[WS(rs, 1)]; | ||
|  | 			 T5 = ci[WS(rs, 1)]; | ||
|  | 			 T2 = W[0]; | ||
|  | 			 T4 = W[1]; | ||
|  | 			 T6 = FMA(T2, T3, T4 * T5); | ||
|  | 			 TA = FNMS(T4, T3, T2 * T5); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8, Ta, T7, T9; | ||
|  | 			 T8 = cr[WS(rs, 6)]; | ||
|  | 			 Ta = ci[WS(rs, 6)]; | ||
|  | 			 T7 = W[10]; | ||
|  | 			 T9 = W[11]; | ||
|  | 			 Tb = FMA(T7, T8, T9 * Ta); | ||
|  | 			 TB = FNMS(T9, T8, T7 * Ta); | ||
|  | 		    } | ||
|  | 		    Tc = T6 + Tb; | ||
|  | 		    TV = TA + TB; | ||
|  | 		    TC = TA - TB; | ||
|  | 		    TO = Tb - T6; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Th, TG, Tm, TH; | ||
|  | 		    { | ||
|  | 			 E Te, Tg, Td, Tf; | ||
|  | 			 Te = cr[WS(rs, 2)]; | ||
|  | 			 Tg = ci[WS(rs, 2)]; | ||
|  | 			 Td = W[2]; | ||
|  | 			 Tf = W[3]; | ||
|  | 			 Th = FMA(Td, Te, Tf * Tg); | ||
|  | 			 TG = FNMS(Tf, Te, Td * Tg); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj, Tl, Ti, Tk; | ||
|  | 			 Tj = cr[WS(rs, 5)]; | ||
|  | 			 Tl = ci[WS(rs, 5)]; | ||
|  | 			 Ti = W[8]; | ||
|  | 			 Tk = W[9]; | ||
|  | 			 Tm = FMA(Ti, Tj, Tk * Tl); | ||
|  | 			 TH = FNMS(Tk, Tj, Ti * Tl); | ||
|  | 		    } | ||
|  | 		    Tn = Th + Tm; | ||
|  | 		    TS = TG + TH; | ||
|  | 		    TI = TG - TH; | ||
|  | 		    TP = Th - Tm; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ts, TD, Tx, TE; | ||
|  | 		    { | ||
|  | 			 E Tp, Tr, To, Tq; | ||
|  | 			 Tp = cr[WS(rs, 3)]; | ||
|  | 			 Tr = ci[WS(rs, 3)]; | ||
|  | 			 To = W[4]; | ||
|  | 			 Tq = W[5]; | ||
|  | 			 Ts = FMA(To, Tp, Tq * Tr); | ||
|  | 			 TD = FNMS(Tq, Tp, To * Tr); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tu, Tw, Tt, Tv; | ||
|  | 			 Tu = cr[WS(rs, 4)]; | ||
|  | 			 Tw = ci[WS(rs, 4)]; | ||
|  | 			 Tt = W[6]; | ||
|  | 			 Tv = W[7]; | ||
|  | 			 Tx = FMA(Tt, Tu, Tv * Tw); | ||
|  | 			 TE = FNMS(Tv, Tu, Tt * Tw); | ||
|  | 		    } | ||
|  | 		    Ty = Ts + Tx; | ||
|  | 		    TU = TD + TE; | ||
|  | 		    TF = TD - TE; | ||
|  | 		    TQ = Tx - Ts; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TL, TK, TZ, T10; | ||
|  | 		    cr[0] = T1 + Tc + Tn + Ty; | ||
|  | 		    TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF); | ||
|  | 		    TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn); | ||
|  | 		    ci[0] = TK - TL; | ||
|  | 		    cr[WS(rs, 1)] = TK + TL; | ||
|  | 		    ci[WS(rs, 6)] = TV + TS + TU + TT; | ||
|  | 		    TZ = FMA(KP781831482, TO, KP433883739 * TQ) - (KP974927912 * TP); | ||
|  | 		    T10 = FMA(KP623489801, TV, TT) + FNMA(KP900968867, TU, KP222520933 * TS); | ||
|  | 		    cr[WS(rs, 6)] = TZ - T10; | ||
|  | 		    ci[WS(rs, 5)] = TZ + T10; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TX, TY, TR, TW; | ||
|  | 		    TX = FMA(KP974927912, TO, KP433883739 * TP) - (KP781831482 * TQ); | ||
|  | 		    TY = FMA(KP623489801, TU, TT) + FNMA(KP900968867, TS, KP222520933 * TV); | ||
|  | 		    cr[WS(rs, 5)] = TX - TY; | ||
|  | 		    ci[WS(rs, 4)] = TX + TY; | ||
|  | 		    TR = FMA(KP433883739, TO, KP781831482 * TP) + (KP974927912 * TQ); | ||
|  | 		    TW = FMA(KP623489801, TS, TT) + FNMA(KP222520933, TU, KP900968867 * TV); | ||
|  | 		    cr[WS(rs, 4)] = TR - TW; | ||
|  | 		    ci[WS(rs, 3)] = TR + TW; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TN, TM, TJ, Tz; | ||
|  | 		    TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI); | ||
|  | 		    TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc); | ||
|  | 		    ci[WS(rs, 2)] = TM - TN; | ||
|  | 		    cr[WS(rs, 3)] = TM + TN; | ||
|  | 		    TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI); | ||
|  | 		    Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc); | ||
|  | 		    ci[WS(rs, 1)] = Tz - TJ; | ||
|  | 		    cr[WS(rs, 2)] = Tz + TJ; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 7 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, { 36, 24, 36, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hf_7) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hf_7, &desc); | ||
|  | } | ||
|  | #endif
 |