411 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			411 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some
 | ||
|  |    pre/post-processing ala FFTPACK. */ | ||
|  | 
 | ||
|  | #include "reodft/reodft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_rdft super; | ||
|  |      plan *cld; | ||
|  |      twid *td; | ||
|  |      INT is, os; | ||
|  |      INT n; | ||
|  |      INT vl; | ||
|  |      INT ivs, ovs; | ||
|  |      rdft_kind kind; | ||
|  | } P; | ||
|  | 
 | ||
|  | /* A real-even-01 DFT operates logically on a size-4N array:
 | ||
|  |                    I 0 -r(I*) -I 0 r(I*), | ||
|  |    where r denotes reversal and * denotes deletion of the 0th element. | ||
|  |    To compute the transform of this, we imagine performing a radix-4 | ||
|  |    (real-input) DIF step, which turns the size-4N DFT into 4 size-N | ||
|  |    (contiguous) DFTs, two of which are zero and two of which are | ||
|  |    conjugates.  The non-redundant size-N DFT has halfcomplex input, so | ||
|  |    we can do it with a size-N hc2r transform.  (In order to share | ||
|  |    plans with the re10 (inverse) transform, however, we use the DHT | ||
|  |    trick to re-express the hc2r problem as r2hc.  This has little cost | ||
|  |    since we are already pre- and post-processing the data in {i,n-i} | ||
|  |    order.)  Finally, we have to write out the data in the correct | ||
|  |    order...the two size-N redundant (conjugate) hc2r DFTs correspond | ||
|  |    to the even and odd outputs in O (i.e. the usual interleaved output | ||
|  |    of DIF transforms); since this data has even symmetry, we only | ||
|  |    write the first half of it. | ||
|  | 
 | ||
|  |    The real-even-10 DFT is just the reverse of these steps, i.e. a | ||
|  |    radix-4 DIT transform.  There, however, we just use the r2hc | ||
|  |    transform naturally without resorting to the DHT trick. | ||
|  | 
 | ||
|  |    A real-odd-01 DFT is very similar, except that the input is | ||
|  |    0 I (rI)* 0 -I -(rI)*.  This format, however, can be transformed | ||
|  |    into precisely the real-even-01 format above by sending I -> rI | ||
|  |    and shifting the array by N.  The former swap is just another | ||
|  |    transformation on the input during preprocessing; the latter | ||
|  |    multiplies the even/odd outputs by i/-i, which combines with | ||
|  |    the factor of -i (to take the imaginary part) to simply flip | ||
|  |    the sign of the odd outputs.  Vice-versa for real-odd-10. | ||
|  | 
 | ||
|  |    The FFTPACK source code was very helpful in working this out. | ||
|  |    (They do unnecessary passes over the array, though.)  The same | ||
|  |    algorithm is also described in: | ||
|  | 
 | ||
|  |       John Makhoul, "A fast cosine transform in one and two dimensions," | ||
|  |       IEEE Trans. on Acoust. Speech and Sig. Proc., ASSP-28 (1), 27--34 (1980). | ||
|  | 
 | ||
|  |    Note that Numerical Recipes suggests a different algorithm that | ||
|  |    requires more operations and uses trig. functions for both the pre- | ||
|  |    and post-processing passes. | ||
|  | */ | ||
|  | 
 | ||
|  | static void apply_re01(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *W = ego->td->W; | ||
|  |      R *buf; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  buf[0] = I[0]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b, apb, amb, wa, wb; | ||
|  | 	       a = I[is * i]; | ||
|  | 	       b = I[is * (n - i)]; | ||
|  | 	       apb = a + b; | ||
|  | 	       amb = a - b; | ||
|  | 	       wa = W[2*i]; | ||
|  | 	       wb = W[2*i + 1]; | ||
|  | 	       buf[i] = wa * amb + wb * apb;  | ||
|  | 	       buf[n - i] = wa * apb - wb * amb;  | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       buf[i] = K(2.0) * I[is * i] * W[2*i]; | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  O[0] = buf[0]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b; | ||
|  | 	       INT k; | ||
|  | 	       a = buf[i]; | ||
|  | 	       b = buf[n - i]; | ||
|  | 	       k = i + i; | ||
|  | 	       O[os * (k - 1)] = a - b; | ||
|  | 	       O[os * k] = a + b; | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       O[os * (n - 1)] = buf[i]; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | /* ro01 is same as re01, but with i <-> n - 1 - i in the input and
 | ||
|  |    the sign of the odd output elements flipped. */ | ||
|  | static void apply_ro01(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *W = ego->td->W; | ||
|  |      R *buf; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  buf[0] = I[is * (n - 1)]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b, apb, amb, wa, wb; | ||
|  | 	       a = I[is * (n - 1 - i)]; | ||
|  | 	       b = I[is * (i - 1)]; | ||
|  | 	       apb = a + b; | ||
|  | 	       amb = a - b; | ||
|  | 	       wa = W[2*i]; | ||
|  | 	       wb = W[2*i+1]; | ||
|  | 	       buf[i] = wa * amb + wb * apb;  | ||
|  | 	       buf[n - i] = wa * apb - wb * amb;  | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i]; | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  O[0] = buf[0]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b; | ||
|  | 	       INT k; | ||
|  | 	       a = buf[i]; | ||
|  | 	       b = buf[n - i]; | ||
|  | 	       k = i + i; | ||
|  | 	       O[os * (k - 1)] = b - a; | ||
|  | 	       O[os * k] = a + b; | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       O[os * (n - 1)] = -buf[i]; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | static void apply_re10(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *W = ego->td->W; | ||
|  |      R *buf; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  buf[0] = I[0]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E u, v; | ||
|  | 	       INT k = i + i; | ||
|  | 	       u = I[is * (k - 1)]; | ||
|  | 	       v = I[is * k]; | ||
|  | 	       buf[n - i] = u; | ||
|  | 	       buf[i] = v; | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       buf[i] = I[is * (n - 1)]; | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  O[0] = K(2.0) * buf[0]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b, wa, wb; | ||
|  | 	       a = K(2.0) * buf[i]; | ||
|  | 	       b = K(2.0) * buf[n - i]; | ||
|  | 	       wa = W[2*i]; | ||
|  | 	       wb = W[2*i + 1]; | ||
|  | 	       O[os * i] = wa * a + wb * b; | ||
|  | 	       O[os * (n - i)] = wb * a - wa * b; | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       O[os * i] = K(2.0) * buf[i] * W[2*i]; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | /* ro10 is same as re10, but with i <-> n - 1 - i in the output and
 | ||
|  |    the sign of the odd input elements flipped. */ | ||
|  | static void apply_ro10(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *W = ego->td->W; | ||
|  |      R *buf; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  buf[0] = I[0]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E u, v; | ||
|  | 	       INT k = i + i; | ||
|  | 	       u = -I[is * (k - 1)]; | ||
|  | 	       v = I[is * k]; | ||
|  | 	       buf[n - i] = u; | ||
|  | 	       buf[i] = v; | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       buf[i] = -I[is * (n - 1)]; | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  O[os * (n - 1)] = K(2.0) * buf[0]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b, wa, wb; | ||
|  | 	       a = K(2.0) * buf[i]; | ||
|  | 	       b = K(2.0) * buf[n - i]; | ||
|  | 	       wa = W[2*i]; | ||
|  | 	       wb = W[2*i + 1]; | ||
|  | 	       O[os * (n - 1 - i)] = wa * a + wb * b; | ||
|  | 	       O[os * (i - 1)] = wb * a - wa * b; | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i]; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      static const tw_instr reodft010e_tw[] = { | ||
|  |           { TW_COS, 0, 1 }, | ||
|  |           { TW_SIN, 0, 1 }, | ||
|  |           { TW_NEXT, 1, 0 } | ||
|  |      }; | ||
|  | 
 | ||
|  |      X(plan_awake)(ego->cld, wakefulness); | ||
|  | 
 | ||
|  |      X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw,  | ||
|  | 		      4*ego->n, 1, ego->n/2+1); | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      p->print(p, "(%se-r2hc-%D%v%(%p%))", | ||
|  | 	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable0(const solver *ego_, const problem *p_) | ||
|  | { | ||
|  |      const problem_rdft *p = (const problem_rdft *) p_; | ||
|  |      UNUSED(ego_); | ||
|  | 
 | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 	     && p->vecsz->rnk <= 1 | ||
|  | 	     && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10 | ||
|  | 		 || p->kind[0] == RODFT01 || p->kind[0] == RODFT10) | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const solver *ego, const problem *p, const planner *plnr) | ||
|  | { | ||
|  |      return (!NO_SLOWP(plnr) && applicable0(ego, p)); | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      P *pln; | ||
|  |      const problem_rdft *p; | ||
|  |      plan *cld; | ||
|  |      R *buf; | ||
|  |      INT n; | ||
|  |      opcnt ops; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(rdft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego_, p_, plnr)) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      p = (const problem_rdft *) p_; | ||
|  | 
 | ||
|  |      n = p->sz->dims[0].n; | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), | ||
|  |                                                    X(mktensor_0d)(), | ||
|  |                                                    buf, buf, R2HC)); | ||
|  |      X(ifree)(buf); | ||
|  |      if (!cld) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      switch (p->kind[0]) { | ||
|  | 	 case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break; | ||
|  | 	 case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break; | ||
|  | 	 case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break; | ||
|  | 	 case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break; | ||
|  | 	 default: A(0); return (plan*)0; | ||
|  |      } | ||
|  | 
 | ||
|  |      pln->n = n; | ||
|  |      pln->is = p->sz->dims[0].is; | ||
|  |      pln->os = p->sz->dims[0].os; | ||
|  |      pln->cld = cld; | ||
|  |      pln->td = 0; | ||
|  |      pln->kind = p->kind[0]; | ||
|  |       | ||
|  |      X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); | ||
|  |       | ||
|  |      X(ops_zero)(&ops); | ||
|  |      ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5; | ||
|  |      if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) { | ||
|  | 	  ops.add = (n-1)/2 * 6; | ||
|  | 	  ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2; | ||
|  |      } | ||
|  |      else { /* 10 transforms */ | ||
|  | 	  ops.add = (n-1)/2 * 2; | ||
|  | 	  ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2; | ||
|  |      } | ||
|  |       | ||
|  |      X(ops_zero)(&pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | } | ||
|  | 
 | ||
|  | /* constructor */ | ||
|  | static solver *mksolver(void) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(reodft010e_r2hc_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver()); | ||
|  | } |