219 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			219 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:14 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cbdft2_4 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 30 FP additions, 12 FP multiplications, | ||
|  |  * (or, 24 additions, 6 multiplications, 6 fused multiply/add), | ||
|  |  * 23 stack variables, 0 constants, and 16 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { | ||
|  | 	       E T3, Tm, T6, Tn, Td, Tk, TB, Ty, Tv, Ts; | ||
|  | 	       { | ||
|  | 		    E Tg, Tc, T9, Tj; | ||
|  | 		    { | ||
|  | 			 E T1, T2, Ta, Tb; | ||
|  | 			 T1 = Rp[0]; | ||
|  | 			 T2 = Rm[WS(rs, 1)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 Tg = T1 - T2; | ||
|  | 			 Ta = Ip[0]; | ||
|  | 			 Tb = Im[WS(rs, 1)]; | ||
|  | 			 Tc = Ta + Tb; | ||
|  | 			 Tm = Ta - Tb; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, Th, Ti; | ||
|  | 			 T4 = Rp[WS(rs, 1)]; | ||
|  | 			 T5 = Rm[0]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T9 = T4 - T5; | ||
|  | 			 Th = Ip[WS(rs, 1)]; | ||
|  | 			 Ti = Im[0]; | ||
|  | 			 Tj = Th + Ti; | ||
|  | 			 Tn = Th - Ti; | ||
|  | 		    } | ||
|  | 		    Td = T9 + Tc; | ||
|  | 		    Tk = Tg - Tj; | ||
|  | 		    TB = Tg + Tj; | ||
|  | 		    Ty = Tc - T9; | ||
|  | 		    Tv = Tm - Tn; | ||
|  | 		    Ts = T3 - T6; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7, To, Te, Tp, T8, Tl, Tq, Tf; | ||
|  | 		    T7 = T3 + T6; | ||
|  | 		    To = Tm + Tn; | ||
|  | 		    T8 = W[0]; | ||
|  | 		    Te = T8 * Td; | ||
|  | 		    Tp = T8 * Tk; | ||
|  | 		    Tf = W[1]; | ||
|  | 		    Tl = FMA(Tf, Tk, Te); | ||
|  | 		    Tq = FNMS(Tf, Td, Tp); | ||
|  | 		    Rp[0] = T7 - Tl; | ||
|  | 		    Ip[0] = To + Tq; | ||
|  | 		    Rm[0] = T7 + Tl; | ||
|  | 		    Im[0] = Tq - To; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tr, Tt, Tu, TD, Tz, TF, Tx; | ||
|  | 		    Tr = W[2]; | ||
|  | 		    Tt = Tr * Ts; | ||
|  | 		    Tu = W[3]; | ||
|  | 		    TD = Tu * Ts; | ||
|  | 		    Tx = W[4]; | ||
|  | 		    Tz = Tx * Ty; | ||
|  | 		    TF = Tx * TB; | ||
|  | 		    { | ||
|  | 			 E Tw, TE, TC, TG, TA; | ||
|  | 			 Tw = FNMS(Tu, Tv, Tt); | ||
|  | 			 TE = FMA(Tr, Tv, TD); | ||
|  | 			 TA = W[5]; | ||
|  | 			 TC = FMA(TA, TB, Tz); | ||
|  | 			 TG = FNMS(TA, Ty, TF); | ||
|  | 			 Rp[WS(rs, 1)] = Tw - TC; | ||
|  | 			 Ip[WS(rs, 1)] = TE + TG; | ||
|  | 			 Rm[WS(rs, 1)] = Tw + TC; | ||
|  | 			 Im[WS(rs, 1)] = TG - TE; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 4 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 4, "hc2cbdft2_4", twinstr, &GENUS, { 24, 6, 6, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cbdft2_4) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdft2_4, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cbdft2_4 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 30 FP additions, 12 FP multiplications, | ||
|  |  * (or, 24 additions, 6 multiplications, 6 fused multiply/add), | ||
|  |  * 19 stack variables, 0 constants, and 16 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { | ||
|  | 	       E T3, Tl, T6, Tm, Td, Tj, Tx, Tv, Ts, Tq; | ||
|  | 	       { | ||
|  | 		    E Tf, Tc, T9, Ti; | ||
|  | 		    { | ||
|  | 			 E T1, T2, Ta, Tb; | ||
|  | 			 T1 = Rp[0]; | ||
|  | 			 T2 = Rm[WS(rs, 1)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 Tf = T1 - T2; | ||
|  | 			 Ta = Ip[0]; | ||
|  | 			 Tb = Im[WS(rs, 1)]; | ||
|  | 			 Tc = Ta + Tb; | ||
|  | 			 Tl = Ta - Tb; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, Tg, Th; | ||
|  | 			 T4 = Rp[WS(rs, 1)]; | ||
|  | 			 T5 = Rm[0]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T9 = T4 - T5; | ||
|  | 			 Tg = Ip[WS(rs, 1)]; | ||
|  | 			 Th = Im[0]; | ||
|  | 			 Ti = Tg + Th; | ||
|  | 			 Tm = Tg - Th; | ||
|  | 		    } | ||
|  | 		    Td = T9 + Tc; | ||
|  | 		    Tj = Tf - Ti; | ||
|  | 		    Tx = Tf + Ti; | ||
|  | 		    Tv = Tc - T9; | ||
|  | 		    Ts = Tl - Tm; | ||
|  | 		    Tq = T3 - T6; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7, Tn, Tk, To, T8, Te; | ||
|  | 		    T7 = T3 + T6; | ||
|  | 		    Tn = Tl + Tm; | ||
|  | 		    T8 = W[0]; | ||
|  | 		    Te = W[1]; | ||
|  | 		    Tk = FMA(T8, Td, Te * Tj); | ||
|  | 		    To = FNMS(Te, Td, T8 * Tj); | ||
|  | 		    Rp[0] = T7 - Tk; | ||
|  | 		    Ip[0] = Tn + To; | ||
|  | 		    Rm[0] = T7 + Tk; | ||
|  | 		    Im[0] = To - Tn; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, Tz, Ty, TA; | ||
|  | 		    { | ||
|  | 			 E Tp, Tr, Tu, Tw; | ||
|  | 			 Tp = W[2]; | ||
|  | 			 Tr = W[3]; | ||
|  | 			 Tt = FNMS(Tr, Ts, Tp * Tq); | ||
|  | 			 Tz = FMA(Tr, Tq, Tp * Ts); | ||
|  | 			 Tu = W[4]; | ||
|  | 			 Tw = W[5]; | ||
|  | 			 Ty = FMA(Tu, Tv, Tw * Tx); | ||
|  | 			 TA = FNMS(Tw, Tv, Tu * Tx); | ||
|  | 		    } | ||
|  | 		    Rp[WS(rs, 1)] = Tt - Ty; | ||
|  | 		    Ip[WS(rs, 1)] = Tz + TA; | ||
|  | 		    Rm[WS(rs, 1)] = Tt + Ty; | ||
|  | 		    Im[WS(rs, 1)] = TA - Tz; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 4 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 4, "hc2cbdft2_4", twinstr, &GENUS, { 24, 6, 6, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cbdft2_4) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdft2_4, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |