295 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			295 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
 | ||
|  |    pre/post-processing ala FFTPACK.  Use a trick from:  | ||
|  | 
 | ||
|  |      S. C. Chan and K. L. Ho, "Direct methods for computing discrete | ||
|  |      sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990). | ||
|  | 
 | ||
|  |    to re-express as an REDFT01 (DCT-III) problem. | ||
|  | 
 | ||
|  |    NOTE: We no longer use this algorithm, because it turns out to suffer | ||
|  |    a catastrophic loss of accuracy for certain inputs, apparently because | ||
|  |    its post-processing multiplies the output by a cosine.  Near the zero | ||
|  |    of the cosine, the REDFT01 must produce a near-singular output. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "reodft/reodft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_rdft super; | ||
|  |      plan *cld; | ||
|  |      twid *td, *td2; | ||
|  |      INT is, os; | ||
|  |      INT n; | ||
|  |      INT vl; | ||
|  |      INT ivs, ovs; | ||
|  |      rdft_kind kind; | ||
|  | } P; | ||
|  | 
 | ||
|  | static void apply_re11(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *W; | ||
|  |      R *buf; | ||
|  |      E cur; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  /* I wish that this didn't require an extra pass. */ | ||
|  | 	  /* FIXME: use recursive/cascade summation for better stability? */ | ||
|  | 	  buf[n - 1] = cur = K(2.0) * I[is * (n - 1)]; | ||
|  | 	  for (i = n - 1; i > 0; --i) { | ||
|  | 	       E curnew; | ||
|  | 	       buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur; | ||
|  | 	       cur = curnew; | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  W = ego->td->W; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b, apb, amb, wa, wb; | ||
|  | 	       a = buf[i]; | ||
|  | 	       b = buf[n - i]; | ||
|  | 	       apb = a + b; | ||
|  | 	       amb = a - b; | ||
|  | 	       wa = W[2*i]; | ||
|  | 	       wb = W[2*i + 1]; | ||
|  | 	       buf[i] = wa * amb + wb * apb;  | ||
|  | 	       buf[n - i] = wa * apb - wb * amb;  | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       buf[i] = K(2.0) * buf[i] * W[2*i]; | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  W = ego->td2->W; | ||
|  | 	  O[0] = W[0] * buf[0]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b; | ||
|  | 	       INT k; | ||
|  | 	       a = buf[i]; | ||
|  | 	       b = buf[n - i]; | ||
|  | 	       k = i + i; | ||
|  | 	       O[os * (k - 1)] = W[k - 1] * (a - b); | ||
|  | 	       O[os * k] = W[k] * (a + b); | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       O[os * (n - 1)] = W[n - 1] * buf[i]; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | /* like for rodft01, rodft11 is obtained from redft11 by
 | ||
|  |    reversing the input and flipping the sign of every other output. */ | ||
|  | static void apply_ro11(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *W; | ||
|  |      R *buf; | ||
|  |      E cur; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  /* I wish that this didn't require an extra pass. */ | ||
|  | 	  /* FIXME: use recursive/cascade summation for better stability? */ | ||
|  | 	  buf[n - 1] = cur = K(2.0) * I[0]; | ||
|  | 	  for (i = n - 1; i > 0; --i) { | ||
|  | 	       E curnew; | ||
|  | 	       buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur; | ||
|  | 	       cur = curnew; | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  W = ego->td->W; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b, apb, amb, wa, wb; | ||
|  | 	       a = buf[i]; | ||
|  | 	       b = buf[n - i]; | ||
|  | 	       apb = a + b; | ||
|  | 	       amb = a - b; | ||
|  | 	       wa = W[2*i]; | ||
|  | 	       wb = W[2*i + 1]; | ||
|  | 	       buf[i] = wa * amb + wb * apb;  | ||
|  | 	       buf[n - i] = wa * apb - wb * amb;  | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       buf[i] = K(2.0) * buf[i] * W[2*i]; | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  W = ego->td2->W; | ||
|  | 	  O[0] = W[0] * buf[0]; | ||
|  | 	  for (i = 1; i < n - i; ++i) { | ||
|  | 	       E a, b; | ||
|  | 	       INT k; | ||
|  | 	       a = buf[i]; | ||
|  | 	       b = buf[n - i]; | ||
|  | 	       k = i + i; | ||
|  | 	       O[os * (k - 1)] = W[k - 1] * (b - a); | ||
|  | 	       O[os * k] = W[k] * (a + b); | ||
|  | 	  } | ||
|  | 	  if (i == n - i) { | ||
|  | 	       O[os * (n - 1)] = -W[n - 1] * buf[i]; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      static const tw_instr reodft010e_tw[] = { | ||
|  |           { TW_COS, 0, 1 }, | ||
|  |           { TW_SIN, 0, 1 }, | ||
|  |           { TW_NEXT, 1, 0 } | ||
|  |      }; | ||
|  |      static const tw_instr reodft11e_tw[] = { | ||
|  |           { TW_COS, 1, 1 }, | ||
|  |           { TW_NEXT, 2, 0 } | ||
|  |      }; | ||
|  | 
 | ||
|  |      X(plan_awake)(ego->cld, wakefulness); | ||
|  | 
 | ||
|  |      X(twiddle_awake)(wakefulness, | ||
|  | 		      &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); | ||
|  |      X(twiddle_awake)(wakefulness, | ||
|  | 		      &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2); | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      p->print(p, "(%se-r2hc-%D%v%(%p%))", | ||
|  | 	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable0(const solver *ego_, const problem *p_) | ||
|  | { | ||
|  |      const problem_rdft *p = (const problem_rdft *) p_; | ||
|  | 
 | ||
|  |      UNUSED(ego_); | ||
|  | 
 | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 	     && p->vecsz->rnk <= 1 | ||
|  | 	     && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const solver *ego, const problem *p, const planner *plnr) | ||
|  | { | ||
|  |      return (!NO_SLOWP(plnr) && applicable0(ego, p)); | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      P *pln; | ||
|  |      const problem_rdft *p; | ||
|  |      plan *cld; | ||
|  |      R *buf; | ||
|  |      INT n; | ||
|  |      opcnt ops; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(rdft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego_, p_, plnr)) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      p = (const problem_rdft *) p_; | ||
|  | 
 | ||
|  |      n = p->sz->dims[0].n; | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), | ||
|  |                                                    X(mktensor_0d)(), | ||
|  |                                                    buf, buf, R2HC)); | ||
|  |      X(ifree)(buf); | ||
|  |      if (!cld) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); | ||
|  |      pln->n = n; | ||
|  |      pln->is = p->sz->dims[0].is; | ||
|  |      pln->os = p->sz->dims[0].os; | ||
|  |      pln->cld = cld; | ||
|  |      pln->td = pln->td2 = 0; | ||
|  |      pln->kind = p->kind[0]; | ||
|  |       | ||
|  |      X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); | ||
|  |       | ||
|  |      X(ops_zero)(&ops); | ||
|  |      ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6; | ||
|  |      ops.add = (n - 1) * 1 + (n-1)/2 * 6; | ||
|  |      ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3; | ||
|  | 
 | ||
|  |      X(ops_zero)(&pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | } | ||
|  | 
 | ||
|  | /* constructor */ | ||
|  | static solver *mksolver(void) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(reodft11e_r2hc_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver()); | ||
|  | } |