317 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			317 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:41 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 48 FP additions, 42 FP multiplications, | ||
|  |  * (or, 18 additions, 12 multiplications, 30 fused multiply/add), | ||
|  |  * 35 stack variables, 2 constants, and 36 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/q.h"
 | ||
|  | 
 | ||
|  | static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | ||
|  | 	       E T1, T4, T6, Tg, Td, Te, T9, Tf, Tp, Ts, Tu, TE, TB, TC, Tx; | ||
|  | 	       E TD, TZ, T10, TV, T11, TN, TQ, TS, T12; | ||
|  | 	       { | ||
|  | 		    E T2, T3, Tv, Tw; | ||
|  | 		    T1 = rio[0]; | ||
|  | 		    T2 = rio[WS(rs, 1)]; | ||
|  | 		    T3 = rio[WS(rs, 2)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    T6 = FNMS(KP500000000, T4, T1); | ||
|  | 		    Tg = T3 - T2; | ||
|  | 		    { | ||
|  | 			 E T7, T8, Tq, Tr; | ||
|  | 			 Td = iio[0]; | ||
|  | 			 T7 = iio[WS(rs, 1)]; | ||
|  | 			 T8 = iio[WS(rs, 2)]; | ||
|  | 			 Te = T7 + T8; | ||
|  | 			 T9 = T7 - T8; | ||
|  | 			 Tf = FNMS(KP500000000, Te, Td); | ||
|  | 			 Tp = rio[WS(vs, 1)]; | ||
|  | 			 Tq = rio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 			 Tr = rio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 Tu = FNMS(KP500000000, Ts, Tp); | ||
|  | 			 TE = Tr - Tq; | ||
|  | 		    } | ||
|  | 		    TB = iio[WS(vs, 1)]; | ||
|  | 		    Tv = iio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 		    Tw = iio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 		    TC = Tv + Tw; | ||
|  | 		    Tx = Tv - Tw; | ||
|  | 		    TD = FNMS(KP500000000, TC, TB); | ||
|  | 		    { | ||
|  | 			 E TT, TU, TO, TP; | ||
|  | 			 TZ = iio[WS(vs, 2)]; | ||
|  | 			 TT = iio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 TU = iio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 T10 = TT + TU; | ||
|  | 			 TV = TT - TU; | ||
|  | 			 T11 = FNMS(KP500000000, T10, TZ); | ||
|  | 			 TN = rio[WS(vs, 2)]; | ||
|  | 			 TO = rio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 TP = rio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 TQ = TO + TP; | ||
|  | 			 TS = FNMS(KP500000000, TQ, TN); | ||
|  | 			 T12 = TP - TO; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       rio[0] = T1 + T4; | ||
|  | 	       iio[0] = Td + Te; | ||
|  | 	       rio[WS(rs, 1)] = Tp + Ts; | ||
|  | 	       iio[WS(rs, 1)] = TB + TC; | ||
|  | 	       iio[WS(rs, 2)] = TZ + T10; | ||
|  | 	       rio[WS(rs, 2)] = TN + TQ; | ||
|  | 	       { | ||
|  | 		    E Ta, Th, Tb, Ti, T5, Tc; | ||
|  | 		    Ta = FMA(KP866025403, T9, T6); | ||
|  | 		    Th = FMA(KP866025403, Tg, Tf); | ||
|  | 		    T5 = W[0]; | ||
|  | 		    Tb = T5 * Ta; | ||
|  | 		    Ti = T5 * Th; | ||
|  | 		    Tc = W[1]; | ||
|  | 		    rio[WS(vs, 1)] = FMA(Tc, Th, Tb); | ||
|  | 		    iio[WS(vs, 1)] = FNMS(Tc, Ta, Ti); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T16, T19, T17, T1a, T15, T18; | ||
|  | 		    T16 = FNMS(KP866025403, TV, TS); | ||
|  | 		    T19 = FNMS(KP866025403, T12, T11); | ||
|  | 		    T15 = W[2]; | ||
|  | 		    T17 = T15 * T16; | ||
|  | 		    T1a = T15 * T19; | ||
|  | 		    T18 = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(T18, T19, T17); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T18, T16, T1a); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TI, TL, TJ, TM, TH, TK; | ||
|  | 		    TI = FNMS(KP866025403, Tx, Tu); | ||
|  | 		    TL = FNMS(KP866025403, TE, TD); | ||
|  | 		    TH = W[2]; | ||
|  | 		    TJ = TH * TI; | ||
|  | 		    TM = TH * TL; | ||
|  | 		    TK = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(TK, TL, TJ); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TK, TI, TM); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ty, TF, Tz, TG, Tt, TA; | ||
|  | 		    Ty = FMA(KP866025403, Tx, Tu); | ||
|  | 		    TF = FMA(KP866025403, TE, TD); | ||
|  | 		    Tt = W[0]; | ||
|  | 		    Tz = Tt * Ty; | ||
|  | 		    TG = Tt * TF; | ||
|  | 		    TA = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(TA, TF, Tz); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TA, Ty, TG); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TW, T13, TX, T14, TR, TY; | ||
|  | 		    TW = FMA(KP866025403, TV, TS); | ||
|  | 		    T13 = FMA(KP866025403, T12, T11); | ||
|  | 		    TR = W[0]; | ||
|  | 		    TX = TR * TW; | ||
|  | 		    T14 = TR * T13; | ||
|  | 		    TY = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(TY, T13, TX); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TY, TW, T14); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tk, Tn, Tl, To, Tj, Tm; | ||
|  | 		    Tk = FNMS(KP866025403, T9, T6); | ||
|  | 		    Tn = FNMS(KP866025403, Tg, Tf); | ||
|  | 		    Tj = W[2]; | ||
|  | 		    Tl = Tj * Tk; | ||
|  | 		    To = Tj * Tn; | ||
|  | 		    Tm = W[3]; | ||
|  | 		    rio[WS(vs, 2)] = FMA(Tm, Tn, Tl); | ||
|  | 		    iio[WS(vs, 2)] = FNMS(Tm, Tk, To); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 3 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, { 18, 12, 30, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_q1_3) (planner *p) { | ||
|  |      X(kdft_difsq_register) (p, q1_3, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 48 FP additions, 36 FP multiplications, | ||
|  |  * (or, 30 additions, 18 multiplications, 18 fused multiply/add), | ||
|  |  * 35 stack variables, 2 constants, and 36 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/q.h"
 | ||
|  | 
 | ||
|  | static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | ||
|  | 	       E T1, T4, T6, Tc, Td, Te, T9, Tf, Tl, To, Tq, Tw, Tx, Ty, Tt; | ||
|  | 	       E Tz, TR, TS, TN, TT, TF, TI, TK, TQ; | ||
|  | 	       { | ||
|  | 		    E T2, T3, Tr, Ts; | ||
|  | 		    T1 = rio[0]; | ||
|  | 		    T2 = rio[WS(rs, 1)]; | ||
|  | 		    T3 = rio[WS(rs, 2)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    T6 = FNMS(KP500000000, T4, T1); | ||
|  | 		    Tc = KP866025403 * (T3 - T2); | ||
|  | 		    { | ||
|  | 			 E T7, T8, Tm, Tn; | ||
|  | 			 Td = iio[0]; | ||
|  | 			 T7 = iio[WS(rs, 1)]; | ||
|  | 			 T8 = iio[WS(rs, 2)]; | ||
|  | 			 Te = T7 + T8; | ||
|  | 			 T9 = KP866025403 * (T7 - T8); | ||
|  | 			 Tf = FNMS(KP500000000, Te, Td); | ||
|  | 			 Tl = rio[WS(vs, 1)]; | ||
|  | 			 Tm = rio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 			 Tn = rio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 			 To = Tm + Tn; | ||
|  | 			 Tq = FNMS(KP500000000, To, Tl); | ||
|  | 			 Tw = KP866025403 * (Tn - Tm); | ||
|  | 		    } | ||
|  | 		    Tx = iio[WS(vs, 1)]; | ||
|  | 		    Tr = iio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 		    Ts = iio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 		    Ty = Tr + Ts; | ||
|  | 		    Tt = KP866025403 * (Tr - Ts); | ||
|  | 		    Tz = FNMS(KP500000000, Ty, Tx); | ||
|  | 		    { | ||
|  | 			 E TL, TM, TG, TH; | ||
|  | 			 TR = iio[WS(vs, 2)]; | ||
|  | 			 TL = iio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 TM = iio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 TS = TL + TM; | ||
|  | 			 TN = KP866025403 * (TL - TM); | ||
|  | 			 TT = FNMS(KP500000000, TS, TR); | ||
|  | 			 TF = rio[WS(vs, 2)]; | ||
|  | 			 TG = rio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 TH = rio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 TI = TG + TH; | ||
|  | 			 TK = FNMS(KP500000000, TI, TF); | ||
|  | 			 TQ = KP866025403 * (TH - TG); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       rio[0] = T1 + T4; | ||
|  | 	       iio[0] = Td + Te; | ||
|  | 	       rio[WS(rs, 1)] = Tl + To; | ||
|  | 	       iio[WS(rs, 1)] = Tx + Ty; | ||
|  | 	       iio[WS(rs, 2)] = TR + TS; | ||
|  | 	       rio[WS(rs, 2)] = TF + TI; | ||
|  | 	       { | ||
|  | 		    E Ta, Tg, T5, Tb; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Tg = Tc + Tf; | ||
|  | 		    T5 = W[0]; | ||
|  | 		    Tb = W[1]; | ||
|  | 		    rio[WS(vs, 1)] = FMA(T5, Ta, Tb * Tg); | ||
|  | 		    iio[WS(vs, 1)] = FNMS(Tb, Ta, T5 * Tg); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TW, TY, TV, TX; | ||
|  | 		    TW = TK - TN; | ||
|  | 		    TY = TT - TQ; | ||
|  | 		    TV = W[2]; | ||
|  | 		    TX = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(TV, TW, TX * TY); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(TX, TW, TV * TY); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TC, TE, TB, TD; | ||
|  | 		    TC = Tq - Tt; | ||
|  | 		    TE = Tz - Tw; | ||
|  | 		    TB = W[2]; | ||
|  | 		    TD = W[3]; | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(TB, TC, TD * TE); | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TD, TC, TB * TE); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tu, TA, Tp, Tv; | ||
|  | 		    Tu = Tq + Tt; | ||
|  | 		    TA = Tw + Tz; | ||
|  | 		    Tp = W[0]; | ||
|  | 		    Tv = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tp, Tu, Tv * TA); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Tv, Tu, Tp * TA); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TO, TU, TJ, TP; | ||
|  | 		    TO = TK + TN; | ||
|  | 		    TU = TQ + TT; | ||
|  | 		    TJ = W[0]; | ||
|  | 		    TP = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(TJ, TO, TP * TU); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TP, TO, TJ * TU); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, Tk, Th, Tj; | ||
|  | 		    Ti = T6 - T9; | ||
|  | 		    Tk = Tf - Tc; | ||
|  | 		    Th = W[2]; | ||
|  | 		    Tj = W[3]; | ||
|  | 		    rio[WS(vs, 2)] = FMA(Th, Ti, Tj * Tk); | ||
|  | 		    iio[WS(vs, 2)] = FNMS(Tj, Ti, Th * Tk); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 3 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, { 30, 18, 18, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_q1_3) (planner *p) { | ||
|  |      X(kdft_difsq_register) (p, q1_3, &desc); | ||
|  | } | ||
|  | #endif
 |