235 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			235 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* solvers/plans for vectors of DFTs corresponding to the columns
 | ||
|  |    of a matrix: first transpose the matrix so that the DFTs are | ||
|  |    contiguous, then do DFTs with transposed output.   In particular, | ||
|  |    we restrict ourselves to the case of a square transpose (or a | ||
|  |    sequence thereof). */ | ||
|  | 
 | ||
|  | #include "dft/dft.h"
 | ||
|  | 
 | ||
|  | typedef solver S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_dft super; | ||
|  |      INT vl, ivs, ovs; | ||
|  |      plan *cldtrans, *cld, *cldrest; | ||
|  | } P; | ||
|  | 
 | ||
|  | /* initial transpose is out-of-place from input to output */ | ||
|  | static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i; | ||
|  | 
 | ||
|  |      for (i = 0; i < vl; ++i) { | ||
|  | 	  { | ||
|  | 	       plan_dft *cldtrans = (plan_dft *) ego->cldtrans; | ||
|  | 	       cldtrans->apply(ego->cldtrans, ri, ii, ro, io); | ||
|  | 	  } | ||
|  | 	  { | ||
|  | 	       plan_dft *cld = (plan_dft *) ego->cld; | ||
|  | 	       cld->apply(ego->cld, ro, io, ro, io); | ||
|  | 	  } | ||
|  | 	  ri += ivs; ii += ivs; | ||
|  | 	  ro += ovs; io += ovs; | ||
|  |      } | ||
|  |      { | ||
|  | 	  plan_dft *cldrest = (plan_dft *) ego->cldrest; | ||
|  | 	  cldrest->apply(ego->cldrest, ri, ii, ro, io); | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cldrest); | ||
|  |      X(plan_destroy_internal)(ego->cld); | ||
|  |      X(plan_destroy_internal)(ego->cldtrans); | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_awake)(ego->cldtrans, wakefulness); | ||
|  |      X(plan_awake)(ego->cld, wakefulness); | ||
|  |      X(plan_awake)(ego->cldrest, wakefulness); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))",  | ||
|  | 	      ego->vl, ego->cldtrans, ego->cld, ego->cldrest); | ||
|  | } | ||
|  | 
 | ||
|  | static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1) | ||
|  | { | ||
|  |      int dim0, dim1; | ||
|  |      *pdim0 = *pdim1 = -1; | ||
|  |      for (dim0 = 0; dim0 < vs->rnk; ++dim0) | ||
|  |           for (dim1 = 0; dim1 < s->rnk; ++dim1)  | ||
|  | 	       if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is) | ||
|  | 		   && vs->dims[dim0].n >= s->dims[dim1].n | ||
|  | 		   && (*pdim0 == -1  | ||
|  | 		       || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is) | ||
|  | 			   && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) { | ||
|  | 		    *pdim0 = dim0; | ||
|  | 		    *pdim1 = dim1; | ||
|  | 	       } | ||
|  |      return (*pdim0 != -1 && *pdim1 != -1); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable0(const solver *ego_, const problem *p_, | ||
|  | 		       const planner *plnr, | ||
|  | 		       int *pdim0, int *pdim1) | ||
|  | { | ||
|  |      const problem_dft *p = (const problem_dft *) p_; | ||
|  |      UNUSED(ego_); UNUSED(plnr); | ||
|  | 
 | ||
|  |      return (1 | ||
|  | 	     && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk) | ||
|  | 
 | ||
|  | 	     /* FIXME: can/should we relax this constraint? */ | ||
|  | 	     && X(tensor_inplace_strides2)(p->vecsz, p->sz) | ||
|  | 
 | ||
|  | 	     && pickdim(p->vecsz, p->sz, pdim0, pdim1) | ||
|  | 
 | ||
|  | 	     /* output should not *already* include the transpose
 | ||
|  | 		(in which case we duplicate the regular indirect.c) */ | ||
|  | 	     && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is) | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const solver *ego_, const problem *p_, | ||
|  | 		      const planner *plnr, | ||
|  | 		      int *pdim0, int *pdim1) | ||
|  | { | ||
|  |      if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0; | ||
|  |      { | ||
|  |           const problem_dft *p = (const problem_dft *) p_; | ||
|  | 	  INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1; | ||
|  | 
 | ||
|  | 	  /* UGLY if does not result in contiguous transforms or
 | ||
|  | 	     transforms of contiguous vectors (since the latter at | ||
|  | 	     least have efficient transpositions) */ | ||
|  | 	  if (NO_UGLYP(plnr) | ||
|  | 	      && p->vecsz->dims[*pdim0].is != u | ||
|  | 	      && !(p->vecsz->rnk == 2 | ||
|  | 		   && p->vecsz->dims[1-*pdim0].is == u | ||
|  | 		   && p->vecsz->dims[*pdim0].is | ||
|  | 		      == u * p->vecsz->dims[1-*pdim0].n)) | ||
|  | 	       return 0; | ||
|  | 
 | ||
|  | 	  if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0; | ||
|  |      } | ||
|  |      return 1; | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      const problem_dft *p = (const problem_dft *) p_; | ||
|  |      P *pln; | ||
|  |      plan *cld = 0, *cldtrans = 0, *cldrest = 0; | ||
|  |      int pdim0, pdim1; | ||
|  |      tensor *ts, *tv; | ||
|  |      INT vl, ivs, ovs; | ||
|  |      R *rit, *iit, *rot, *iot; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(dft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego_, p_, plnr, &pdim0, &pdim1)) | ||
|  |           return (plan *) 0; | ||
|  | 
 | ||
|  |      vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n; | ||
|  |      A(vl >= 1); | ||
|  |      ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is; | ||
|  |      ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os; | ||
|  |      rit = TAINT(p->ri, vl == 1 ? 0 : ivs); | ||
|  |      iit = TAINT(p->ii, vl == 1 ? 0 : ivs); | ||
|  |      rot = TAINT(p->ro, vl == 1 ? 0 : ovs); | ||
|  |      iot = TAINT(p->io, vl == 1 ? 0 : ovs); | ||
|  | 
 | ||
|  |      ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS); | ||
|  |      ts->dims[pdim1].os = p->vecsz->dims[pdim0].is; | ||
|  |      tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS); | ||
|  |      tv->dims[pdim0].os = p->sz->dims[pdim1].is; | ||
|  |      tv->dims[pdim0].n = p->sz->dims[pdim1].n; | ||
|  |      cldtrans = X(mkplan_d)(plnr,  | ||
|  | 			    X(mkproblem_dft_d)(X(mktensor_0d)(), | ||
|  | 					       X(tensor_append)(tv, ts), | ||
|  | 					       rit, iit,  | ||
|  | 					       rot, iot)); | ||
|  |      X(tensor_destroy2)(ts, tv); | ||
|  |      if (!cldtrans) goto nada; | ||
|  | 
 | ||
|  |      ts = X(tensor_copy)(p->sz); | ||
|  |      ts->dims[pdim1].is = p->vecsz->dims[pdim0].is; | ||
|  |      tv = X(tensor_copy)(p->vecsz); | ||
|  |      tv->dims[pdim0].is = p->sz->dims[pdim1].is; | ||
|  |      tv->dims[pdim0].n = p->sz->dims[pdim1].n; | ||
|  |      cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv, | ||
|  | 						rot, iot, | ||
|  | 						rot, iot)); | ||
|  |      if (!cld) goto nada; | ||
|  | 
 | ||
|  |      tv = X(tensor_copy)(p->vecsz); | ||
|  |      tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n; | ||
|  |      cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv, | ||
|  | 						    p->ri + ivs * vl, | ||
|  | 						    p->ii + ivs * vl, | ||
|  | 						    p->ro + ovs * vl, | ||
|  | 						    p->io + ovs * vl)); | ||
|  |      if (!cldrest) goto nada; | ||
|  | 
 | ||
|  |      pln = MKPLAN_DFT(P, &padt, apply_op); | ||
|  |      pln->cldtrans = cldtrans; | ||
|  |      pln->cld = cld; | ||
|  |      pln->cldrest = cldrest; | ||
|  |      pln->vl = vl; | ||
|  |      pln->ivs = ivs; | ||
|  |      pln->ovs = ovs; | ||
|  |      X(ops_cpy)(&cldrest->ops, &pln->super.super.ops); | ||
|  |      X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops); | ||
|  |      X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops); | ||
|  |      return &(pln->super.super); | ||
|  | 
 | ||
|  |  nada: | ||
|  |      X(plan_destroy_internal)(cldrest); | ||
|  |      X(plan_destroy_internal)(cld); | ||
|  |      X(plan_destroy_internal)(cldtrans); | ||
|  |      return (plan *)0; | ||
|  | } | ||
|  | 
 | ||
|  | static solver *mksolver(void) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      return slv; | ||
|  | } | ||
|  | 
 | ||
|  | void X(dft_indirect_transpose_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver()); | ||
|  | } |