207 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			207 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:47 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 34 FP additions, 20 FP multiplications, | ||
|  |  * (or, 14 additions, 0 multiplications, 20 fused multiply/add), | ||
|  |  * 26 stack variables, 5 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cb.h"
 | ||
|  | 
 | ||
|  | static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | ||
|  |      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { | ||
|  | 	       E T3, Tb, Tn, Tu, Tk, Tv, Ta, Ts, Te, Tg, Ti, Tj; | ||
|  | 	       { | ||
|  | 		    E T1, T2, Tl, Tm; | ||
|  | 		    T1 = Cr[0]; | ||
|  | 		    T2 = Cr[WS(csr, 5)]; | ||
|  | 		    T3 = T1 - T2; | ||
|  | 		    Tb = T1 + T2; | ||
|  | 		    Tl = Ci[WS(csi, 2)]; | ||
|  | 		    Tm = Ci[WS(csi, 3)]; | ||
|  | 		    Tn = Tl - Tm; | ||
|  | 		    Tu = Tl + Tm; | ||
|  | 	       } | ||
|  | 	       Ti = Ci[WS(csi, 4)]; | ||
|  | 	       Tj = Ci[WS(csi, 1)]; | ||
|  | 	       Tk = Ti - Tj; | ||
|  | 	       Tv = Ti + Tj; | ||
|  | 	       { | ||
|  | 		    E T6, Tc, T9, Td; | ||
|  | 		    { | ||
|  | 			 E T4, T5, T7, T8; | ||
|  | 			 T4 = Cr[WS(csr, 2)]; | ||
|  | 			 T5 = Cr[WS(csr, 3)]; | ||
|  | 			 T6 = T4 - T5; | ||
|  | 			 Tc = T4 + T5; | ||
|  | 			 T7 = Cr[WS(csr, 4)]; | ||
|  | 			 T8 = Cr[WS(csr, 1)]; | ||
|  | 			 T9 = T7 - T8; | ||
|  | 			 Td = T7 + T8; | ||
|  | 		    } | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Ts = T6 - T9; | ||
|  | 		    Te = Tc + Td; | ||
|  | 		    Tg = Tc - Td; | ||
|  | 	       } | ||
|  | 	       R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3); | ||
|  | 	       R0[0] = FMA(KP2_000000000, Te, Tb); | ||
|  | 	       { | ||
|  | 		    E To, Tq, Th, Tp, Tf; | ||
|  | 		    To = FNMS(KP618033988, Tn, Tk); | ||
|  | 		    Tq = FMA(KP618033988, Tk, Tn); | ||
|  | 		    Tf = FNMS(KP500000000, Te, Tb); | ||
|  | 		    Th = FNMS(KP1_118033988, Tg, Tf); | ||
|  | 		    Tp = FMA(KP1_118033988, Tg, Tf); | ||
|  | 		    R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th); | ||
|  | 		    R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp); | ||
|  | 		    R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th); | ||
|  | 		    R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, Ty, Tt, Tx, Tr; | ||
|  | 		    Tw = FMA(KP618033988, Tv, Tu); | ||
|  | 		    Ty = FNMS(KP618033988, Tu, Tv); | ||
|  | 		    Tr = FNMS(KP500000000, Ta, T3); | ||
|  | 		    Tt = FMA(KP1_118033988, Ts, Tr); | ||
|  | 		    Tx = FNMS(KP1_118033988, Ts, Tr); | ||
|  | 		    R1[0] = FNMS(KP1_902113032, Tw, Tt); | ||
|  | 		    R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx); | ||
|  | 		    R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt); | ||
|  | 		    R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 10, "r2cb_10", { 14, 0, 20, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 34 FP additions, 14 FP multiplications, | ||
|  |  * (or, 26 additions, 6 multiplications, 8 fused multiply/add), | ||
|  |  * 26 stack variables, 5 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cb.h"
 | ||
|  | 
 | ||
|  | static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | ||
|  |      DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { | ||
|  | 	       E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj; | ||
|  | 	       { | ||
|  | 		    E T1, T2, Tl, Tm; | ||
|  | 		    T1 = Cr[0]; | ||
|  | 		    T2 = Cr[WS(csr, 5)]; | ||
|  | 		    T3 = T1 - T2; | ||
|  | 		    Tb = T1 + T2; | ||
|  | 		    Tl = Ci[WS(csi, 4)]; | ||
|  | 		    Tm = Ci[WS(csi, 1)]; | ||
|  | 		    Tn = Tl - Tm; | ||
|  | 		    Tv = Tl + Tm; | ||
|  | 	       } | ||
|  | 	       Ti = Ci[WS(csi, 2)]; | ||
|  | 	       Tj = Ci[WS(csi, 3)]; | ||
|  | 	       Tk = Ti - Tj; | ||
|  | 	       Tu = Ti + Tj; | ||
|  | 	       { | ||
|  | 		    E T6, Tc, T9, Td; | ||
|  | 		    { | ||
|  | 			 E T4, T5, T7, T8; | ||
|  | 			 T4 = Cr[WS(csr, 2)]; | ||
|  | 			 T5 = Cr[WS(csr, 3)]; | ||
|  | 			 T6 = T4 - T5; | ||
|  | 			 Tc = T4 + T5; | ||
|  | 			 T7 = Cr[WS(csr, 4)]; | ||
|  | 			 T8 = Cr[WS(csr, 1)]; | ||
|  | 			 T9 = T7 - T8; | ||
|  | 			 Td = T7 + T8; | ||
|  | 		    } | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Ts = KP1_118033988 * (T6 - T9); | ||
|  | 		    Te = Tc + Td; | ||
|  | 		    Tg = KP1_118033988 * (Tc - Td); | ||
|  | 	       } | ||
|  | 	       R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3); | ||
|  | 	       R0[0] = FMA(KP2_000000000, Te, Tb); | ||
|  | 	       { | ||
|  | 		    E To, Tq, Th, Tp, Tf; | ||
|  | 		    To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk); | ||
|  | 		    Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn); | ||
|  | 		    Tf = FNMS(KP500000000, Te, Tb); | ||
|  | 		    Th = Tf - Tg; | ||
|  | 		    Tp = Tg + Tf; | ||
|  | 		    R0[WS(rs, 1)] = Th - To; | ||
|  | 		    R0[WS(rs, 2)] = Tp + Tq; | ||
|  | 		    R0[WS(rs, 4)] = Th + To; | ||
|  | 		    R0[WS(rs, 3)] = Tp - Tq; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, Ty, Tt, Tx, Tr; | ||
|  | 		    Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu); | ||
|  | 		    Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv); | ||
|  | 		    Tr = FNMS(KP500000000, Ta, T3); | ||
|  | 		    Tt = Tr - Ts; | ||
|  | 		    Tx = Ts + Tr; | ||
|  | 		    R1[WS(rs, 3)] = Tt - Tw; | ||
|  | 		    R1[WS(rs, 4)] = Tx + Ty; | ||
|  | 		    R1[WS(rs, 1)] = Tt + Tw; | ||
|  | 		    R1[0] = Tx - Ty; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 10, "r2cb_10", { 26, 6, 8, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |