2164 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			2164 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /* deflate.c -- compress data using the deflation algorithm
 | ||
|  |  * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler | ||
|  |  * For conditions of distribution and use, see copyright notice in zlib.h | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  *  ALGORITHM | ||
|  |  * | ||
|  |  *      The "deflation" process depends on being able to identify portions | ||
|  |  *      of the input text which are identical to earlier input (within a | ||
|  |  *      sliding window trailing behind the input currently being processed). | ||
|  |  * | ||
|  |  *      The most straightforward technique turns out to be the fastest for | ||
|  |  *      most input files: try all possible matches and select the longest. | ||
|  |  *      The key feature of this algorithm is that insertions into the string | ||
|  |  *      dictionary are very simple and thus fast, and deletions are avoided | ||
|  |  *      completely. Insertions are performed at each input character, whereas | ||
|  |  *      string matches are performed only when the previous match ends. So it | ||
|  |  *      is preferable to spend more time in matches to allow very fast string | ||
|  |  *      insertions and avoid deletions. The matching algorithm for small | ||
|  |  *      strings is inspired from that of Rabin & Karp. A brute force approach | ||
|  |  *      is used to find longer strings when a small match has been found. | ||
|  |  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze | ||
|  |  *      (by Leonid Broukhis). | ||
|  |  *         A previous version of this file used a more sophisticated algorithm | ||
|  |  *      (by Fiala and Greene) which is guaranteed to run in linear amortized | ||
|  |  *      time, but has a larger average cost, uses more memory and is patented. | ||
|  |  *      However the F&G algorithm may be faster for some highly redundant | ||
|  |  *      files if the parameter max_chain_length (described below) is too large. | ||
|  |  * | ||
|  |  *  ACKNOWLEDGEMENTS | ||
|  |  * | ||
|  |  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and | ||
|  |  *      I found it in 'freeze' written by Leonid Broukhis. | ||
|  |  *      Thanks to many people for bug reports and testing. | ||
|  |  * | ||
|  |  *  REFERENCES | ||
|  |  * | ||
|  |  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". | ||
|  |  *      Available in http://tools.ietf.org/html/rfc1951
 | ||
|  |  * | ||
|  |  *      A description of the Rabin and Karp algorithm is given in the book | ||
|  |  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252. | ||
|  |  * | ||
|  |  *      Fiala,E.R., and Greene,D.H. | ||
|  |  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* @(#) $Id$ */ | ||
|  | 
 | ||
|  | #include "deflate.h"
 | ||
|  | 
 | ||
|  | const char deflate_copyright[] = | ||
|  |    " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler "; | ||
|  | /*
 | ||
|  |   If you use the zlib library in a product, an acknowledgment is welcome | ||
|  |   in the documentation of your product. If for some reason you cannot | ||
|  |   include such an acknowledgment, I would appreciate that you keep this | ||
|  |   copyright string in the executable of your product. | ||
|  |  */ | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  *  Function prototypes. | ||
|  |  */ | ||
|  | typedef enum { | ||
|  |     need_more,      /* block not completed, need more input or more output */ | ||
|  |     block_done,     /* block flush performed */ | ||
|  |     finish_started, /* finish started, need only more output at next deflate */ | ||
|  |     finish_done     /* finish done, accept no more input or output */ | ||
|  | } block_state; | ||
|  | 
 | ||
|  | typedef block_state (*compress_func) OF((deflate_state *s, int flush)); | ||
|  | /* Compression function. Returns the block state after the call. */ | ||
|  | 
 | ||
|  | local int deflateStateCheck      OF((z_streamp strm)); | ||
|  | local void slide_hash     OF((deflate_state *s)); | ||
|  | local void fill_window    OF((deflate_state *s)); | ||
|  | local block_state deflate_stored OF((deflate_state *s, int flush)); | ||
|  | local block_state deflate_fast   OF((deflate_state *s, int flush)); | ||
|  | #ifndef FASTEST
 | ||
|  | local block_state deflate_slow   OF((deflate_state *s, int flush)); | ||
|  | #endif
 | ||
|  | local block_state deflate_rle    OF((deflate_state *s, int flush)); | ||
|  | local block_state deflate_huff   OF((deflate_state *s, int flush)); | ||
|  | local void lm_init        OF((deflate_state *s)); | ||
|  | local void putShortMSB    OF((deflate_state *s, uInt b)); | ||
|  | local void flush_pending  OF((z_streamp strm)); | ||
|  | local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size)); | ||
|  | #ifdef ASMV
 | ||
|  | #  pragma message("Assembler code may have bugs -- use at your own risk")
 | ||
|  |       void match_init OF((void)); /* asm code initialization */ | ||
|  |       uInt longest_match  OF((deflate_state *s, IPos cur_match)); | ||
|  | #else
 | ||
|  | local uInt longest_match  OF((deflate_state *s, IPos cur_match)); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef ZLIB_DEBUG
 | ||
|  | local  void check_match OF((deflate_state *s, IPos start, IPos match, | ||
|  |                             int length)); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Local data | ||
|  |  */ | ||
|  | 
 | ||
|  | #define NIL 0
 | ||
|  | /* Tail of hash chains */ | ||
|  | 
 | ||
|  | #ifndef TOO_FAR
 | ||
|  | #  define TOO_FAR 4096
 | ||
|  | #endif
 | ||
|  | /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ | ||
|  | 
 | ||
|  | /* Values for max_lazy_match, good_match and max_chain_length, depending on
 | ||
|  |  * the desired pack level (0..9). The values given below have been tuned to | ||
|  |  * exclude worst case performance for pathological files. Better values may be | ||
|  |  * found for specific files. | ||
|  |  */ | ||
|  | typedef struct config_s { | ||
|  |    ush good_length; /* reduce lazy search above this match length */ | ||
|  |    ush max_lazy;    /* do not perform lazy search above this match length */ | ||
|  |    ush nice_length; /* quit search above this match length */ | ||
|  |    ush max_chain; | ||
|  |    compress_func func; | ||
|  | } config; | ||
|  | 
 | ||
|  | #ifdef FASTEST
 | ||
|  | local const config configuration_table[2] = { | ||
|  | /*      good lazy nice chain */ | ||
|  | /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */ | ||
|  | /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */ | ||
|  | #else
 | ||
|  | local const config configuration_table[10] = { | ||
|  | /*      good lazy nice chain */ | ||
|  | /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */ | ||
|  | /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */ | ||
|  | /* 2 */ {4,    5, 16,    8, deflate_fast}, | ||
|  | /* 3 */ {4,    6, 32,   32, deflate_fast}, | ||
|  | 
 | ||
|  | /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */ | ||
|  | /* 5 */ {8,   16, 32,   32, deflate_slow}, | ||
|  | /* 6 */ {8,   16, 128, 128, deflate_slow}, | ||
|  | /* 7 */ {8,   32, 128, 256, deflate_slow}, | ||
|  | /* 8 */ {32, 128, 258, 1024, deflate_slow}, | ||
|  | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 | ||
|  |  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different | ||
|  |  * meaning. | ||
|  |  */ | ||
|  | 
 | ||
|  | /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ | ||
|  | #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Update a hash value with the given input byte | ||
|  |  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input | ||
|  |  *    characters, so that a running hash key can be computed from the previous | ||
|  |  *    key instead of complete recalculation each time. | ||
|  |  */ | ||
|  | #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Insert string str in the dictionary and set match_head to the previous head | ||
|  |  * of the hash chain (the most recent string with same hash key). Return | ||
|  |  * the previous length of the hash chain. | ||
|  |  * If this file is compiled with -DFASTEST, the compression level is forced | ||
|  |  * to 1, and no hash chains are maintained. | ||
|  |  * IN  assertion: all calls to INSERT_STRING are made with consecutive input | ||
|  |  *    characters and the first MIN_MATCH bytes of str are valid (except for | ||
|  |  *    the last MIN_MATCH-1 bytes of the input file). | ||
|  |  */ | ||
|  | #ifdef FASTEST
 | ||
|  | #define INSERT_STRING(s, str, match_head) \
 | ||
|  |    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | ||
|  |     match_head = s->head[s->ins_h], \ | ||
|  |     s->head[s->ins_h] = (Pos)(str)) | ||
|  | #else
 | ||
|  | #define INSERT_STRING(s, str, match_head) \
 | ||
|  |    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | ||
|  |     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ | ||
|  |     s->head[s->ins_h] = (Pos)(str)) | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Initialize the hash table (avoiding 64K overflow for 16 bit systems). | ||
|  |  * prev[] will be initialized on the fly. | ||
|  |  */ | ||
|  | #define CLEAR_HASH(s) \
 | ||
|  |     s->head[s->hash_size-1] = NIL; \ | ||
|  |     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Slide the hash table when sliding the window down (could be avoided with 32 | ||
|  |  * bit values at the expense of memory usage). We slide even when level == 0 to | ||
|  |  * keep the hash table consistent if we switch back to level > 0 later. | ||
|  |  */ | ||
|  | local void slide_hash(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     unsigned n, m; | ||
|  |     Posf *p; | ||
|  |     uInt wsize = s->w_size; | ||
|  | 
 | ||
|  |     n = s->hash_size; | ||
|  |     p = &s->head[n]; | ||
|  |     do { | ||
|  |         m = *--p; | ||
|  |         *p = (Pos)(m >= wsize ? m - wsize : NIL); | ||
|  |     } while (--n); | ||
|  |     n = wsize; | ||
|  | #ifndef FASTEST
 | ||
|  |     p = &s->prev[n]; | ||
|  |     do { | ||
|  |         m = *--p; | ||
|  |         *p = (Pos)(m >= wsize ? m - wsize : NIL); | ||
|  |         /* If n is not on any hash chain, prev[n] is garbage but
 | ||
|  |          * its value will never be used. | ||
|  |          */ | ||
|  |     } while (--n); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateInit_(strm, level, version, stream_size) | ||
|  |     z_streamp strm; | ||
|  |     int level; | ||
|  |     const char *version; | ||
|  |     int stream_size; | ||
|  | { | ||
|  |     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, | ||
|  |                          Z_DEFAULT_STRATEGY, version, stream_size); | ||
|  |     /* To do: ignore strm->next_in if we use it as window */ | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, | ||
|  |                   version, stream_size) | ||
|  |     z_streamp strm; | ||
|  |     int  level; | ||
|  |     int  method; | ||
|  |     int  windowBits; | ||
|  |     int  memLevel; | ||
|  |     int  strategy; | ||
|  |     const char *version; | ||
|  |     int stream_size; | ||
|  | { | ||
|  |     deflate_state *s; | ||
|  |     int wrap = 1; | ||
|  |     static const char my_version[] = ZLIB_VERSION; | ||
|  | 
 | ||
|  |     ushf *overlay; | ||
|  |     /* We overlay pending_buf and d_buf+l_buf. This works since the average
 | ||
|  |      * output size for (length,distance) codes is <= 24 bits. | ||
|  |      */ | ||
|  | 
 | ||
|  |     if (version == Z_NULL || version[0] != my_version[0] || | ||
|  |         stream_size != sizeof(z_stream)) { | ||
|  |         return Z_VERSION_ERROR; | ||
|  |     } | ||
|  |     if (strm == Z_NULL) return Z_STREAM_ERROR; | ||
|  | 
 | ||
|  |     strm->msg = Z_NULL; | ||
|  |     if (strm->zalloc == (alloc_func)0) { | ||
|  | #ifdef Z_SOLO
 | ||
|  |         return Z_STREAM_ERROR; | ||
|  | #else
 | ||
|  |         strm->zalloc = zcalloc; | ||
|  |         strm->opaque = (voidpf)0; | ||
|  | #endif
 | ||
|  |     } | ||
|  |     if (strm->zfree == (free_func)0) | ||
|  | #ifdef Z_SOLO
 | ||
|  |         return Z_STREAM_ERROR; | ||
|  | #else
 | ||
|  |         strm->zfree = zcfree; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef FASTEST
 | ||
|  |     if (level != 0) level = 1; | ||
|  | #else
 | ||
|  |     if (level == Z_DEFAULT_COMPRESSION) level = 6; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     if (windowBits < 0) { /* suppress zlib wrapper */ | ||
|  |         wrap = 0; | ||
|  |         windowBits = -windowBits; | ||
|  |     } | ||
|  | #ifdef GZIP
 | ||
|  |     else if (windowBits > 15) { | ||
|  |         wrap = 2;       /* write gzip wrapper instead */ | ||
|  |         windowBits -= 16; | ||
|  |     } | ||
|  | #endif
 | ||
|  |     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || | ||
|  |         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || | ||
|  |         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) { | ||
|  |         return Z_STREAM_ERROR; | ||
|  |     } | ||
|  |     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */ | ||
|  |     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); | ||
|  |     if (s == Z_NULL) return Z_MEM_ERROR; | ||
|  |     strm->state = (struct internal_state FAR *)s; | ||
|  |     s->strm = strm; | ||
|  |     s->status = INIT_STATE;     /* to pass state test in deflateReset() */ | ||
|  | 
 | ||
|  |     s->wrap = wrap; | ||
|  |     s->gzhead = Z_NULL; | ||
|  |     s->w_bits = (uInt)windowBits; | ||
|  |     s->w_size = 1 << s->w_bits; | ||
|  |     s->w_mask = s->w_size - 1; | ||
|  | 
 | ||
|  |     s->hash_bits = (uInt)memLevel + 7; | ||
|  |     s->hash_size = 1 << s->hash_bits; | ||
|  |     s->hash_mask = s->hash_size - 1; | ||
|  |     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); | ||
|  | 
 | ||
|  |     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); | ||
|  |     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos)); | ||
|  |     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos)); | ||
|  | 
 | ||
|  |     s->high_water = 0;      /* nothing written to s->window yet */ | ||
|  | 
 | ||
|  |     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | ||
|  | 
 | ||
|  |     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); | ||
|  |     s->pending_buf = (uchf *) overlay; | ||
|  |     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); | ||
|  | 
 | ||
|  |     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || | ||
|  |         s->pending_buf == Z_NULL) { | ||
|  |         s->status = FINISH_STATE; | ||
|  |         strm->msg = ERR_MSG(Z_MEM_ERROR); | ||
|  |         deflateEnd (strm); | ||
|  |         return Z_MEM_ERROR; | ||
|  |     } | ||
|  |     s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | ||
|  |     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | ||
|  | 
 | ||
|  |     s->level = level; | ||
|  |     s->strategy = strategy; | ||
|  |     s->method = (Byte)method; | ||
|  | 
 | ||
|  |     return deflateReset(strm); | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================
 | ||
|  |  * Check for a valid deflate stream state. Return 0 if ok, 1 if not. | ||
|  |  */ | ||
|  | local int deflateStateCheck (strm) | ||
|  |     z_streamp strm; | ||
|  | { | ||
|  |     deflate_state *s; | ||
|  |     if (strm == Z_NULL || | ||
|  |         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) | ||
|  |         return 1; | ||
|  |     s = strm->state; | ||
|  |     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE && | ||
|  | #ifdef GZIP
 | ||
|  |                                            s->status != GZIP_STATE && | ||
|  | #endif
 | ||
|  |                                            s->status != EXTRA_STATE && | ||
|  |                                            s->status != NAME_STATE && | ||
|  |                                            s->status != COMMENT_STATE && | ||
|  |                                            s->status != HCRC_STATE && | ||
|  |                                            s->status != BUSY_STATE && | ||
|  |                                            s->status != FINISH_STATE)) | ||
|  |         return 1; | ||
|  |     return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) | ||
|  |     z_streamp strm; | ||
|  |     const Bytef *dictionary; | ||
|  |     uInt  dictLength; | ||
|  | { | ||
|  |     deflate_state *s; | ||
|  |     uInt str, n; | ||
|  |     int wrap; | ||
|  |     unsigned avail; | ||
|  |     z_const unsigned char *next; | ||
|  | 
 | ||
|  |     if (deflateStateCheck(strm) || dictionary == Z_NULL) | ||
|  |         return Z_STREAM_ERROR; | ||
|  |     s = strm->state; | ||
|  |     wrap = s->wrap; | ||
|  |     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) | ||
|  |         return Z_STREAM_ERROR; | ||
|  | 
 | ||
|  |     /* when using zlib wrappers, compute Adler-32 for provided dictionary */ | ||
|  |     if (wrap == 1) | ||
|  |         strm->adler = adler32(strm->adler, dictionary, dictLength); | ||
|  |     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */ | ||
|  | 
 | ||
|  |     /* if dictionary would fill window, just replace the history */ | ||
|  |     if (dictLength >= s->w_size) { | ||
|  |         if (wrap == 0) {            /* already empty otherwise */ | ||
|  |             CLEAR_HASH(s); | ||
|  |             s->strstart = 0; | ||
|  |             s->block_start = 0L; | ||
|  |             s->insert = 0; | ||
|  |         } | ||
|  |         dictionary += dictLength - s->w_size;  /* use the tail */ | ||
|  |         dictLength = s->w_size; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* insert dictionary into window and hash */ | ||
|  |     avail = strm->avail_in; | ||
|  |     next = strm->next_in; | ||
|  |     strm->avail_in = dictLength; | ||
|  |     strm->next_in = (z_const Bytef *)dictionary; | ||
|  |     fill_window(s); | ||
|  |     while (s->lookahead >= MIN_MATCH) { | ||
|  |         str = s->strstart; | ||
|  |         n = s->lookahead - (MIN_MATCH-1); | ||
|  |         do { | ||
|  |             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); | ||
|  | #ifndef FASTEST
 | ||
|  |             s->prev[str & s->w_mask] = s->head[s->ins_h]; | ||
|  | #endif
 | ||
|  |             s->head[s->ins_h] = (Pos)str; | ||
|  |             str++; | ||
|  |         } while (--n); | ||
|  |         s->strstart = str; | ||
|  |         s->lookahead = MIN_MATCH-1; | ||
|  |         fill_window(s); | ||
|  |     } | ||
|  |     s->strstart += s->lookahead; | ||
|  |     s->block_start = (long)s->strstart; | ||
|  |     s->insert = s->lookahead; | ||
|  |     s->lookahead = 0; | ||
|  |     s->match_length = s->prev_length = MIN_MATCH-1; | ||
|  |     s->match_available = 0; | ||
|  |     strm->next_in = next; | ||
|  |     strm->avail_in = avail; | ||
|  |     s->wrap = wrap; | ||
|  |     return Z_OK; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength) | ||
|  |     z_streamp strm; | ||
|  |     Bytef *dictionary; | ||
|  |     uInt  *dictLength; | ||
|  | { | ||
|  |     deflate_state *s; | ||
|  |     uInt len; | ||
|  | 
 | ||
|  |     if (deflateStateCheck(strm)) | ||
|  |         return Z_STREAM_ERROR; | ||
|  |     s = strm->state; | ||
|  |     len = s->strstart + s->lookahead; | ||
|  |     if (len > s->w_size) | ||
|  |         len = s->w_size; | ||
|  |     if (dictionary != Z_NULL && len) | ||
|  |         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); | ||
|  |     if (dictLength != Z_NULL) | ||
|  |         *dictLength = len; | ||
|  |     return Z_OK; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateResetKeep (strm) | ||
|  |     z_streamp strm; | ||
|  | { | ||
|  |     deflate_state *s; | ||
|  | 
 | ||
|  |     if (deflateStateCheck(strm)) { | ||
|  |         return Z_STREAM_ERROR; | ||
|  |     } | ||
|  | 
 | ||
|  |     strm->total_in = strm->total_out = 0; | ||
|  |     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ | ||
|  |     strm->data_type = Z_UNKNOWN; | ||
|  | 
 | ||
|  |     s = (deflate_state *)strm->state; | ||
|  |     s->pending = 0; | ||
|  |     s->pending_out = s->pending_buf; | ||
|  | 
 | ||
|  |     if (s->wrap < 0) { | ||
|  |         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ | ||
|  |     } | ||
|  |     s->status = | ||
|  | #ifdef GZIP
 | ||
|  |         s->wrap == 2 ? GZIP_STATE : | ||
|  | #endif
 | ||
|  |         s->wrap ? INIT_STATE : BUSY_STATE; | ||
|  |     strm->adler = | ||
|  | #ifdef GZIP
 | ||
|  |         s->wrap == 2 ? crc32(0L, Z_NULL, 0) : | ||
|  | #endif
 | ||
|  |         adler32(0L, Z_NULL, 0); | ||
|  |     s->last_flush = Z_NO_FLUSH; | ||
|  | 
 | ||
|  |     _tr_init(s); | ||
|  | 
 | ||
|  |     return Z_OK; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateReset (strm) | ||
|  |     z_streamp strm; | ||
|  | { | ||
|  |     int ret; | ||
|  | 
 | ||
|  |     ret = deflateResetKeep(strm); | ||
|  |     if (ret == Z_OK) | ||
|  |         lm_init(strm->state); | ||
|  |     return ret; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateSetHeader (strm, head) | ||
|  |     z_streamp strm; | ||
|  |     gz_headerp head; | ||
|  | { | ||
|  |     if (deflateStateCheck(strm) || strm->state->wrap != 2) | ||
|  |         return Z_STREAM_ERROR; | ||
|  |     strm->state->gzhead = head; | ||
|  |     return Z_OK; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflatePending (strm, pending, bits) | ||
|  |     unsigned *pending; | ||
|  |     int *bits; | ||
|  |     z_streamp strm; | ||
|  | { | ||
|  |     if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | ||
|  |     if (pending != Z_NULL) | ||
|  |         *pending = strm->state->pending; | ||
|  |     if (bits != Z_NULL) | ||
|  |         *bits = strm->state->bi_valid; | ||
|  |     return Z_OK; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflatePrime (strm, bits, value) | ||
|  |     z_streamp strm; | ||
|  |     int bits; | ||
|  |     int value; | ||
|  | { | ||
|  |     deflate_state *s; | ||
|  |     int put; | ||
|  | 
 | ||
|  |     if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | ||
|  |     s = strm->state; | ||
|  |     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) | ||
|  |         return Z_BUF_ERROR; | ||
|  |     do { | ||
|  |         put = Buf_size - s->bi_valid; | ||
|  |         if (put > bits) | ||
|  |             put = bits; | ||
|  |         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); | ||
|  |         s->bi_valid += put; | ||
|  |         _tr_flush_bits(s); | ||
|  |         value >>= put; | ||
|  |         bits -= put; | ||
|  |     } while (bits); | ||
|  |     return Z_OK; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateParams(strm, level, strategy) | ||
|  |     z_streamp strm; | ||
|  |     int level; | ||
|  |     int strategy; | ||
|  | { | ||
|  |     deflate_state *s; | ||
|  |     compress_func func; | ||
|  | 
 | ||
|  |     if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | ||
|  |     s = strm->state; | ||
|  | 
 | ||
|  | #ifdef FASTEST
 | ||
|  |     if (level != 0) level = 1; | ||
|  | #else
 | ||
|  |     if (level == Z_DEFAULT_COMPRESSION) level = 6; | ||
|  | #endif
 | ||
|  |     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { | ||
|  |         return Z_STREAM_ERROR; | ||
|  |     } | ||
|  |     func = configuration_table[s->level].func; | ||
|  | 
 | ||
|  |     if ((strategy != s->strategy || func != configuration_table[level].func) && | ||
|  |         s->high_water) { | ||
|  |         /* Flush the last buffer: */ | ||
|  |         int err = deflate(strm, Z_BLOCK); | ||
|  |         if (err == Z_STREAM_ERROR) | ||
|  |             return err; | ||
|  |         if (strm->avail_out == 0) | ||
|  |             return Z_BUF_ERROR; | ||
|  |     } | ||
|  |     if (s->level != level) { | ||
|  |         if (s->level == 0 && s->matches != 0) { | ||
|  |             if (s->matches == 1) | ||
|  |                 slide_hash(s); | ||
|  |             else | ||
|  |                 CLEAR_HASH(s); | ||
|  |             s->matches = 0; | ||
|  |         } | ||
|  |         s->level = level; | ||
|  |         s->max_lazy_match   = configuration_table[level].max_lazy; | ||
|  |         s->good_match       = configuration_table[level].good_length; | ||
|  |         s->nice_match       = configuration_table[level].nice_length; | ||
|  |         s->max_chain_length = configuration_table[level].max_chain; | ||
|  |     } | ||
|  |     s->strategy = strategy; | ||
|  |     return Z_OK; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) | ||
|  |     z_streamp strm; | ||
|  |     int good_length; | ||
|  |     int max_lazy; | ||
|  |     int nice_length; | ||
|  |     int max_chain; | ||
|  | { | ||
|  |     deflate_state *s; | ||
|  | 
 | ||
|  |     if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | ||
|  |     s = strm->state; | ||
|  |     s->good_match = (uInt)good_length; | ||
|  |     s->max_lazy_match = (uInt)max_lazy; | ||
|  |     s->nice_match = nice_length; | ||
|  |     s->max_chain_length = (uInt)max_chain; | ||
|  |     return Z_OK; | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================
 | ||
|  |  * For the default windowBits of 15 and memLevel of 8, this function returns | ||
|  |  * a close to exact, as well as small, upper bound on the compressed size. | ||
|  |  * They are coded as constants here for a reason--if the #define's are | ||
|  |  * changed, then this function needs to be changed as well.  The return | ||
|  |  * value for 15 and 8 only works for those exact settings. | ||
|  |  * | ||
|  |  * For any setting other than those defaults for windowBits and memLevel, | ||
|  |  * the value returned is a conservative worst case for the maximum expansion | ||
|  |  * resulting from using fixed blocks instead of stored blocks, which deflate | ||
|  |  * can emit on compressed data for some combinations of the parameters. | ||
|  |  * | ||
|  |  * This function could be more sophisticated to provide closer upper bounds for | ||
|  |  * every combination of windowBits and memLevel.  But even the conservative | ||
|  |  * upper bound of about 14% expansion does not seem onerous for output buffer | ||
|  |  * allocation. | ||
|  |  */ | ||
|  | uLong ZEXPORT deflateBound(strm, sourceLen) | ||
|  |     z_streamp strm; | ||
|  |     uLong sourceLen; | ||
|  | { | ||
|  |     deflate_state *s; | ||
|  |     uLong complen, wraplen; | ||
|  | 
 | ||
|  |     /* conservative upper bound for compressed data */ | ||
|  |     complen = sourceLen + | ||
|  |               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; | ||
|  | 
 | ||
|  |     /* if can't get parameters, return conservative bound plus zlib wrapper */ | ||
|  |     if (deflateStateCheck(strm)) | ||
|  |         return complen + 6; | ||
|  | 
 | ||
|  |     /* compute wrapper length */ | ||
|  |     s = strm->state; | ||
|  |     switch (s->wrap) { | ||
|  |     case 0:                                 /* raw deflate */ | ||
|  |         wraplen = 0; | ||
|  |         break; | ||
|  |     case 1:                                 /* zlib wrapper */ | ||
|  |         wraplen = 6 + (s->strstart ? 4 : 0); | ||
|  |         break; | ||
|  | #ifdef GZIP
 | ||
|  |     case 2:                                 /* gzip wrapper */ | ||
|  |         wraplen = 18; | ||
|  |         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */ | ||
|  |             Bytef *str; | ||
|  |             if (s->gzhead->extra != Z_NULL) | ||
|  |                 wraplen += 2 + s->gzhead->extra_len; | ||
|  |             str = s->gzhead->name; | ||
|  |             if (str != Z_NULL) | ||
|  |                 do { | ||
|  |                     wraplen++; | ||
|  |                 } while (*str++); | ||
|  |             str = s->gzhead->comment; | ||
|  |             if (str != Z_NULL) | ||
|  |                 do { | ||
|  |                     wraplen++; | ||
|  |                 } while (*str++); | ||
|  |             if (s->gzhead->hcrc) | ||
|  |                 wraplen += 2; | ||
|  |         } | ||
|  |         break; | ||
|  | #endif
 | ||
|  |     default:                                /* for compiler happiness */ | ||
|  |         wraplen = 6; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* if not default parameters, return conservative bound */ | ||
|  |     if (s->w_bits != 15 || s->hash_bits != 8 + 7) | ||
|  |         return complen + wraplen; | ||
|  | 
 | ||
|  |     /* default settings: return tight bound for that case */ | ||
|  |     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + | ||
|  |            (sourceLen >> 25) + 13 - 6 + wraplen; | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================
 | ||
|  |  * Put a short in the pending buffer. The 16-bit value is put in MSB order. | ||
|  |  * IN assertion: the stream state is correct and there is enough room in | ||
|  |  * pending_buf. | ||
|  |  */ | ||
|  | local void putShortMSB (s, b) | ||
|  |     deflate_state *s; | ||
|  |     uInt b; | ||
|  | { | ||
|  |     put_byte(s, (Byte)(b >> 8)); | ||
|  |     put_byte(s, (Byte)(b & 0xff)); | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================
 | ||
|  |  * Flush as much pending output as possible. All deflate() output, except for | ||
|  |  * some deflate_stored() output, goes through this function so some | ||
|  |  * applications may wish to modify it to avoid allocating a large | ||
|  |  * strm->next_out buffer and copying into it. (See also read_buf()). | ||
|  |  */ | ||
|  | local void flush_pending(strm) | ||
|  |     z_streamp strm; | ||
|  | { | ||
|  |     unsigned len; | ||
|  |     deflate_state *s = strm->state; | ||
|  | 
 | ||
|  |     _tr_flush_bits(s); | ||
|  |     len = s->pending; | ||
|  |     if (len > strm->avail_out) len = strm->avail_out; | ||
|  |     if (len == 0) return; | ||
|  | 
 | ||
|  |     zmemcpy(strm->next_out, s->pending_out, len); | ||
|  |     strm->next_out  += len; | ||
|  |     s->pending_out  += len; | ||
|  |     strm->total_out += len; | ||
|  |     strm->avail_out -= len; | ||
|  |     s->pending      -= len; | ||
|  |     if (s->pending == 0) { | ||
|  |         s->pending_out = s->pending_buf; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. | ||
|  |  */ | ||
|  | #define HCRC_UPDATE(beg) \
 | ||
|  |     do { \ | ||
|  |         if (s->gzhead->hcrc && s->pending > (beg)) \ | ||
|  |             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \ | ||
|  |                                 s->pending - (beg)); \ | ||
|  |     } while (0) | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflate (strm, flush) | ||
|  |     z_streamp strm; | ||
|  |     int flush; | ||
|  | { | ||
|  |     int old_flush; /* value of flush param for previous deflate call */ | ||
|  |     deflate_state *s; | ||
|  | 
 | ||
|  |     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) { | ||
|  |         return Z_STREAM_ERROR; | ||
|  |     } | ||
|  |     s = strm->state; | ||
|  | 
 | ||
|  |     if (strm->next_out == Z_NULL || | ||
|  |         (strm->avail_in != 0 && strm->next_in == Z_NULL) || | ||
|  |         (s->status == FINISH_STATE && flush != Z_FINISH)) { | ||
|  |         ERR_RETURN(strm, Z_STREAM_ERROR); | ||
|  |     } | ||
|  |     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); | ||
|  | 
 | ||
|  |     old_flush = s->last_flush; | ||
|  |     s->last_flush = flush; | ||
|  | 
 | ||
|  |     /* Flush as much pending output as possible */ | ||
|  |     if (s->pending != 0) { | ||
|  |         flush_pending(strm); | ||
|  |         if (strm->avail_out == 0) { | ||
|  |             /* Since avail_out is 0, deflate will be called again with
 | ||
|  |              * more output space, but possibly with both pending and | ||
|  |              * avail_in equal to zero. There won't be anything to do, | ||
|  |              * but this is not an error situation so make sure we | ||
|  |              * return OK instead of BUF_ERROR at next call of deflate: | ||
|  |              */ | ||
|  |             s->last_flush = -1; | ||
|  |             return Z_OK; | ||
|  |         } | ||
|  | 
 | ||
|  |     /* Make sure there is something to do and avoid duplicate consecutive
 | ||
|  |      * flushes. For repeated and useless calls with Z_FINISH, we keep | ||
|  |      * returning Z_STREAM_END instead of Z_BUF_ERROR. | ||
|  |      */ | ||
|  |     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && | ||
|  |                flush != Z_FINISH) { | ||
|  |         ERR_RETURN(strm, Z_BUF_ERROR); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* User must not provide more input after the first FINISH: */ | ||
|  |     if (s->status == FINISH_STATE && strm->avail_in != 0) { | ||
|  |         ERR_RETURN(strm, Z_BUF_ERROR); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Write the header */ | ||
|  |     if (s->status == INIT_STATE) { | ||
|  |         /* zlib header */ | ||
|  |         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; | ||
|  |         uInt level_flags; | ||
|  | 
 | ||
|  |         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) | ||
|  |             level_flags = 0; | ||
|  |         else if (s->level < 6) | ||
|  |             level_flags = 1; | ||
|  |         else if (s->level == 6) | ||
|  |             level_flags = 2; | ||
|  |         else | ||
|  |             level_flags = 3; | ||
|  |         header |= (level_flags << 6); | ||
|  |         if (s->strstart != 0) header |= PRESET_DICT; | ||
|  |         header += 31 - (header % 31); | ||
|  | 
 | ||
|  |         putShortMSB(s, header); | ||
|  | 
 | ||
|  |         /* Save the adler32 of the preset dictionary: */ | ||
|  |         if (s->strstart != 0) { | ||
|  |             putShortMSB(s, (uInt)(strm->adler >> 16)); | ||
|  |             putShortMSB(s, (uInt)(strm->adler & 0xffff)); | ||
|  |         } | ||
|  |         strm->adler = adler32(0L, Z_NULL, 0); | ||
|  |         s->status = BUSY_STATE; | ||
|  | 
 | ||
|  |         /* Compression must start with an empty pending buffer */ | ||
|  |         flush_pending(strm); | ||
|  |         if (s->pending != 0) { | ||
|  |             s->last_flush = -1; | ||
|  |             return Z_OK; | ||
|  |         } | ||
|  |     } | ||
|  | #ifdef GZIP
 | ||
|  |     if (s->status == GZIP_STATE) { | ||
|  |         /* gzip header */ | ||
|  |         strm->adler = crc32(0L, Z_NULL, 0); | ||
|  |         put_byte(s, 31); | ||
|  |         put_byte(s, 139); | ||
|  |         put_byte(s, 8); | ||
|  |         if (s->gzhead == Z_NULL) { | ||
|  |             put_byte(s, 0); | ||
|  |             put_byte(s, 0); | ||
|  |             put_byte(s, 0); | ||
|  |             put_byte(s, 0); | ||
|  |             put_byte(s, 0); | ||
|  |             put_byte(s, s->level == 9 ? 2 : | ||
|  |                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? | ||
|  |                       4 : 0)); | ||
|  |             put_byte(s, OS_CODE); | ||
|  |             s->status = BUSY_STATE; | ||
|  | 
 | ||
|  |             /* Compression must start with an empty pending buffer */ | ||
|  |             flush_pending(strm); | ||
|  |             if (s->pending != 0) { | ||
|  |                 s->last_flush = -1; | ||
|  |                 return Z_OK; | ||
|  |             } | ||
|  |         } | ||
|  |         else { | ||
|  |             put_byte(s, (s->gzhead->text ? 1 : 0) + | ||
|  |                      (s->gzhead->hcrc ? 2 : 0) + | ||
|  |                      (s->gzhead->extra == Z_NULL ? 0 : 4) + | ||
|  |                      (s->gzhead->name == Z_NULL ? 0 : 8) + | ||
|  |                      (s->gzhead->comment == Z_NULL ? 0 : 16) | ||
|  |                      ); | ||
|  |             put_byte(s, (Byte)(s->gzhead->time & 0xff)); | ||
|  |             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); | ||
|  |             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); | ||
|  |             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); | ||
|  |             put_byte(s, s->level == 9 ? 2 : | ||
|  |                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? | ||
|  |                       4 : 0)); | ||
|  |             put_byte(s, s->gzhead->os & 0xff); | ||
|  |             if (s->gzhead->extra != Z_NULL) { | ||
|  |                 put_byte(s, s->gzhead->extra_len & 0xff); | ||
|  |                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); | ||
|  |             } | ||
|  |             if (s->gzhead->hcrc) | ||
|  |                 strm->adler = crc32(strm->adler, s->pending_buf, | ||
|  |                                     s->pending); | ||
|  |             s->gzindex = 0; | ||
|  |             s->status = EXTRA_STATE; | ||
|  |         } | ||
|  |     } | ||
|  |     if (s->status == EXTRA_STATE) { | ||
|  |         if (s->gzhead->extra != Z_NULL) { | ||
|  |             ulg beg = s->pending;   /* start of bytes to update crc */ | ||
|  |             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex; | ||
|  |             while (s->pending + left > s->pending_buf_size) { | ||
|  |                 uInt copy = s->pending_buf_size - s->pending; | ||
|  |                 zmemcpy(s->pending_buf + s->pending, | ||
|  |                         s->gzhead->extra + s->gzindex, copy); | ||
|  |                 s->pending = s->pending_buf_size; | ||
|  |                 HCRC_UPDATE(beg); | ||
|  |                 s->gzindex += copy; | ||
|  |                 flush_pending(strm); | ||
|  |                 if (s->pending != 0) { | ||
|  |                     s->last_flush = -1; | ||
|  |                     return Z_OK; | ||
|  |                 } | ||
|  |                 beg = 0; | ||
|  |                 left -= copy; | ||
|  |             } | ||
|  |             zmemcpy(s->pending_buf + s->pending, | ||
|  |                     s->gzhead->extra + s->gzindex, left); | ||
|  |             s->pending += left; | ||
|  |             HCRC_UPDATE(beg); | ||
|  |             s->gzindex = 0; | ||
|  |         } | ||
|  |         s->status = NAME_STATE; | ||
|  |     } | ||
|  |     if (s->status == NAME_STATE) { | ||
|  |         if (s->gzhead->name != Z_NULL) { | ||
|  |             ulg beg = s->pending;   /* start of bytes to update crc */ | ||
|  |             int val; | ||
|  |             do { | ||
|  |                 if (s->pending == s->pending_buf_size) { | ||
|  |                     HCRC_UPDATE(beg); | ||
|  |                     flush_pending(strm); | ||
|  |                     if (s->pending != 0) { | ||
|  |                         s->last_flush = -1; | ||
|  |                         return Z_OK; | ||
|  |                     } | ||
|  |                     beg = 0; | ||
|  |                 } | ||
|  |                 val = s->gzhead->name[s->gzindex++]; | ||
|  |                 put_byte(s, val); | ||
|  |             } while (val != 0); | ||
|  |             HCRC_UPDATE(beg); | ||
|  |             s->gzindex = 0; | ||
|  |         } | ||
|  |         s->status = COMMENT_STATE; | ||
|  |     } | ||
|  |     if (s->status == COMMENT_STATE) { | ||
|  |         if (s->gzhead->comment != Z_NULL) { | ||
|  |             ulg beg = s->pending;   /* start of bytes to update crc */ | ||
|  |             int val; | ||
|  |             do { | ||
|  |                 if (s->pending == s->pending_buf_size) { | ||
|  |                     HCRC_UPDATE(beg); | ||
|  |                     flush_pending(strm); | ||
|  |                     if (s->pending != 0) { | ||
|  |                         s->last_flush = -1; | ||
|  |                         return Z_OK; | ||
|  |                     } | ||
|  |                     beg = 0; | ||
|  |                 } | ||
|  |                 val = s->gzhead->comment[s->gzindex++]; | ||
|  |                 put_byte(s, val); | ||
|  |             } while (val != 0); | ||
|  |             HCRC_UPDATE(beg); | ||
|  |         } | ||
|  |         s->status = HCRC_STATE; | ||
|  |     } | ||
|  |     if (s->status == HCRC_STATE) { | ||
|  |         if (s->gzhead->hcrc) { | ||
|  |             if (s->pending + 2 > s->pending_buf_size) { | ||
|  |                 flush_pending(strm); | ||
|  |                 if (s->pending != 0) { | ||
|  |                     s->last_flush = -1; | ||
|  |                     return Z_OK; | ||
|  |                 } | ||
|  |             } | ||
|  |             put_byte(s, (Byte)(strm->adler & 0xff)); | ||
|  |             put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); | ||
|  |             strm->adler = crc32(0L, Z_NULL, 0); | ||
|  |         } | ||
|  |         s->status = BUSY_STATE; | ||
|  | 
 | ||
|  |         /* Compression must start with an empty pending buffer */ | ||
|  |         flush_pending(strm); | ||
|  |         if (s->pending != 0) { | ||
|  |             s->last_flush = -1; | ||
|  |             return Z_OK; | ||
|  |         } | ||
|  |     } | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /* Start a new block or continue the current one.
 | ||
|  |      */ | ||
|  |     if (strm->avail_in != 0 || s->lookahead != 0 || | ||
|  |         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { | ||
|  |         block_state bstate; | ||
|  | 
 | ||
|  |         bstate = s->level == 0 ? deflate_stored(s, flush) : | ||
|  |                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : | ||
|  |                  s->strategy == Z_RLE ? deflate_rle(s, flush) : | ||
|  |                  (*(configuration_table[s->level].func))(s, flush); | ||
|  | 
 | ||
|  |         if (bstate == finish_started || bstate == finish_done) { | ||
|  |             s->status = FINISH_STATE; | ||
|  |         } | ||
|  |         if (bstate == need_more || bstate == finish_started) { | ||
|  |             if (strm->avail_out == 0) { | ||
|  |                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ | ||
|  |             } | ||
|  |             return Z_OK; | ||
|  |             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
 | ||
|  |              * of deflate should use the same flush parameter to make sure | ||
|  |              * that the flush is complete. So we don't have to output an | ||
|  |              * empty block here, this will be done at next call. This also | ||
|  |              * ensures that for a very small output buffer, we emit at most | ||
|  |              * one empty block. | ||
|  |              */ | ||
|  |         } | ||
|  |         if (bstate == block_done) { | ||
|  |             if (flush == Z_PARTIAL_FLUSH) { | ||
|  |                 _tr_align(s); | ||
|  |             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ | ||
|  |                 _tr_stored_block(s, (char*)0, 0L, 0); | ||
|  |                 /* For a full flush, this empty block will be recognized
 | ||
|  |                  * as a special marker by inflate_sync(). | ||
|  |                  */ | ||
|  |                 if (flush == Z_FULL_FLUSH) { | ||
|  |                     CLEAR_HASH(s);             /* forget history */ | ||
|  |                     if (s->lookahead == 0) { | ||
|  |                         s->strstart = 0; | ||
|  |                         s->block_start = 0L; | ||
|  |                         s->insert = 0; | ||
|  |                     } | ||
|  |                 } | ||
|  |             } | ||
|  |             flush_pending(strm); | ||
|  |             if (strm->avail_out == 0) { | ||
|  |               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | ||
|  |               return Z_OK; | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     if (flush != Z_FINISH) return Z_OK; | ||
|  |     if (s->wrap <= 0) return Z_STREAM_END; | ||
|  | 
 | ||
|  |     /* Write the trailer */ | ||
|  | #ifdef GZIP
 | ||
|  |     if (s->wrap == 2) { | ||
|  |         put_byte(s, (Byte)(strm->adler & 0xff)); | ||
|  |         put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); | ||
|  |         put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); | ||
|  |         put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); | ||
|  |         put_byte(s, (Byte)(strm->total_in & 0xff)); | ||
|  |         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); | ||
|  |         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); | ||
|  |         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); | ||
|  |     } | ||
|  |     else | ||
|  | #endif
 | ||
|  |     { | ||
|  |         putShortMSB(s, (uInt)(strm->adler >> 16)); | ||
|  |         putShortMSB(s, (uInt)(strm->adler & 0xffff)); | ||
|  |     } | ||
|  |     flush_pending(strm); | ||
|  |     /* If avail_out is zero, the application will call deflate again
 | ||
|  |      * to flush the rest. | ||
|  |      */ | ||
|  |     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ | ||
|  |     return s->pending != 0 ? Z_OK : Z_STREAM_END; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | int ZEXPORT deflateEnd (strm) | ||
|  |     z_streamp strm; | ||
|  | { | ||
|  |     int status; | ||
|  | 
 | ||
|  |     if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | ||
|  | 
 | ||
|  |     status = strm->state->status; | ||
|  | 
 | ||
|  |     /* Deallocate in reverse order of allocations: */ | ||
|  |     TRY_FREE(strm, strm->state->pending_buf); | ||
|  |     TRY_FREE(strm, strm->state->head); | ||
|  |     TRY_FREE(strm, strm->state->prev); | ||
|  |     TRY_FREE(strm, strm->state->window); | ||
|  | 
 | ||
|  |     ZFREE(strm, strm->state); | ||
|  |     strm->state = Z_NULL; | ||
|  | 
 | ||
|  |     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================
 | ||
|  |  * Copy the source state to the destination state. | ||
|  |  * To simplify the source, this is not supported for 16-bit MSDOS (which | ||
|  |  * doesn't have enough memory anyway to duplicate compression states). | ||
|  |  */ | ||
|  | int ZEXPORT deflateCopy (dest, source) | ||
|  |     z_streamp dest; | ||
|  |     z_streamp source; | ||
|  | { | ||
|  | #ifdef MAXSEG_64K
 | ||
|  |     return Z_STREAM_ERROR; | ||
|  | #else
 | ||
|  |     deflate_state *ds; | ||
|  |     deflate_state *ss; | ||
|  |     ushf *overlay; | ||
|  | 
 | ||
|  | 
 | ||
|  |     if (deflateStateCheck(source) || dest == Z_NULL) { | ||
|  |         return Z_STREAM_ERROR; | ||
|  |     } | ||
|  | 
 | ||
|  |     ss = source->state; | ||
|  | 
 | ||
|  |     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); | ||
|  | 
 | ||
|  |     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); | ||
|  |     if (ds == Z_NULL) return Z_MEM_ERROR; | ||
|  |     dest->state = (struct internal_state FAR *) ds; | ||
|  |     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); | ||
|  |     ds->strm = dest; | ||
|  | 
 | ||
|  |     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); | ||
|  |     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos)); | ||
|  |     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos)); | ||
|  |     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); | ||
|  |     ds->pending_buf = (uchf *) overlay; | ||
|  | 
 | ||
|  |     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || | ||
|  |         ds->pending_buf == Z_NULL) { | ||
|  |         deflateEnd (dest); | ||
|  |         return Z_MEM_ERROR; | ||
|  |     } | ||
|  |     /* following zmemcpy do not work for 16-bit MSDOS */ | ||
|  |     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); | ||
|  |     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); | ||
|  |     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); | ||
|  |     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); | ||
|  | 
 | ||
|  |     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); | ||
|  |     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); | ||
|  |     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; | ||
|  | 
 | ||
|  |     ds->l_desc.dyn_tree = ds->dyn_ltree; | ||
|  |     ds->d_desc.dyn_tree = ds->dyn_dtree; | ||
|  |     ds->bl_desc.dyn_tree = ds->bl_tree; | ||
|  | 
 | ||
|  |     return Z_OK; | ||
|  | #endif /* MAXSEG_64K */
 | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Read a new buffer from the current input stream, update the adler32 | ||
|  |  * and total number of bytes read.  All deflate() input goes through | ||
|  |  * this function so some applications may wish to modify it to avoid | ||
|  |  * allocating a large strm->next_in buffer and copying from it. | ||
|  |  * (See also flush_pending()). | ||
|  |  */ | ||
|  | local unsigned read_buf(strm, buf, size) | ||
|  |     z_streamp strm; | ||
|  |     Bytef *buf; | ||
|  |     unsigned size; | ||
|  | { | ||
|  |     unsigned len = strm->avail_in; | ||
|  | 
 | ||
|  |     if (len > size) len = size; | ||
|  |     if (len == 0) return 0; | ||
|  | 
 | ||
|  |     strm->avail_in  -= len; | ||
|  | 
 | ||
|  |     zmemcpy(buf, strm->next_in, len); | ||
|  |     if (strm->state->wrap == 1) { | ||
|  |         strm->adler = adler32(strm->adler, buf, len); | ||
|  |     } | ||
|  | #ifdef GZIP
 | ||
|  |     else if (strm->state->wrap == 2) { | ||
|  |         strm->adler = crc32(strm->adler, buf, len); | ||
|  |     } | ||
|  | #endif
 | ||
|  |     strm->next_in  += len; | ||
|  |     strm->total_in += len; | ||
|  | 
 | ||
|  |     return len; | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Initialize the "longest match" routines for a new zlib stream | ||
|  |  */ | ||
|  | local void lm_init (s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     s->window_size = (ulg)2L*s->w_size; | ||
|  | 
 | ||
|  |     CLEAR_HASH(s); | ||
|  | 
 | ||
|  |     /* Set the default configuration parameters:
 | ||
|  |      */ | ||
|  |     s->max_lazy_match   = configuration_table[s->level].max_lazy; | ||
|  |     s->good_match       = configuration_table[s->level].good_length; | ||
|  |     s->nice_match       = configuration_table[s->level].nice_length; | ||
|  |     s->max_chain_length = configuration_table[s->level].max_chain; | ||
|  | 
 | ||
|  |     s->strstart = 0; | ||
|  |     s->block_start = 0L; | ||
|  |     s->lookahead = 0; | ||
|  |     s->insert = 0; | ||
|  |     s->match_length = s->prev_length = MIN_MATCH-1; | ||
|  |     s->match_available = 0; | ||
|  |     s->ins_h = 0; | ||
|  | #ifndef FASTEST
 | ||
|  | #ifdef ASMV
 | ||
|  |     match_init(); /* initialize the asm code */ | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | #ifndef FASTEST
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Set match_start to the longest match starting at the given string and | ||
|  |  * return its length. Matches shorter or equal to prev_length are discarded, | ||
|  |  * in which case the result is equal to prev_length and match_start is | ||
|  |  * garbage. | ||
|  |  * IN assertions: cur_match is the head of the hash chain for the current | ||
|  |  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | ||
|  |  * OUT assertion: the match length is not greater than s->lookahead. | ||
|  |  */ | ||
|  | #ifndef ASMV
 | ||
|  | /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
 | ||
|  |  * match.S. The code will be functionally equivalent. | ||
|  |  */ | ||
|  | local uInt longest_match(s, cur_match) | ||
|  |     deflate_state *s; | ||
|  |     IPos cur_match;                             /* current match */ | ||
|  | { | ||
|  |     unsigned chain_length = s->max_chain_length;/* max hash chain length */ | ||
|  |     register Bytef *scan = s->window + s->strstart; /* current string */ | ||
|  |     register Bytef *match;                      /* matched string */ | ||
|  |     register int len;                           /* length of current match */ | ||
|  |     int best_len = (int)s->prev_length;         /* best match length so far */ | ||
|  |     int nice_match = s->nice_match;             /* stop if match long enough */ | ||
|  |     IPos limit = s->strstart > (IPos)MAX_DIST(s) ? | ||
|  |         s->strstart - (IPos)MAX_DIST(s) : NIL; | ||
|  |     /* Stop when cur_match becomes <= limit. To simplify the code,
 | ||
|  |      * we prevent matches with the string of window index 0. | ||
|  |      */ | ||
|  |     Posf *prev = s->prev; | ||
|  |     uInt wmask = s->w_mask; | ||
|  | 
 | ||
|  | #ifdef UNALIGNED_OK
 | ||
|  |     /* Compare two bytes at a time. Note: this is not always beneficial.
 | ||
|  |      * Try with and without -DUNALIGNED_OK to check. | ||
|  |      */ | ||
|  |     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; | ||
|  |     register ush scan_start = *(ushf*)scan; | ||
|  |     register ush scan_end   = *(ushf*)(scan+best_len-1); | ||
|  | #else
 | ||
|  |     register Bytef *strend = s->window + s->strstart + MAX_MATCH; | ||
|  |     register Byte scan_end1  = scan[best_len-1]; | ||
|  |     register Byte scan_end   = scan[best_len]; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 | ||
|  |      * It is easy to get rid of this optimization if necessary. | ||
|  |      */ | ||
|  |     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | ||
|  | 
 | ||
|  |     /* Do not waste too much time if we already have a good match: */ | ||
|  |     if (s->prev_length >= s->good_match) { | ||
|  |         chain_length >>= 2; | ||
|  |     } | ||
|  |     /* Do not look for matches beyond the end of the input. This is necessary
 | ||
|  |      * to make deflate deterministic. | ||
|  |      */ | ||
|  |     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead; | ||
|  | 
 | ||
|  |     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | ||
|  | 
 | ||
|  |     do { | ||
|  |         Assert(cur_match < s->strstart, "no future"); | ||
|  |         match = s->window + cur_match; | ||
|  | 
 | ||
|  |         /* Skip to next match if the match length cannot increase
 | ||
|  |          * or if the match length is less than 2.  Note that the checks below | ||
|  |          * for insufficient lookahead only occur occasionally for performance | ||
|  |          * reasons.  Therefore uninitialized memory will be accessed, and | ||
|  |          * conditional jumps will be made that depend on those values. | ||
|  |          * However the length of the match is limited to the lookahead, so | ||
|  |          * the output of deflate is not affected by the uninitialized values. | ||
|  |          */ | ||
|  | #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
 | ||
|  |         /* This code assumes sizeof(unsigned short) == 2. Do not use
 | ||
|  |          * UNALIGNED_OK if your compiler uses a different size. | ||
|  |          */ | ||
|  |         if (*(ushf*)(match+best_len-1) != scan_end || | ||
|  |             *(ushf*)match != scan_start) continue; | ||
|  | 
 | ||
|  |         /* It is not necessary to compare scan[2] and match[2] since they are
 | ||
|  |          * always equal when the other bytes match, given that the hash keys | ||
|  |          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at | ||
|  |          * strstart+3, +5, ... up to strstart+257. We check for insufficient | ||
|  |          * lookahead only every 4th comparison; the 128th check will be made | ||
|  |          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is | ||
|  |          * necessary to put more guard bytes at the end of the window, or | ||
|  |          * to check more often for insufficient lookahead. | ||
|  |          */ | ||
|  |         Assert(scan[2] == match[2], "scan[2]?"); | ||
|  |         scan++, match++; | ||
|  |         do { | ||
|  |         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && | ||
|  |                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | ||
|  |                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | ||
|  |                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | ||
|  |                  scan < strend); | ||
|  |         /* The funny "do {}" generates better code on most compilers */ | ||
|  | 
 | ||
|  |         /* Here, scan <= window+strstart+257 */ | ||
|  |         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | ||
|  |         if (*scan == *match) scan++; | ||
|  | 
 | ||
|  |         len = (MAX_MATCH - 1) - (int)(strend-scan); | ||
|  |         scan = strend - (MAX_MATCH-1); | ||
|  | 
 | ||
|  | #else /* UNALIGNED_OK */
 | ||
|  | 
 | ||
|  |         if (match[best_len]   != scan_end  || | ||
|  |             match[best_len-1] != scan_end1 || | ||
|  |             *match            != *scan     || | ||
|  |             *++match          != scan[1])      continue; | ||
|  | 
 | ||
|  |         /* The check at best_len-1 can be removed because it will be made
 | ||
|  |          * again later. (This heuristic is not always a win.) | ||
|  |          * It is not necessary to compare scan[2] and match[2] since they | ||
|  |          * are always equal when the other bytes match, given that | ||
|  |          * the hash keys are equal and that HASH_BITS >= 8. | ||
|  |          */ | ||
|  |         scan += 2, match++; | ||
|  |         Assert(*scan == *match, "match[2]?"); | ||
|  | 
 | ||
|  |         /* We check for insufficient lookahead only every 8th comparison;
 | ||
|  |          * the 256th check will be made at strstart+258. | ||
|  |          */ | ||
|  |         do { | ||
|  |         } while (*++scan == *++match && *++scan == *++match && | ||
|  |                  *++scan == *++match && *++scan == *++match && | ||
|  |                  *++scan == *++match && *++scan == *++match && | ||
|  |                  *++scan == *++match && *++scan == *++match && | ||
|  |                  scan < strend); | ||
|  | 
 | ||
|  |         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | ||
|  | 
 | ||
|  |         len = MAX_MATCH - (int)(strend - scan); | ||
|  |         scan = strend - MAX_MATCH; | ||
|  | 
 | ||
|  | #endif /* UNALIGNED_OK */
 | ||
|  | 
 | ||
|  |         if (len > best_len) { | ||
|  |             s->match_start = cur_match; | ||
|  |             best_len = len; | ||
|  |             if (len >= nice_match) break; | ||
|  | #ifdef UNALIGNED_OK
 | ||
|  |             scan_end = *(ushf*)(scan+best_len-1); | ||
|  | #else
 | ||
|  |             scan_end1  = scan[best_len-1]; | ||
|  |             scan_end   = scan[best_len]; | ||
|  | #endif
 | ||
|  |         } | ||
|  |     } while ((cur_match = prev[cur_match & wmask]) > limit | ||
|  |              && --chain_length != 0); | ||
|  | 
 | ||
|  |     if ((uInt)best_len <= s->lookahead) return (uInt)best_len; | ||
|  |     return s->lookahead; | ||
|  | } | ||
|  | #endif /* ASMV */
 | ||
|  | 
 | ||
|  | #else /* FASTEST */
 | ||
|  | 
 | ||
|  | /* ---------------------------------------------------------------------------
 | ||
|  |  * Optimized version for FASTEST only | ||
|  |  */ | ||
|  | local uInt longest_match(s, cur_match) | ||
|  |     deflate_state *s; | ||
|  |     IPos cur_match;                             /* current match */ | ||
|  | { | ||
|  |     register Bytef *scan = s->window + s->strstart; /* current string */ | ||
|  |     register Bytef *match;                       /* matched string */ | ||
|  |     register int len;                           /* length of current match */ | ||
|  |     register Bytef *strend = s->window + s->strstart + MAX_MATCH; | ||
|  | 
 | ||
|  |     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 | ||
|  |      * It is easy to get rid of this optimization if necessary. | ||
|  |      */ | ||
|  |     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | ||
|  | 
 | ||
|  |     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | ||
|  | 
 | ||
|  |     Assert(cur_match < s->strstart, "no future"); | ||
|  | 
 | ||
|  |     match = s->window + cur_match; | ||
|  | 
 | ||
|  |     /* Return failure if the match length is less than 2:
 | ||
|  |      */ | ||
|  |     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; | ||
|  | 
 | ||
|  |     /* The check at best_len-1 can be removed because it will be made
 | ||
|  |      * again later. (This heuristic is not always a win.) | ||
|  |      * It is not necessary to compare scan[2] and match[2] since they | ||
|  |      * are always equal when the other bytes match, given that | ||
|  |      * the hash keys are equal and that HASH_BITS >= 8. | ||
|  |      */ | ||
|  |     scan += 2, match += 2; | ||
|  |     Assert(*scan == *match, "match[2]?"); | ||
|  | 
 | ||
|  |     /* We check for insufficient lookahead only every 8th comparison;
 | ||
|  |      * the 256th check will be made at strstart+258. | ||
|  |      */ | ||
|  |     do { | ||
|  |     } while (*++scan == *++match && *++scan == *++match && | ||
|  |              *++scan == *++match && *++scan == *++match && | ||
|  |              *++scan == *++match && *++scan == *++match && | ||
|  |              *++scan == *++match && *++scan == *++match && | ||
|  |              scan < strend); | ||
|  | 
 | ||
|  |     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | ||
|  | 
 | ||
|  |     len = MAX_MATCH - (int)(strend - scan); | ||
|  | 
 | ||
|  |     if (len < MIN_MATCH) return MIN_MATCH - 1; | ||
|  | 
 | ||
|  |     s->match_start = cur_match; | ||
|  |     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; | ||
|  | } | ||
|  | 
 | ||
|  | #endif /* FASTEST */
 | ||
|  | 
 | ||
|  | #ifdef ZLIB_DEBUG
 | ||
|  | 
 | ||
|  | #define EQUAL 0
 | ||
|  | /* result of memcmp for equal strings */ | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Check that the match at match_start is indeed a match. | ||
|  |  */ | ||
|  | local void check_match(s, start, match, length) | ||
|  |     deflate_state *s; | ||
|  |     IPos start, match; | ||
|  |     int length; | ||
|  | { | ||
|  |     /* check that the match is indeed a match */ | ||
|  |     if (zmemcmp(s->window + match, | ||
|  |                 s->window + start, length) != EQUAL) { | ||
|  |         fprintf(stderr, " start %u, match %u, length %d\n", | ||
|  |                 start, match, length); | ||
|  |         do { | ||
|  |             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); | ||
|  |         } while (--length != 0); | ||
|  |         z_error("invalid match"); | ||
|  |     } | ||
|  |     if (z_verbose > 1) { | ||
|  |         fprintf(stderr,"\\[%d,%d]", start-match, length); | ||
|  |         do { putc(s->window[start++], stderr); } while (--length != 0); | ||
|  |     } | ||
|  | } | ||
|  | #else
 | ||
|  | #  define check_match(s, start, match, length)
 | ||
|  | #endif /* ZLIB_DEBUG */
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Fill the window when the lookahead becomes insufficient. | ||
|  |  * Updates strstart and lookahead. | ||
|  |  * | ||
|  |  * IN assertion: lookahead < MIN_LOOKAHEAD | ||
|  |  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | ||
|  |  *    At least one byte has been read, or avail_in == 0; reads are | ||
|  |  *    performed for at least two bytes (required for the zip translate_eol | ||
|  |  *    option -- not supported here). | ||
|  |  */ | ||
|  | local void fill_window(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     unsigned n; | ||
|  |     unsigned more;    /* Amount of free space at the end of the window. */ | ||
|  |     uInt wsize = s->w_size; | ||
|  | 
 | ||
|  |     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); | ||
|  | 
 | ||
|  |     do { | ||
|  |         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); | ||
|  | 
 | ||
|  |         /* Deal with !@#$% 64K limit: */ | ||
|  |         if (sizeof(int) <= 2) { | ||
|  |             if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | ||
|  |                 more = wsize; | ||
|  | 
 | ||
|  |             } else if (more == (unsigned)(-1)) { | ||
|  |                 /* Very unlikely, but possible on 16 bit machine if
 | ||
|  |                  * strstart == 0 && lookahead == 1 (input done a byte at time) | ||
|  |                  */ | ||
|  |                 more--; | ||
|  |             } | ||
|  |         } | ||
|  | 
 | ||
|  |         /* If the window is almost full and there is insufficient lookahead,
 | ||
|  |          * move the upper half to the lower one to make room in the upper half. | ||
|  |          */ | ||
|  |         if (s->strstart >= wsize+MAX_DIST(s)) { | ||
|  | 
 | ||
|  |             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more); | ||
|  |             s->match_start -= wsize; | ||
|  |             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */ | ||
|  |             s->block_start -= (long) wsize; | ||
|  |             slide_hash(s); | ||
|  |             more += wsize; | ||
|  |         } | ||
|  |         if (s->strm->avail_in == 0) break; | ||
|  | 
 | ||
|  |         /* If there was no sliding:
 | ||
|  |          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | ||
|  |          *    more == window_size - lookahead - strstart | ||
|  |          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | ||
|  |          * => more >= window_size - 2*WSIZE + 2 | ||
|  |          * In the BIG_MEM or MMAP case (not yet supported), | ||
|  |          *   window_size == input_size + MIN_LOOKAHEAD  && | ||
|  |          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | ||
|  |          * Otherwise, window_size == 2*WSIZE so more >= 2. | ||
|  |          * If there was sliding, more >= WSIZE. So in all cases, more >= 2. | ||
|  |          */ | ||
|  |         Assert(more >= 2, "more < 2"); | ||
|  | 
 | ||
|  |         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); | ||
|  |         s->lookahead += n; | ||
|  | 
 | ||
|  |         /* Initialize the hash value now that we have some input: */ | ||
|  |         if (s->lookahead + s->insert >= MIN_MATCH) { | ||
|  |             uInt str = s->strstart - s->insert; | ||
|  |             s->ins_h = s->window[str]; | ||
|  |             UPDATE_HASH(s, s->ins_h, s->window[str + 1]); | ||
|  | #if MIN_MATCH != 3
 | ||
|  |             Call UPDATE_HASH() MIN_MATCH-3 more times | ||
|  | #endif
 | ||
|  |             while (s->insert) { | ||
|  |                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); | ||
|  | #ifndef FASTEST
 | ||
|  |                 s->prev[str & s->w_mask] = s->head[s->ins_h]; | ||
|  | #endif
 | ||
|  |                 s->head[s->ins_h] = (Pos)str; | ||
|  |                 str++; | ||
|  |                 s->insert--; | ||
|  |                 if (s->lookahead + s->insert < MIN_MATCH) | ||
|  |                     break; | ||
|  |             } | ||
|  |         } | ||
|  |         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 | ||
|  |          * but this is not important since only literal bytes will be emitted. | ||
|  |          */ | ||
|  | 
 | ||
|  |     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); | ||
|  | 
 | ||
|  |     /* If the WIN_INIT bytes after the end of the current data have never been
 | ||
|  |      * written, then zero those bytes in order to avoid memory check reports of | ||
|  |      * the use of uninitialized (or uninitialised as Julian writes) bytes by | ||
|  |      * the longest match routines.  Update the high water mark for the next | ||
|  |      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match | ||
|  |      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. | ||
|  |      */ | ||
|  |     if (s->high_water < s->window_size) { | ||
|  |         ulg curr = s->strstart + (ulg)(s->lookahead); | ||
|  |         ulg init; | ||
|  | 
 | ||
|  |         if (s->high_water < curr) { | ||
|  |             /* Previous high water mark below current data -- zero WIN_INIT
 | ||
|  |              * bytes or up to end of window, whichever is less. | ||
|  |              */ | ||
|  |             init = s->window_size - curr; | ||
|  |             if (init > WIN_INIT) | ||
|  |                 init = WIN_INIT; | ||
|  |             zmemzero(s->window + curr, (unsigned)init); | ||
|  |             s->high_water = curr + init; | ||
|  |         } | ||
|  |         else if (s->high_water < (ulg)curr + WIN_INIT) { | ||
|  |             /* High water mark at or above current data, but below current data
 | ||
|  |              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up | ||
|  |              * to end of window, whichever is less. | ||
|  |              */ | ||
|  |             init = (ulg)curr + WIN_INIT - s->high_water; | ||
|  |             if (init > s->window_size - s->high_water) | ||
|  |                 init = s->window_size - s->high_water; | ||
|  |             zmemzero(s->window + s->high_water, (unsigned)init); | ||
|  |             s->high_water += init; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | ||
|  |            "not enough room for search"); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Flush the current block, with given end-of-file flag. | ||
|  |  * IN assertion: strstart is set to the end of the current match. | ||
|  |  */ | ||
|  | #define FLUSH_BLOCK_ONLY(s, last) { \
 | ||
|  |    _tr_flush_block(s, (s->block_start >= 0L ? \ | ||
|  |                    (charf *)&s->window[(unsigned)s->block_start] : \ | ||
|  |                    (charf *)Z_NULL), \ | ||
|  |                 (ulg)((long)s->strstart - s->block_start), \ | ||
|  |                 (last)); \ | ||
|  |    s->block_start = s->strstart; \ | ||
|  |    flush_pending(s->strm); \ | ||
|  |    Tracev((stderr,"[FLUSH]")); \ | ||
|  | } | ||
|  | 
 | ||
|  | /* Same but force premature exit if necessary. */ | ||
|  | #define FLUSH_BLOCK(s, last) { \
 | ||
|  |    FLUSH_BLOCK_ONLY(s, last); \ | ||
|  |    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ | ||
|  | } | ||
|  | 
 | ||
|  | /* Maximum stored block length in deflate format (not including header). */ | ||
|  | #define MAX_STORED 65535
 | ||
|  | 
 | ||
|  | /* Minimum of a and b. */ | ||
|  | #define MIN(a, b) ((a) > (b) ? (b) : (a))
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Copy without compression as much as possible from the input stream, return | ||
|  |  * the current block state. | ||
|  |  * | ||
|  |  * In case deflateParams() is used to later switch to a non-zero compression | ||
|  |  * level, s->matches (otherwise unused when storing) keeps track of the number | ||
|  |  * of hash table slides to perform. If s->matches is 1, then one hash table | ||
|  |  * slide will be done when switching. If s->matches is 2, the maximum value | ||
|  |  * allowed here, then the hash table will be cleared, since two or more slides | ||
|  |  * is the same as a clear. | ||
|  |  * | ||
|  |  * deflate_stored() is written to minimize the number of times an input byte is | ||
|  |  * copied. It is most efficient with large input and output buffers, which | ||
|  |  * maximizes the opportunites to have a single copy from next_in to next_out. | ||
|  |  */ | ||
|  | local block_state deflate_stored(s, flush) | ||
|  |     deflate_state *s; | ||
|  |     int flush; | ||
|  | { | ||
|  |     /* Smallest worthy block size when not flushing or finishing. By default
 | ||
|  |      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For | ||
|  |      * large input and output buffers, the stored block size will be larger. | ||
|  |      */ | ||
|  |     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); | ||
|  | 
 | ||
|  |     /* Copy as many min_block or larger stored blocks directly to next_out as
 | ||
|  |      * possible. If flushing, copy the remaining available input to next_out as | ||
|  |      * stored blocks, if there is enough space. | ||
|  |      */ | ||
|  |     unsigned len, left, have, last = 0; | ||
|  |     unsigned used = s->strm->avail_in; | ||
|  |     do { | ||
|  |         /* Set len to the maximum size block that we can copy directly with the
 | ||
|  |          * available input data and output space. Set left to how much of that | ||
|  |          * would be copied from what's left in the window. | ||
|  |          */ | ||
|  |         len = MAX_STORED;       /* maximum deflate stored block length */ | ||
|  |         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */ | ||
|  |         if (s->strm->avail_out < have)          /* need room for header */ | ||
|  |             break; | ||
|  |             /* maximum stored block length that will fit in avail_out: */ | ||
|  |         have = s->strm->avail_out - have; | ||
|  |         left = s->strstart - s->block_start;    /* bytes left in window */ | ||
|  |         if (len > (ulg)left + s->strm->avail_in) | ||
|  |             len = left + s->strm->avail_in;     /* limit len to the input */ | ||
|  |         if (len > have) | ||
|  |             len = have;                         /* limit len to the output */ | ||
|  | 
 | ||
|  |         /* If the stored block would be less than min_block in length, or if
 | ||
|  |          * unable to copy all of the available input when flushing, then try | ||
|  |          * copying to the window and the pending buffer instead. Also don't | ||
|  |          * write an empty block when flushing -- deflate() does that. | ||
|  |          */ | ||
|  |         if (len < min_block && ((len == 0 && flush != Z_FINISH) || | ||
|  |                                 flush == Z_NO_FLUSH || | ||
|  |                                 len != left + s->strm->avail_in)) | ||
|  |             break; | ||
|  | 
 | ||
|  |         /* Make a dummy stored block in pending to get the header bytes,
 | ||
|  |          * including any pending bits. This also updates the debugging counts. | ||
|  |          */ | ||
|  |         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; | ||
|  |         _tr_stored_block(s, (char *)0, 0L, last); | ||
|  | 
 | ||
|  |         /* Replace the lengths in the dummy stored block with len. */ | ||
|  |         s->pending_buf[s->pending - 4] = len; | ||
|  |         s->pending_buf[s->pending - 3] = len >> 8; | ||
|  |         s->pending_buf[s->pending - 2] = ~len; | ||
|  |         s->pending_buf[s->pending - 1] = ~len >> 8; | ||
|  | 
 | ||
|  |         /* Write the stored block header bytes. */ | ||
|  |         flush_pending(s->strm); | ||
|  | 
 | ||
|  | #ifdef ZLIB_DEBUG
 | ||
|  |         /* Update debugging counts for the data about to be copied. */ | ||
|  |         s->compressed_len += len << 3; | ||
|  |         s->bits_sent += len << 3; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |         /* Copy uncompressed bytes from the window to next_out. */ | ||
|  |         if (left) { | ||
|  |             if (left > len) | ||
|  |                 left = len; | ||
|  |             zmemcpy(s->strm->next_out, s->window + s->block_start, left); | ||
|  |             s->strm->next_out += left; | ||
|  |             s->strm->avail_out -= left; | ||
|  |             s->strm->total_out += left; | ||
|  |             s->block_start += left; | ||
|  |             len -= left; | ||
|  |         } | ||
|  | 
 | ||
|  |         /* Copy uncompressed bytes directly from next_in to next_out, updating
 | ||
|  |          * the check value. | ||
|  |          */ | ||
|  |         if (len) { | ||
|  |             read_buf(s->strm, s->strm->next_out, len); | ||
|  |             s->strm->next_out += len; | ||
|  |             s->strm->avail_out -= len; | ||
|  |             s->strm->total_out += len; | ||
|  |         } | ||
|  |     } while (last == 0); | ||
|  | 
 | ||
|  |     /* Update the sliding window with the last s->w_size bytes of the copied
 | ||
|  |      * data, or append all of the copied data to the existing window if less | ||
|  |      * than s->w_size bytes were copied. Also update the number of bytes to | ||
|  |      * insert in the hash tables, in the event that deflateParams() switches to | ||
|  |      * a non-zero compression level. | ||
|  |      */ | ||
|  |     used -= s->strm->avail_in;      /* number of input bytes directly copied */ | ||
|  |     if (used) { | ||
|  |         /* If any input was used, then no unused input remains in the window,
 | ||
|  |          * therefore s->block_start == s->strstart. | ||
|  |          */ | ||
|  |         if (used >= s->w_size) {    /* supplant the previous history */ | ||
|  |             s->matches = 2;         /* clear hash */ | ||
|  |             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size); | ||
|  |             s->strstart = s->w_size; | ||
|  |         } | ||
|  |         else { | ||
|  |             if (s->window_size - s->strstart <= used) { | ||
|  |                 /* Slide the window down. */ | ||
|  |                 s->strstart -= s->w_size; | ||
|  |                 zmemcpy(s->window, s->window + s->w_size, s->strstart); | ||
|  |                 if (s->matches < 2) | ||
|  |                     s->matches++;   /* add a pending slide_hash() */ | ||
|  |             } | ||
|  |             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used); | ||
|  |             s->strstart += used; | ||
|  |         } | ||
|  |         s->block_start = s->strstart; | ||
|  |         s->insert += MIN(used, s->w_size - s->insert); | ||
|  |     } | ||
|  |     if (s->high_water < s->strstart) | ||
|  |         s->high_water = s->strstart; | ||
|  | 
 | ||
|  |     /* If the last block was written to next_out, then done. */ | ||
|  |     if (last) | ||
|  |         return finish_done; | ||
|  | 
 | ||
|  |     /* If flushing and all input has been consumed, then done. */ | ||
|  |     if (flush != Z_NO_FLUSH && flush != Z_FINISH && | ||
|  |         s->strm->avail_in == 0 && (long)s->strstart == s->block_start) | ||
|  |         return block_done; | ||
|  | 
 | ||
|  |     /* Fill the window with any remaining input. */ | ||
|  |     have = s->window_size - s->strstart - 1; | ||
|  |     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) { | ||
|  |         /* Slide the window down. */ | ||
|  |         s->block_start -= s->w_size; | ||
|  |         s->strstart -= s->w_size; | ||
|  |         zmemcpy(s->window, s->window + s->w_size, s->strstart); | ||
|  |         if (s->matches < 2) | ||
|  |             s->matches++;           /* add a pending slide_hash() */ | ||
|  |         have += s->w_size;          /* more space now */ | ||
|  |     } | ||
|  |     if (have > s->strm->avail_in) | ||
|  |         have = s->strm->avail_in; | ||
|  |     if (have) { | ||
|  |         read_buf(s->strm, s->window + s->strstart, have); | ||
|  |         s->strstart += have; | ||
|  |     } | ||
|  |     if (s->high_water < s->strstart) | ||
|  |         s->high_water = s->strstart; | ||
|  | 
 | ||
|  |     /* There was not enough avail_out to write a complete worthy or flushed
 | ||
|  |      * stored block to next_out. Write a stored block to pending instead, if we | ||
|  |      * have enough input for a worthy block, or if flushing and there is enough | ||
|  |      * room for the remaining input as a stored block in the pending buffer. | ||
|  |      */ | ||
|  |     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */ | ||
|  |         /* maximum stored block length that will fit in pending: */ | ||
|  |     have = MIN(s->pending_buf_size - have, MAX_STORED); | ||
|  |     min_block = MIN(have, s->w_size); | ||
|  |     left = s->strstart - s->block_start; | ||
|  |     if (left >= min_block || | ||
|  |         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && | ||
|  |          s->strm->avail_in == 0 && left <= have)) { | ||
|  |         len = MIN(left, have); | ||
|  |         last = flush == Z_FINISH && s->strm->avail_in == 0 && | ||
|  |                len == left ? 1 : 0; | ||
|  |         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last); | ||
|  |         s->block_start += len; | ||
|  |         flush_pending(s->strm); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* We've done all we can with the available input and output. */ | ||
|  |     return last ? finish_started : need_more; | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Compress as much as possible from the input stream, return the current | ||
|  |  * block state. | ||
|  |  * This function does not perform lazy evaluation of matches and inserts | ||
|  |  * new strings in the dictionary only for unmatched strings or for short | ||
|  |  * matches. It is used only for the fast compression options. | ||
|  |  */ | ||
|  | local block_state deflate_fast(s, flush) | ||
|  |     deflate_state *s; | ||
|  |     int flush; | ||
|  | { | ||
|  |     IPos hash_head;       /* head of the hash chain */ | ||
|  |     int bflush;           /* set if current block must be flushed */ | ||
|  | 
 | ||
|  |     for (;;) { | ||
|  |         /* Make sure that we always have enough lookahead, except
 | ||
|  |          * at the end of the input file. We need MAX_MATCH bytes | ||
|  |          * for the next match, plus MIN_MATCH bytes to insert the | ||
|  |          * string following the next match. | ||
|  |          */ | ||
|  |         if (s->lookahead < MIN_LOOKAHEAD) { | ||
|  |             fill_window(s); | ||
|  |             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | ||
|  |                 return need_more; | ||
|  |             } | ||
|  |             if (s->lookahead == 0) break; /* flush the current block */ | ||
|  |         } | ||
|  | 
 | ||
|  |         /* Insert the string window[strstart .. strstart+2] in the
 | ||
|  |          * dictionary, and set hash_head to the head of the hash chain: | ||
|  |          */ | ||
|  |         hash_head = NIL; | ||
|  |         if (s->lookahead >= MIN_MATCH) { | ||
|  |             INSERT_STRING(s, s->strstart, hash_head); | ||
|  |         } | ||
|  | 
 | ||
|  |         /* Find the longest match, discarding those <= prev_length.
 | ||
|  |          * At this point we have always match_length < MIN_MATCH | ||
|  |          */ | ||
|  |         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { | ||
|  |             /* To simplify the code, we prevent matches with the string
 | ||
|  |              * of window index 0 (in particular we have to avoid a match | ||
|  |              * of the string with itself at the start of the input file). | ||
|  |              */ | ||
|  |             s->match_length = longest_match (s, hash_head); | ||
|  |             /* longest_match() sets match_start */ | ||
|  |         } | ||
|  |         if (s->match_length >= MIN_MATCH) { | ||
|  |             check_match(s, s->strstart, s->match_start, s->match_length); | ||
|  | 
 | ||
|  |             _tr_tally_dist(s, s->strstart - s->match_start, | ||
|  |                            s->match_length - MIN_MATCH, bflush); | ||
|  | 
 | ||
|  |             s->lookahead -= s->match_length; | ||
|  | 
 | ||
|  |             /* Insert new strings in the hash table only if the match length
 | ||
|  |              * is not too large. This saves time but degrades compression. | ||
|  |              */ | ||
|  | #ifndef FASTEST
 | ||
|  |             if (s->match_length <= s->max_insert_length && | ||
|  |                 s->lookahead >= MIN_MATCH) { | ||
|  |                 s->match_length--; /* string at strstart already in table */ | ||
|  |                 do { | ||
|  |                     s->strstart++; | ||
|  |                     INSERT_STRING(s, s->strstart, hash_head); | ||
|  |                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 | ||
|  |                      * always MIN_MATCH bytes ahead. | ||
|  |                      */ | ||
|  |                 } while (--s->match_length != 0); | ||
|  |                 s->strstart++; | ||
|  |             } else | ||
|  | #endif
 | ||
|  |             { | ||
|  |                 s->strstart += s->match_length; | ||
|  |                 s->match_length = 0; | ||
|  |                 s->ins_h = s->window[s->strstart]; | ||
|  |                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); | ||
|  | #if MIN_MATCH != 3
 | ||
|  |                 Call UPDATE_HASH() MIN_MATCH-3 more times | ||
|  | #endif
 | ||
|  |                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 | ||
|  |                  * matter since it will be recomputed at next deflate call. | ||
|  |                  */ | ||
|  |             } | ||
|  |         } else { | ||
|  |             /* No match, output a literal byte */ | ||
|  |             Tracevv((stderr,"%c", s->window[s->strstart])); | ||
|  |             _tr_tally_lit (s, s->window[s->strstart], bflush); | ||
|  |             s->lookahead--; | ||
|  |             s->strstart++; | ||
|  |         } | ||
|  |         if (bflush) FLUSH_BLOCK(s, 0); | ||
|  |     } | ||
|  |     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; | ||
|  |     if (flush == Z_FINISH) { | ||
|  |         FLUSH_BLOCK(s, 1); | ||
|  |         return finish_done; | ||
|  |     } | ||
|  |     if (s->last_lit) | ||
|  |         FLUSH_BLOCK(s, 0); | ||
|  |     return block_done; | ||
|  | } | ||
|  | 
 | ||
|  | #ifndef FASTEST
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Same as above, but achieves better compression. We use a lazy | ||
|  |  * evaluation for matches: a match is finally adopted only if there is | ||
|  |  * no better match at the next window position. | ||
|  |  */ | ||
|  | local block_state deflate_slow(s, flush) | ||
|  |     deflate_state *s; | ||
|  |     int flush; | ||
|  | { | ||
|  |     IPos hash_head;          /* head of hash chain */ | ||
|  |     int bflush;              /* set if current block must be flushed */ | ||
|  | 
 | ||
|  |     /* Process the input block. */ | ||
|  |     for (;;) { | ||
|  |         /* Make sure that we always have enough lookahead, except
 | ||
|  |          * at the end of the input file. We need MAX_MATCH bytes | ||
|  |          * for the next match, plus MIN_MATCH bytes to insert the | ||
|  |          * string following the next match. | ||
|  |          */ | ||
|  |         if (s->lookahead < MIN_LOOKAHEAD) { | ||
|  |             fill_window(s); | ||
|  |             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | ||
|  |                 return need_more; | ||
|  |             } | ||
|  |             if (s->lookahead == 0) break; /* flush the current block */ | ||
|  |         } | ||
|  | 
 | ||
|  |         /* Insert the string window[strstart .. strstart+2] in the
 | ||
|  |          * dictionary, and set hash_head to the head of the hash chain: | ||
|  |          */ | ||
|  |         hash_head = NIL; | ||
|  |         if (s->lookahead >= MIN_MATCH) { | ||
|  |             INSERT_STRING(s, s->strstart, hash_head); | ||
|  |         } | ||
|  | 
 | ||
|  |         /* Find the longest match, discarding those <= prev_length.
 | ||
|  |          */ | ||
|  |         s->prev_length = s->match_length, s->prev_match = s->match_start; | ||
|  |         s->match_length = MIN_MATCH-1; | ||
|  | 
 | ||
|  |         if (hash_head != NIL && s->prev_length < s->max_lazy_match && | ||
|  |             s->strstart - hash_head <= MAX_DIST(s)) { | ||
|  |             /* To simplify the code, we prevent matches with the string
 | ||
|  |              * of window index 0 (in particular we have to avoid a match | ||
|  |              * of the string with itself at the start of the input file). | ||
|  |              */ | ||
|  |             s->match_length = longest_match (s, hash_head); | ||
|  |             /* longest_match() sets match_start */ | ||
|  | 
 | ||
|  |             if (s->match_length <= 5 && (s->strategy == Z_FILTERED | ||
|  | #if TOO_FAR <= 32767
 | ||
|  |                 || (s->match_length == MIN_MATCH && | ||
|  |                     s->strstart - s->match_start > TOO_FAR) | ||
|  | #endif
 | ||
|  |                 )) { | ||
|  | 
 | ||
|  |                 /* If prev_match is also MIN_MATCH, match_start is garbage
 | ||
|  |                  * but we will ignore the current match anyway. | ||
|  |                  */ | ||
|  |                 s->match_length = MIN_MATCH-1; | ||
|  |             } | ||
|  |         } | ||
|  |         /* If there was a match at the previous step and the current
 | ||
|  |          * match is not better, output the previous match: | ||
|  |          */ | ||
|  |         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { | ||
|  |             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; | ||
|  |             /* Do not insert strings in hash table beyond this. */ | ||
|  | 
 | ||
|  |             check_match(s, s->strstart-1, s->prev_match, s->prev_length); | ||
|  | 
 | ||
|  |             _tr_tally_dist(s, s->strstart -1 - s->prev_match, | ||
|  |                            s->prev_length - MIN_MATCH, bflush); | ||
|  | 
 | ||
|  |             /* Insert in hash table all strings up to the end of the match.
 | ||
|  |              * strstart-1 and strstart are already inserted. If there is not | ||
|  |              * enough lookahead, the last two strings are not inserted in | ||
|  |              * the hash table. | ||
|  |              */ | ||
|  |             s->lookahead -= s->prev_length-1; | ||
|  |             s->prev_length -= 2; | ||
|  |             do { | ||
|  |                 if (++s->strstart <= max_insert) { | ||
|  |                     INSERT_STRING(s, s->strstart, hash_head); | ||
|  |                 } | ||
|  |             } while (--s->prev_length != 0); | ||
|  |             s->match_available = 0; | ||
|  |             s->match_length = MIN_MATCH-1; | ||
|  |             s->strstart++; | ||
|  | 
 | ||
|  |             if (bflush) FLUSH_BLOCK(s, 0); | ||
|  | 
 | ||
|  |         } else if (s->match_available) { | ||
|  |             /* If there was no match at the previous position, output a
 | ||
|  |              * single literal. If there was a match but the current match | ||
|  |              * is longer, truncate the previous match to a single literal. | ||
|  |              */ | ||
|  |             Tracevv((stderr,"%c", s->window[s->strstart-1])); | ||
|  |             _tr_tally_lit(s, s->window[s->strstart-1], bflush); | ||
|  |             if (bflush) { | ||
|  |                 FLUSH_BLOCK_ONLY(s, 0); | ||
|  |             } | ||
|  |             s->strstart++; | ||
|  |             s->lookahead--; | ||
|  |             if (s->strm->avail_out == 0) return need_more; | ||
|  |         } else { | ||
|  |             /* There is no previous match to compare with, wait for
 | ||
|  |              * the next step to decide. | ||
|  |              */ | ||
|  |             s->match_available = 1; | ||
|  |             s->strstart++; | ||
|  |             s->lookahead--; | ||
|  |         } | ||
|  |     } | ||
|  |     Assert (flush != Z_NO_FLUSH, "no flush?"); | ||
|  |     if (s->match_available) { | ||
|  |         Tracevv((stderr,"%c", s->window[s->strstart-1])); | ||
|  |         _tr_tally_lit(s, s->window[s->strstart-1], bflush); | ||
|  |         s->match_available = 0; | ||
|  |     } | ||
|  |     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; | ||
|  |     if (flush == Z_FINISH) { | ||
|  |         FLUSH_BLOCK(s, 1); | ||
|  |         return finish_done; | ||
|  |     } | ||
|  |     if (s->last_lit) | ||
|  |         FLUSH_BLOCK(s, 0); | ||
|  |     return block_done; | ||
|  | } | ||
|  | #endif /* FASTEST */
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * For Z_RLE, simply look for runs of bytes, generate matches only of distance | ||
|  |  * one.  Do not maintain a hash table.  (It will be regenerated if this run of | ||
|  |  * deflate switches away from Z_RLE.) | ||
|  |  */ | ||
|  | local block_state deflate_rle(s, flush) | ||
|  |     deflate_state *s; | ||
|  |     int flush; | ||
|  | { | ||
|  |     int bflush;             /* set if current block must be flushed */ | ||
|  |     uInt prev;              /* byte at distance one to match */ | ||
|  |     Bytef *scan, *strend;   /* scan goes up to strend for length of run */ | ||
|  | 
 | ||
|  |     for (;;) { | ||
|  |         /* Make sure that we always have enough lookahead, except
 | ||
|  |          * at the end of the input file. We need MAX_MATCH bytes | ||
|  |          * for the longest run, plus one for the unrolled loop. | ||
|  |          */ | ||
|  |         if (s->lookahead <= MAX_MATCH) { | ||
|  |             fill_window(s); | ||
|  |             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { | ||
|  |                 return need_more; | ||
|  |             } | ||
|  |             if (s->lookahead == 0) break; /* flush the current block */ | ||
|  |         } | ||
|  | 
 | ||
|  |         /* See how many times the previous byte repeats */ | ||
|  |         s->match_length = 0; | ||
|  |         if (s->lookahead >= MIN_MATCH && s->strstart > 0) { | ||
|  |             scan = s->window + s->strstart - 1; | ||
|  |             prev = *scan; | ||
|  |             if (prev == *++scan && prev == *++scan && prev == *++scan) { | ||
|  |                 strend = s->window + s->strstart + MAX_MATCH; | ||
|  |                 do { | ||
|  |                 } while (prev == *++scan && prev == *++scan && | ||
|  |                          prev == *++scan && prev == *++scan && | ||
|  |                          prev == *++scan && prev == *++scan && | ||
|  |                          prev == *++scan && prev == *++scan && | ||
|  |                          scan < strend); | ||
|  |                 s->match_length = MAX_MATCH - (uInt)(strend - scan); | ||
|  |                 if (s->match_length > s->lookahead) | ||
|  |                     s->match_length = s->lookahead; | ||
|  |             } | ||
|  |             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); | ||
|  |         } | ||
|  | 
 | ||
|  |         /* Emit match if have run of MIN_MATCH or longer, else emit literal */ | ||
|  |         if (s->match_length >= MIN_MATCH) { | ||
|  |             check_match(s, s->strstart, s->strstart - 1, s->match_length); | ||
|  | 
 | ||
|  |             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); | ||
|  | 
 | ||
|  |             s->lookahead -= s->match_length; | ||
|  |             s->strstart += s->match_length; | ||
|  |             s->match_length = 0; | ||
|  |         } else { | ||
|  |             /* No match, output a literal byte */ | ||
|  |             Tracevv((stderr,"%c", s->window[s->strstart])); | ||
|  |             _tr_tally_lit (s, s->window[s->strstart], bflush); | ||
|  |             s->lookahead--; | ||
|  |             s->strstart++; | ||
|  |         } | ||
|  |         if (bflush) FLUSH_BLOCK(s, 0); | ||
|  |     } | ||
|  |     s->insert = 0; | ||
|  |     if (flush == Z_FINISH) { | ||
|  |         FLUSH_BLOCK(s, 1); | ||
|  |         return finish_done; | ||
|  |     } | ||
|  |     if (s->last_lit) | ||
|  |         FLUSH_BLOCK(s, 0); | ||
|  |     return block_done; | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table. | ||
|  |  * (It will be regenerated if this run of deflate switches away from Huffman.) | ||
|  |  */ | ||
|  | local block_state deflate_huff(s, flush) | ||
|  |     deflate_state *s; | ||
|  |     int flush; | ||
|  | { | ||
|  |     int bflush;             /* set if current block must be flushed */ | ||
|  | 
 | ||
|  |     for (;;) { | ||
|  |         /* Make sure that we have a literal to write. */ | ||
|  |         if (s->lookahead == 0) { | ||
|  |             fill_window(s); | ||
|  |             if (s->lookahead == 0) { | ||
|  |                 if (flush == Z_NO_FLUSH) | ||
|  |                     return need_more; | ||
|  |                 break;      /* flush the current block */ | ||
|  |             } | ||
|  |         } | ||
|  | 
 | ||
|  |         /* Output a literal byte */ | ||
|  |         s->match_length = 0; | ||
|  |         Tracevv((stderr,"%c", s->window[s->strstart])); | ||
|  |         _tr_tally_lit (s, s->window[s->strstart], bflush); | ||
|  |         s->lookahead--; | ||
|  |         s->strstart++; | ||
|  |         if (bflush) FLUSH_BLOCK(s, 0); | ||
|  |     } | ||
|  |     s->insert = 0; | ||
|  |     if (flush == Z_FINISH) { | ||
|  |         FLUSH_BLOCK(s, 1); | ||
|  |         return finish_done; | ||
|  |     } | ||
|  |     if (s->last_lit) | ||
|  |         FLUSH_BLOCK(s, 0); | ||
|  |     return block_done; | ||
|  | } |