525 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			525 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:41 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 88 FP additions, 48 FP multiplications, | ||
|  |  * (or, 64 additions, 24 multiplications, 24 fused multiply/add), | ||
|  |  * 51 stack variables, 0 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/q.h"
 | ||
|  | 
 | ||
|  | static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | ||
|  | 	       E T3, Tv, Tw, T6, Tc, Tf, Tx, Ts, Tm, Ti, T1H, T29, T2a, T1K, T1Q; | ||
|  | 	       E T1T, T2b, T26, T20, T1W, TB, T13, T14, TE, TK, TN, T15, T10, TU, TQ; | ||
|  | 	       E T19, T1B, T1C, T1c, T1i, T1l, T1D, T1y, T1s, T1o; | ||
|  | 	       { | ||
|  | 		    E T1, T2, Tb, Tg, Th, T8; | ||
|  | 		    { | ||
|  | 			 E T9, Ta, T4, T5; | ||
|  | 			 T1 = rio[0]; | ||
|  | 			 T2 = rio[WS(rs, 2)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T9 = iio[0]; | ||
|  | 			 Ta = iio[WS(rs, 2)]; | ||
|  | 			 Tb = T9 - Ta; | ||
|  | 			 Tv = T9 + Ta; | ||
|  | 			 Tg = iio[WS(rs, 1)]; | ||
|  | 			 Th = iio[WS(rs, 3)]; | ||
|  | 			 Tw = Tg + Th; | ||
|  | 			 T4 = rio[WS(rs, 1)]; | ||
|  | 			 T5 = rio[WS(rs, 3)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T8 = T4 - T5; | ||
|  | 		    } | ||
|  | 		    Tc = T8 + Tb; | ||
|  | 		    Tf = T1 - T2; | ||
|  | 		    Tx = Tv - Tw; | ||
|  | 		    Ts = T3 - T6; | ||
|  | 		    Tm = Tb - T8; | ||
|  | 		    Ti = Tg - Th; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1F, T1G, T1P, T1U, T1V, T1M; | ||
|  | 		    { | ||
|  | 			 E T1N, T1O, T1I, T1J; | ||
|  | 			 T1F = rio[WS(vs, 3)]; | ||
|  | 			 T1G = rio[WS(vs, 3) + WS(rs, 2)]; | ||
|  | 			 T1H = T1F + T1G; | ||
|  | 			 T1N = iio[WS(vs, 3)]; | ||
|  | 			 T1O = iio[WS(vs, 3) + WS(rs, 2)]; | ||
|  | 			 T1P = T1N - T1O; | ||
|  | 			 T29 = T1N + T1O; | ||
|  | 			 T1U = iio[WS(vs, 3) + WS(rs, 1)]; | ||
|  | 			 T1V = iio[WS(vs, 3) + WS(rs, 3)]; | ||
|  | 			 T2a = T1U + T1V; | ||
|  | 			 T1I = rio[WS(vs, 3) + WS(rs, 1)]; | ||
|  | 			 T1J = rio[WS(vs, 3) + WS(rs, 3)]; | ||
|  | 			 T1K = T1I + T1J; | ||
|  | 			 T1M = T1I - T1J; | ||
|  | 		    } | ||
|  | 		    T1Q = T1M + T1P; | ||
|  | 		    T1T = T1F - T1G; | ||
|  | 		    T2b = T29 - T2a; | ||
|  | 		    T26 = T1H - T1K; | ||
|  | 		    T20 = T1P - T1M; | ||
|  | 		    T1W = T1U - T1V; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tz, TA, TJ, TO, TP, TG; | ||
|  | 		    { | ||
|  | 			 E TH, TI, TC, TD; | ||
|  | 			 Tz = rio[WS(vs, 1)]; | ||
|  | 			 TA = rio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 			 TB = Tz + TA; | ||
|  | 			 TH = iio[WS(vs, 1)]; | ||
|  | 			 TI = iio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 			 TJ = TH - TI; | ||
|  | 			 T13 = TH + TI; | ||
|  | 			 TO = iio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 			 TP = iio[WS(vs, 1) + WS(rs, 3)]; | ||
|  | 			 T14 = TO + TP; | ||
|  | 			 TC = rio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 			 TD = rio[WS(vs, 1) + WS(rs, 3)]; | ||
|  | 			 TE = TC + TD; | ||
|  | 			 TG = TC - TD; | ||
|  | 		    } | ||
|  | 		    TK = TG + TJ; | ||
|  | 		    TN = Tz - TA; | ||
|  | 		    T15 = T13 - T14; | ||
|  | 		    T10 = TB - TE; | ||
|  | 		    TU = TJ - TG; | ||
|  | 		    TQ = TO - TP; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T17, T18, T1h, T1m, T1n, T1e; | ||
|  | 		    { | ||
|  | 			 E T1f, T1g, T1a, T1b; | ||
|  | 			 T17 = rio[WS(vs, 2)]; | ||
|  | 			 T18 = rio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 T19 = T17 + T18; | ||
|  | 			 T1f = iio[WS(vs, 2)]; | ||
|  | 			 T1g = iio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 T1h = T1f - T1g; | ||
|  | 			 T1B = T1f + T1g; | ||
|  | 			 T1m = iio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 T1n = iio[WS(vs, 2) + WS(rs, 3)]; | ||
|  | 			 T1C = T1m + T1n; | ||
|  | 			 T1a = rio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 T1b = rio[WS(vs, 2) + WS(rs, 3)]; | ||
|  | 			 T1c = T1a + T1b; | ||
|  | 			 T1e = T1a - T1b; | ||
|  | 		    } | ||
|  | 		    T1i = T1e + T1h; | ||
|  | 		    T1l = T17 - T18; | ||
|  | 		    T1D = T1B - T1C; | ||
|  | 		    T1y = T19 - T1c; | ||
|  | 		    T1s = T1h - T1e; | ||
|  | 		    T1o = T1m - T1n; | ||
|  | 	       } | ||
|  | 	       rio[0] = T3 + T6; | ||
|  | 	       iio[0] = Tv + Tw; | ||
|  | 	       rio[WS(rs, 1)] = TB + TE; | ||
|  | 	       iio[WS(rs, 1)] = T13 + T14; | ||
|  | 	       rio[WS(rs, 2)] = T19 + T1c; | ||
|  | 	       iio[WS(rs, 2)] = T1B + T1C; | ||
|  | 	       iio[WS(rs, 3)] = T29 + T2a; | ||
|  | 	       rio[WS(rs, 3)] = T1H + T1K; | ||
|  | 	       { | ||
|  | 		    E Tt, Ty, Tr, Tu; | ||
|  | 		    Tr = W[2]; | ||
|  | 		    Tt = Tr * Ts; | ||
|  | 		    Ty = Tr * Tx; | ||
|  | 		    Tu = W[3]; | ||
|  | 		    rio[WS(vs, 2)] = FMA(Tu, Tx, Tt); | ||
|  | 		    iio[WS(vs, 2)] = FNMS(Tu, Ts, Ty); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T27, T2c, T25, T28; | ||
|  | 		    T25 = W[2]; | ||
|  | 		    T27 = T25 * T26; | ||
|  | 		    T2c = T25 * T2b; | ||
|  | 		    T28 = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 3)] = FMA(T28, T2b, T27); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T28, T26, T2c); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T11, T16, TZ, T12; | ||
|  | 		    TZ = W[2]; | ||
|  | 		    T11 = TZ * T10; | ||
|  | 		    T16 = TZ * T15; | ||
|  | 		    T12 = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(T12, T15, T11); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T12, T10, T16); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1z, T1E, T1x, T1A; | ||
|  | 		    T1x = W[2]; | ||
|  | 		    T1z = T1x * T1y; | ||
|  | 		    T1E = T1x * T1D; | ||
|  | 		    T1A = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1A, T1D, T1z); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1A, T1y, T1E); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tj, Te, Tk, T7, Td; | ||
|  | 		    Tj = Tf - Ti; | ||
|  | 		    Te = W[5]; | ||
|  | 		    Tk = Te * Tc; | ||
|  | 		    T7 = W[4]; | ||
|  | 		    Td = T7 * Tc; | ||
|  | 		    iio[WS(vs, 3)] = FNMS(Te, Tj, Td); | ||
|  | 		    rio[WS(vs, 3)] = FMA(T7, Tj, Tk); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1p, T1k, T1q, T1d, T1j; | ||
|  | 		    T1p = T1l - T1o; | ||
|  | 		    T1k = W[5]; | ||
|  | 		    T1q = T1k * T1i; | ||
|  | 		    T1d = W[4]; | ||
|  | 		    T1j = T1d * T1i; | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T1k, T1p, T1j); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 2)] = FMA(T1d, T1p, T1q); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T23, T22, T24, T1Z, T21; | ||
|  | 		    T23 = T1T + T1W; | ||
|  | 		    T22 = W[1]; | ||
|  | 		    T24 = T22 * T20; | ||
|  | 		    T1Z = W[0]; | ||
|  | 		    T21 = T1Z * T20; | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T22, T23, T21); | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1Z, T23, T24); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TX, TW, TY, TT, TV; | ||
|  | 		    TX = TN + TQ; | ||
|  | 		    TW = W[1]; | ||
|  | 		    TY = TW * TU; | ||
|  | 		    TT = W[0]; | ||
|  | 		    TV = TT * TU; | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TW, TX, TV); | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(TT, TX, TY); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TR, TM, TS, TF, TL; | ||
|  | 		    TR = TN - TQ; | ||
|  | 		    TM = W[5]; | ||
|  | 		    TS = TM * TK; | ||
|  | 		    TF = W[4]; | ||
|  | 		    TL = TF * TK; | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TM, TR, TL); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TR, TS); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tp, To, Tq, Tl, Tn; | ||
|  | 		    Tp = Tf + Ti; | ||
|  | 		    To = W[1]; | ||
|  | 		    Tq = To * Tm; | ||
|  | 		    Tl = W[0]; | ||
|  | 		    Tn = Tl * Tm; | ||
|  | 		    iio[WS(vs, 1)] = FNMS(To, Tp, Tn); | ||
|  | 		    rio[WS(vs, 1)] = FMA(Tl, Tp, Tq); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1v, T1u, T1w, T1r, T1t; | ||
|  | 		    T1v = T1l + T1o; | ||
|  | 		    T1u = W[1]; | ||
|  | 		    T1w = T1u * T1s; | ||
|  | 		    T1r = W[0]; | ||
|  | 		    T1t = T1r * T1s; | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1u, T1v, T1t); | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1r, T1v, T1w); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1X, T1S, T1Y, T1L, T1R; | ||
|  | 		    T1X = T1T - T1W; | ||
|  | 		    T1S = W[5]; | ||
|  | 		    T1Y = T1S * T1Q; | ||
|  | 		    T1L = W[4]; | ||
|  | 		    T1R = T1L * T1Q; | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1S, T1X, T1R); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1L, T1X, T1Y); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 4 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_q1_4) (planner *p) { | ||
|  |      X(kdft_difsq_register) (p, q1_4, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 88 FP additions, 48 FP multiplications, | ||
|  |  * (or, 64 additions, 24 multiplications, 24 fused multiply/add), | ||
|  |  * 37 stack variables, 0 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/q.h"
 | ||
|  | 
 | ||
|  | static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | ||
|  | 	       E T3, Te, Tb, Tq, T6, T8, Th, Tr, Tv, TG, TD, TS, Ty, TA, TJ; | ||
|  | 	       E TT, TX, T18, T15, T1k, T10, T12, T1b, T1l, T1p, T1A, T1x, T1M, T1s, T1u; | ||
|  | 	       E T1D, T1N; | ||
|  | 	       { | ||
|  | 		    E T1, T2, T9, Ta; | ||
|  | 		    T1 = rio[0]; | ||
|  | 		    T2 = rio[WS(rs, 2)]; | ||
|  | 		    T3 = T1 + T2; | ||
|  | 		    Te = T1 - T2; | ||
|  | 		    T9 = iio[0]; | ||
|  | 		    Ta = iio[WS(rs, 2)]; | ||
|  | 		    Tb = T9 - Ta; | ||
|  | 		    Tq = T9 + Ta; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4, T5, Tf, Tg; | ||
|  | 		    T4 = rio[WS(rs, 1)]; | ||
|  | 		    T5 = rio[WS(rs, 3)]; | ||
|  | 		    T6 = T4 + T5; | ||
|  | 		    T8 = T4 - T5; | ||
|  | 		    Tf = iio[WS(rs, 1)]; | ||
|  | 		    Tg = iio[WS(rs, 3)]; | ||
|  | 		    Th = Tf - Tg; | ||
|  | 		    Tr = Tf + Tg; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, Tu, TB, TC; | ||
|  | 		    Tt = rio[WS(vs, 1)]; | ||
|  | 		    Tu = rio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 		    Tv = Tt + Tu; | ||
|  | 		    TG = Tt - Tu; | ||
|  | 		    TB = iio[WS(vs, 1)]; | ||
|  | 		    TC = iio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 		    TD = TB - TC; | ||
|  | 		    TS = TB + TC; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, Tx, TH, TI; | ||
|  | 		    Tw = rio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 		    Tx = rio[WS(vs, 1) + WS(rs, 3)]; | ||
|  | 		    Ty = Tw + Tx; | ||
|  | 		    TA = Tw - Tx; | ||
|  | 		    TH = iio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 		    TI = iio[WS(vs, 1) + WS(rs, 3)]; | ||
|  | 		    TJ = TH - TI; | ||
|  | 		    TT = TH + TI; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TV, TW, T13, T14; | ||
|  | 		    TV = rio[WS(vs, 2)]; | ||
|  | 		    TW = rio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 		    TX = TV + TW; | ||
|  | 		    T18 = TV - TW; | ||
|  | 		    T13 = iio[WS(vs, 2)]; | ||
|  | 		    T14 = iio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 		    T15 = T13 - T14; | ||
|  | 		    T1k = T13 + T14; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TY, TZ, T19, T1a; | ||
|  | 		    TY = rio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 		    TZ = rio[WS(vs, 2) + WS(rs, 3)]; | ||
|  | 		    T10 = TY + TZ; | ||
|  | 		    T12 = TY - TZ; | ||
|  | 		    T19 = iio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 		    T1a = iio[WS(vs, 2) + WS(rs, 3)]; | ||
|  | 		    T1b = T19 - T1a; | ||
|  | 		    T1l = T19 + T1a; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1n, T1o, T1v, T1w; | ||
|  | 		    T1n = rio[WS(vs, 3)]; | ||
|  | 		    T1o = rio[WS(vs, 3) + WS(rs, 2)]; | ||
|  | 		    T1p = T1n + T1o; | ||
|  | 		    T1A = T1n - T1o; | ||
|  | 		    T1v = iio[WS(vs, 3)]; | ||
|  | 		    T1w = iio[WS(vs, 3) + WS(rs, 2)]; | ||
|  | 		    T1x = T1v - T1w; | ||
|  | 		    T1M = T1v + T1w; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1q, T1r, T1B, T1C; | ||
|  | 		    T1q = rio[WS(vs, 3) + WS(rs, 1)]; | ||
|  | 		    T1r = rio[WS(vs, 3) + WS(rs, 3)]; | ||
|  | 		    T1s = T1q + T1r; | ||
|  | 		    T1u = T1q - T1r; | ||
|  | 		    T1B = iio[WS(vs, 3) + WS(rs, 1)]; | ||
|  | 		    T1C = iio[WS(vs, 3) + WS(rs, 3)]; | ||
|  | 		    T1D = T1B - T1C; | ||
|  | 		    T1N = T1B + T1C; | ||
|  | 	       } | ||
|  | 	       rio[0] = T3 + T6; | ||
|  | 	       iio[0] = Tq + Tr; | ||
|  | 	       rio[WS(rs, 1)] = Tv + Ty; | ||
|  | 	       iio[WS(rs, 1)] = TS + TT; | ||
|  | 	       rio[WS(rs, 2)] = TX + T10; | ||
|  | 	       iio[WS(rs, 2)] = T1k + T1l; | ||
|  | 	       iio[WS(rs, 3)] = T1M + T1N; | ||
|  | 	       rio[WS(rs, 3)] = T1p + T1s; | ||
|  | 	       { | ||
|  | 		    E Tc, Ti, T7, Td; | ||
|  | 		    Tc = T8 + Tb; | ||
|  | 		    Ti = Te - Th; | ||
|  | 		    T7 = W[4]; | ||
|  | 		    Td = W[5]; | ||
|  | 		    iio[WS(vs, 3)] = FNMS(Td, Ti, T7 * Tc); | ||
|  | 		    rio[WS(vs, 3)] = FMA(Td, Tc, T7 * Ti); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1K, T1O, T1J, T1L; | ||
|  | 		    T1K = T1p - T1s; | ||
|  | 		    T1O = T1M - T1N; | ||
|  | 		    T1J = W[2]; | ||
|  | 		    T1L = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 3)] = FMA(T1J, T1K, T1L * T1O); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T1L, T1K, T1J * T1O); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tk, Tm, Tj, Tl; | ||
|  | 		    Tk = Tb - T8; | ||
|  | 		    Tm = Te + Th; | ||
|  | 		    Tj = W[0]; | ||
|  | 		    Tl = W[1]; | ||
|  | 		    iio[WS(vs, 1)] = FNMS(Tl, Tm, Tj * Tk); | ||
|  | 		    rio[WS(vs, 1)] = FMA(Tl, Tk, Tj * Tm); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E To, Ts, Tn, Tp; | ||
|  | 		    To = T3 - T6; | ||
|  | 		    Ts = Tq - Tr; | ||
|  | 		    Tn = W[2]; | ||
|  | 		    Tp = W[3]; | ||
|  | 		    rio[WS(vs, 2)] = FMA(Tn, To, Tp * Ts); | ||
|  | 		    iio[WS(vs, 2)] = FNMS(Tp, To, Tn * Ts); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T16, T1c, T11, T17; | ||
|  | 		    T16 = T12 + T15; | ||
|  | 		    T1c = T18 - T1b; | ||
|  | 		    T11 = W[4]; | ||
|  | 		    T17 = W[5]; | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T17, T1c, T11 * T16); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 2)] = FMA(T17, T16, T11 * T1c); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1G, T1I, T1F, T1H; | ||
|  | 		    T1G = T1x - T1u; | ||
|  | 		    T1I = T1A + T1D; | ||
|  | 		    T1F = W[0]; | ||
|  | 		    T1H = W[1]; | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T1H, T1I, T1F * T1G); | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1H, T1G, T1F * T1I); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TQ, TU, TP, TR; | ||
|  | 		    TQ = Tv - Ty; | ||
|  | 		    TU = TS - TT; | ||
|  | 		    TP = W[2]; | ||
|  | 		    TR = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(TP, TQ, TR * TU); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TR, TQ, TP * TU); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1e, T1g, T1d, T1f; | ||
|  | 		    T1e = T15 - T12; | ||
|  | 		    T1g = T18 + T1b; | ||
|  | 		    T1d = W[0]; | ||
|  | 		    T1f = W[1]; | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e); | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1i, T1m, T1h, T1j; | ||
|  | 		    T1i = TX - T10; | ||
|  | 		    T1m = T1k - T1l; | ||
|  | 		    T1h = W[2]; | ||
|  | 		    T1j = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1h, T1i, T1j * T1m); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1j, T1i, T1h * T1m); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1y, T1E, T1t, T1z; | ||
|  | 		    T1y = T1u + T1x; | ||
|  | 		    T1E = T1A - T1D; | ||
|  | 		    T1t = W[4]; | ||
|  | 		    T1z = W[5]; | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1z, T1E, T1t * T1y); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1z, T1y, T1t * T1E); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TM, TO, TL, TN; | ||
|  | 		    TM = TD - TA; | ||
|  | 		    TO = TG + TJ; | ||
|  | 		    TL = W[0]; | ||
|  | 		    TN = W[1]; | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TN, TO, TL * TM); | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(TN, TM, TL * TO); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TE, TK, Tz, TF; | ||
|  | 		    TE = TA + TD; | ||
|  | 		    TK = TG - TJ; | ||
|  | 		    Tz = W[4]; | ||
|  | 		    TF = W[5]; | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TF, TK, Tz * TE); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TE, Tz * TK); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 4 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_q1_4) (planner *p) { | ||
|  |      X(kdft_difsq_register) (p, q1_4, &desc); | ||
|  | } | ||
|  | #endif
 |