216 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			216 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Do a REDFT00 problem via an R2HC problem, with some pre/post-processing.
 | ||
|  | 
 | ||
|  |    This code uses the trick from FFTPACK, also documented in a similar | ||
|  |    form by Numerical Recipes.  Unfortunately, this algorithm seems to | ||
|  |    have intrinsic numerical problems (similar to those in | ||
|  |    reodft11e-r2hc.c), possibly due to the fact that it multiplies its | ||
|  |    input by a cosine, causing a loss of precision near the zero.  For | ||
|  |    transforms of 16k points, it has already lost three or four decimal | ||
|  |    places of accuracy, which we deem unacceptable. | ||
|  | 
 | ||
|  |    So, we have abandoned this algorithm in favor of the one in | ||
|  |    redft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. | ||
|  |    The only other alternative in the literature that does not have | ||
|  |    similar numerical difficulties seems to be the direct adaptation of | ||
|  |    the Cooley-Tukey decomposition for symmetric data, but this would | ||
|  |    require a whole new set of codelets and it's not clear that it's | ||
|  |    worth it at this point.  However, we did implement the latter | ||
|  |    algorithm for the specific case of odd n (logically adapting the | ||
|  |    split-radix algorithm); see reodft00e-splitradix.c. */ | ||
|  | 
 | ||
|  | #include "reodft/reodft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_rdft super; | ||
|  |      plan *cld; | ||
|  |      twid *td; | ||
|  |      INT is, os; | ||
|  |      INT n; | ||
|  |      INT vl; | ||
|  |      INT ivs, ovs; | ||
|  | } P; | ||
|  | 
 | ||
|  | static void apply(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *W = ego->td->W; | ||
|  |      R *buf; | ||
|  |      E csum; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  buf[0] = I[0] + I[is * n]; | ||
|  | 	  csum = I[0] - I[is * n]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b, apb, amb; | ||
|  | 	       a = I[is * i]; | ||
|  | 	       b = I[is * (n - i)]; | ||
|  | 	       csum += W[2*i] * (amb = K(2.0)*(a - b)); | ||
|  | 	       amb = W[2*i+1] * amb; | ||
|  | 	       apb = (a + b); | ||
|  | 	       buf[i] = apb - amb; | ||
|  | 	       buf[n - i] = apb + amb; | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       buf[i] = K(2.0) * I[is * i]; | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  /* FIXME: use recursive/cascade summation for better stability? */ | ||
|  | 	  O[0] = buf[0]; | ||
|  | 	  O[os] = csum; | ||
|  | 	  for (i = 1; i + i < n; ++i) { | ||
|  | 	       INT k = i + i; | ||
|  | 	       O[os * k] = buf[i]; | ||
|  | 	       O[os * (k + 1)] = O[os * (k - 1)] - buf[n - i]; | ||
|  | 	  } | ||
|  | 	  if (i + i == n) { | ||
|  | 	       O[os * n] = buf[i]; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      static const tw_instr redft00e_tw[] = { | ||
|  |           { TW_COS, 0, 1 }, | ||
|  |           { TW_SIN, 0, 1 }, | ||
|  |           { TW_NEXT, 1, 0 } | ||
|  |      }; | ||
|  | 
 | ||
|  |      X(plan_awake)(ego->cld, wakefulness); | ||
|  |      X(twiddle_awake)(wakefulness, | ||
|  | 		      &ego->td, redft00e_tw, 2*ego->n, 1, (ego->n+1)/2); | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      p->print(p, "(redft00e-r2hc-%D%v%(%p%))", ego->n + 1, ego->vl, ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable0(const solver *ego_, const problem *p_) | ||
|  | { | ||
|  |      const problem_rdft *p = (const problem_rdft *) p_; | ||
|  |      UNUSED(ego_); | ||
|  | 
 | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 	     && p->vecsz->rnk <= 1 | ||
|  | 	     && p->kind[0] == REDFT00 | ||
|  | 	     && p->sz->dims[0].n > 1  /* n == 1 is not well-defined */ | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const solver *ego, const problem *p, const planner *plnr) | ||
|  | { | ||
|  |      return (!NO_SLOWP(plnr) && applicable0(ego, p)); | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      P *pln; | ||
|  |      const problem_rdft *p; | ||
|  |      plan *cld; | ||
|  |      R *buf; | ||
|  |      INT n; | ||
|  |      opcnt ops; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(rdft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego_, p_, plnr)) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      p = (const problem_rdft *) p_; | ||
|  | 
 | ||
|  |      n = p->sz->dims[0].n - 1; | ||
|  |      A(n > 0); | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),  | ||
|  | 						   X(mktensor_0d)(),  | ||
|  | 						   buf, buf, R2HC)); | ||
|  |      X(ifree)(buf); | ||
|  |      if (!cld) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      pln = MKPLAN_RDFT(P, &padt, apply); | ||
|  | 
 | ||
|  |      pln->n = n; | ||
|  |      pln->is = p->sz->dims[0].is; | ||
|  |      pln->os = p->sz->dims[0].os; | ||
|  |      pln->cld = cld; | ||
|  |      pln->td = 0; | ||
|  | 
 | ||
|  |      X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); | ||
|  |       | ||
|  |      X(ops_zero)(&ops); | ||
|  |      ops.other = 8 + (n-1)/2 * 11 + (1 - n % 2) * 5; | ||
|  |      ops.add = 2 + (n-1)/2 * 5; | ||
|  |      ops.mul = (n-1)/2 * 3 + (1 - n % 2) * 1; | ||
|  | 
 | ||
|  |      X(ops_zero)(&pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | } | ||
|  | 
 | ||
|  | /* constructor */ | ||
|  | static solver *mksolver(void) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(redft00e_r2hc_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver()); | ||
|  | } |