361 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			361 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:24 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name n1_9 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 80 FP additions, 56 FP multiplications, | ||
|  |  * (or, 24 additions, 0 multiplications, 56 fused multiply/add), | ||
|  |  * 41 stack variables, 10 constants, and 36 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP954188894, +0.954188894138671133499268364187245676532219158); | ||
|  |      DK(KP363970234, +0.363970234266202361351047882776834043890471784); | ||
|  |      DK(KP852868531, +0.852868531952443209628250963940074071936020296); | ||
|  |      DK(KP492403876, +0.492403876506104029683371512294761506835321626); | ||
|  |      DK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DK(KP777861913, +0.777861913430206160028177977318626690410586096); | ||
|  |      DK(KP839099631, +0.839099631177280011763127298123181364687434283); | ||
|  |      DK(KP176326980, +0.176326980708464973471090386868618986121633062); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(36, is), MAKE_VOLATILE_STRIDE(36, os)) { | ||
|  | 	       E T5, TL, Tm, Tl, T1f, TM, Ta, T1c, TF, TW, TI, TX, Tf, T1d, Ts; | ||
|  | 	       E TZ, Tx, T10; | ||
|  | 	       { | ||
|  | 		    E T1, T2, T3, T4; | ||
|  | 		    T1 = ri[0]; | ||
|  | 		    T2 = ri[WS(is, 3)]; | ||
|  | 		    T3 = ri[WS(is, 6)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    T5 = T1 + T4; | ||
|  | 		    TL = FNMS(KP500000000, T4, T1); | ||
|  | 		    Tm = T3 - T2; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Th, Ti, Tj, Tk; | ||
|  | 		    Th = ii[0]; | ||
|  | 		    Ti = ii[WS(is, 3)]; | ||
|  | 		    Tj = ii[WS(is, 6)]; | ||
|  | 		    Tk = Ti + Tj; | ||
|  | 		    Tl = FNMS(KP500000000, Tk, Th); | ||
|  | 		    T1f = Th + Tk; | ||
|  | 		    TM = Ti - Tj; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, Tz, T9, TE, TC, TH, TD, TG; | ||
|  | 		    T6 = ri[WS(is, 1)]; | ||
|  | 		    Tz = ii[WS(is, 1)]; | ||
|  | 		    { | ||
|  | 			 E T7, T8, TA, TB; | ||
|  | 			 T7 = ri[WS(is, 4)]; | ||
|  | 			 T8 = ri[WS(is, 7)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 TE = T7 - T8; | ||
|  | 			 TA = ii[WS(is, 4)]; | ||
|  | 			 TB = ii[WS(is, 7)]; | ||
|  | 			 TC = TA + TB; | ||
|  | 			 TH = TB - TA; | ||
|  | 		    } | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    T1c = Tz + TC; | ||
|  | 		    TD = FNMS(KP500000000, TC, Tz); | ||
|  | 		    TF = FNMS(KP866025403, TE, TD); | ||
|  | 		    TW = FMA(KP866025403, TE, TD); | ||
|  | 		    TG = FNMS(KP500000000, T9, T6); | ||
|  | 		    TI = FNMS(KP866025403, TH, TG); | ||
|  | 		    TX = FMA(KP866025403, TH, TG); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tb, Tt, Te, Tw, Tr, Tu, To, Tv; | ||
|  | 		    Tb = ri[WS(is, 2)]; | ||
|  | 		    Tt = ii[WS(is, 2)]; | ||
|  | 		    { | ||
|  | 			 E Tc, Td, Tp, Tq; | ||
|  | 			 Tc = ri[WS(is, 5)]; | ||
|  | 			 Td = ri[WS(is, 8)]; | ||
|  | 			 Te = Tc + Td; | ||
|  | 			 Tw = Td - Tc; | ||
|  | 			 Tp = ii[WS(is, 5)]; | ||
|  | 			 Tq = ii[WS(is, 8)]; | ||
|  | 			 Tr = Tp - Tq; | ||
|  | 			 Tu = Tp + Tq; | ||
|  | 		    } | ||
|  | 		    Tf = Tb + Te; | ||
|  | 		    T1d = Tt + Tu; | ||
|  | 		    To = FNMS(KP500000000, Te, Tb); | ||
|  | 		    Ts = FMA(KP866025403, Tr, To); | ||
|  | 		    TZ = FNMS(KP866025403, Tr, To); | ||
|  | 		    Tv = FNMS(KP500000000, Tu, Tt); | ||
|  | 		    Tx = FMA(KP866025403, Tw, Tv); | ||
|  | 		    T10 = FNMS(KP866025403, Tw, Tv); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1e, Tg, T1b, T1i, T1g, T1h; | ||
|  | 		    T1e = T1c - T1d; | ||
|  | 		    Tg = Ta + Tf; | ||
|  | 		    T1b = FNMS(KP500000000, Tg, T5); | ||
|  | 		    ro[0] = T5 + Tg; | ||
|  | 		    ro[WS(os, 3)] = FMA(KP866025403, T1e, T1b); | ||
|  | 		    ro[WS(os, 6)] = FNMS(KP866025403, T1e, T1b); | ||
|  | 		    T1i = Tf - Ta; | ||
|  | 		    T1g = T1c + T1d; | ||
|  | 		    T1h = FNMS(KP500000000, T1g, T1f); | ||
|  | 		    io[WS(os, 3)] = FMA(KP866025403, T1i, T1h); | ||
|  | 		    io[0] = T1f + T1g; | ||
|  | 		    io[WS(os, 6)] = FNMS(KP866025403, T1i, T1h); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tn, TN, TK, TS, TQ, TU, TR, TT; | ||
|  | 		    Tn = FMA(KP866025403, Tm, Tl); | ||
|  | 		    TN = FMA(KP866025403, TM, TL); | ||
|  | 		    { | ||
|  | 			 E Ty, TJ, TO, TP; | ||
|  | 			 Ty = FNMS(KP176326980, Tx, Ts); | ||
|  | 			 TJ = FNMS(KP839099631, TI, TF); | ||
|  | 			 TK = FNMS(KP777861913, TJ, Ty); | ||
|  | 			 TS = FMA(KP777861913, TJ, Ty); | ||
|  | 			 TO = FMA(KP176326980, Ts, Tx); | ||
|  | 			 TP = FMA(KP839099631, TF, TI); | ||
|  | 			 TQ = FMA(KP777861913, TP, TO); | ||
|  | 			 TU = FNMS(KP777861913, TP, TO); | ||
|  | 		    } | ||
|  | 		    io[WS(os, 1)] = FNMS(KP984807753, TK, Tn); | ||
|  | 		    ro[WS(os, 1)] = FMA(KP984807753, TQ, TN); | ||
|  | 		    TR = FNMS(KP492403876, TQ, TN); | ||
|  | 		    ro[WS(os, 4)] = FMA(KP852868531, TS, TR); | ||
|  | 		    ro[WS(os, 7)] = FNMS(KP852868531, TS, TR); | ||
|  | 		    TT = FMA(KP492403876, TK, Tn); | ||
|  | 		    io[WS(os, 7)] = FNMS(KP852868531, TU, TT); | ||
|  | 		    io[WS(os, 4)] = FMA(KP852868531, TU, TT); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TV, T17, T12, T1a, T16, T18, T13, T19; | ||
|  | 		    TV = FNMS(KP866025403, TM, TL); | ||
|  | 		    T17 = FNMS(KP866025403, Tm, Tl); | ||
|  | 		    { | ||
|  | 			 E TY, T11, T14, T15; | ||
|  | 			 TY = FMA(KP176326980, TX, TW); | ||
|  | 			 T11 = FNMS(KP363970234, T10, TZ); | ||
|  | 			 T12 = FNMS(KP954188894, T11, TY); | ||
|  | 			 T1a = FMA(KP954188894, T11, TY); | ||
|  | 			 T14 = FNMS(KP176326980, TW, TX); | ||
|  | 			 T15 = FMA(KP363970234, TZ, T10); | ||
|  | 			 T16 = FNMS(KP954188894, T15, T14); | ||
|  | 			 T18 = FMA(KP954188894, T15, T14); | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 2)] = FMA(KP984807753, T12, TV); | ||
|  | 		    io[WS(os, 2)] = FNMS(KP984807753, T18, T17); | ||
|  | 		    T13 = FNMS(KP492403876, T12, TV); | ||
|  | 		    ro[WS(os, 5)] = FNMS(KP852868531, T16, T13); | ||
|  | 		    ro[WS(os, 8)] = FMA(KP852868531, T16, T13); | ||
|  | 		    T19 = FMA(KP492403876, T18, T17); | ||
|  | 		    io[WS(os, 5)] = FNMS(KP852868531, T1a, T19); | ||
|  | 		    io[WS(os, 8)] = FMA(KP852868531, T1a, T19); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 9, "n1_9", { 24, 0, 56, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_9) (planner *p) { X(kdft_register) (p, n1_9, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 9 -name n1_9 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 80 FP additions, 40 FP multiplications, | ||
|  |  * (or, 60 additions, 20 multiplications, 20 fused multiply/add), | ||
|  |  * 39 stack variables, 8 constants, and 36 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP939692620, +0.939692620785908384054109277324731469936208134); | ||
|  |      DK(KP342020143, +0.342020143325668733044099614682259580763083368); | ||
|  |      DK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DK(KP173648177, +0.173648177666930348851716626769314796000375677); | ||
|  |      DK(KP642787609, +0.642787609686539326322643409907263432907559884); | ||
|  |      DK(KP766044443, +0.766044443118978035202392650555416673935832457); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(36, is), MAKE_VOLATILE_STRIDE(36, os)) { | ||
|  | 	       E T5, TO, Th, Tk, T1g, TR, Ta, T1c, Tq, TW, Tv, TX, Tf, T1d, TB; | ||
|  | 	       E T10, TG, TZ; | ||
|  | 	       { | ||
|  | 		    E T1, T2, T3, T4; | ||
|  | 		    T1 = ri[0]; | ||
|  | 		    T2 = ri[WS(is, 3)]; | ||
|  | 		    T3 = ri[WS(is, 6)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    T5 = T1 + T4; | ||
|  | 		    TO = KP866025403 * (T3 - T2); | ||
|  | 		    Th = FNMS(KP500000000, T4, T1); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TP, Ti, Tj, TQ; | ||
|  | 		    TP = ii[0]; | ||
|  | 		    Ti = ii[WS(is, 3)]; | ||
|  | 		    Tj = ii[WS(is, 6)]; | ||
|  | 		    TQ = Ti + Tj; | ||
|  | 		    Tk = KP866025403 * (Ti - Tj); | ||
|  | 		    T1g = TP + TQ; | ||
|  | 		    TR = FNMS(KP500000000, TQ, TP); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, Ts, T9, Tr, Tp, Tt, Tm, Tu; | ||
|  | 		    T6 = ri[WS(is, 1)]; | ||
|  | 		    Ts = ii[WS(is, 1)]; | ||
|  | 		    { | ||
|  | 			 E T7, T8, Tn, To; | ||
|  | 			 T7 = ri[WS(is, 4)]; | ||
|  | 			 T8 = ri[WS(is, 7)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 Tr = KP866025403 * (T8 - T7); | ||
|  | 			 Tn = ii[WS(is, 4)]; | ||
|  | 			 To = ii[WS(is, 7)]; | ||
|  | 			 Tp = KP866025403 * (Tn - To); | ||
|  | 			 Tt = Tn + To; | ||
|  | 		    } | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    T1c = Ts + Tt; | ||
|  | 		    Tm = FNMS(KP500000000, T9, T6); | ||
|  | 		    Tq = Tm + Tp; | ||
|  | 		    TW = Tm - Tp; | ||
|  | 		    Tu = FNMS(KP500000000, Tt, Ts); | ||
|  | 		    Tv = Tr + Tu; | ||
|  | 		    TX = Tu - Tr; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tb, TD, Te, TC, TA, TE, Tx, TF; | ||
|  | 		    Tb = ri[WS(is, 2)]; | ||
|  | 		    TD = ii[WS(is, 2)]; | ||
|  | 		    { | ||
|  | 			 E Tc, Td, Ty, Tz; | ||
|  | 			 Tc = ri[WS(is, 5)]; | ||
|  | 			 Td = ri[WS(is, 8)]; | ||
|  | 			 Te = Tc + Td; | ||
|  | 			 TC = KP866025403 * (Td - Tc); | ||
|  | 			 Ty = ii[WS(is, 5)]; | ||
|  | 			 Tz = ii[WS(is, 8)]; | ||
|  | 			 TA = KP866025403 * (Ty - Tz); | ||
|  | 			 TE = Ty + Tz; | ||
|  | 		    } | ||
|  | 		    Tf = Tb + Te; | ||
|  | 		    T1d = TD + TE; | ||
|  | 		    Tx = FNMS(KP500000000, Te, Tb); | ||
|  | 		    TB = Tx + TA; | ||
|  | 		    T10 = Tx - TA; | ||
|  | 		    TF = FNMS(KP500000000, TE, TD); | ||
|  | 		    TG = TC + TF; | ||
|  | 		    TZ = TF - TC; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1e, Tg, T1b, T1f, T1h, T1i; | ||
|  | 		    T1e = KP866025403 * (T1c - T1d); | ||
|  | 		    Tg = Ta + Tf; | ||
|  | 		    T1b = FNMS(KP500000000, Tg, T5); | ||
|  | 		    ro[0] = T5 + Tg; | ||
|  | 		    ro[WS(os, 3)] = T1b + T1e; | ||
|  | 		    ro[WS(os, 6)] = T1b - T1e; | ||
|  | 		    T1f = KP866025403 * (Tf - Ta); | ||
|  | 		    T1h = T1c + T1d; | ||
|  | 		    T1i = FNMS(KP500000000, T1h, T1g); | ||
|  | 		    io[WS(os, 3)] = T1f + T1i; | ||
|  | 		    io[0] = T1g + T1h; | ||
|  | 		    io[WS(os, 6)] = T1i - T1f; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tl, TS, TI, TN, TM, TT, TJ, TU; | ||
|  | 		    Tl = Th + Tk; | ||
|  | 		    TS = TO + TR; | ||
|  | 		    { | ||
|  | 			 E Tw, TH, TK, TL; | ||
|  | 			 Tw = FMA(KP766044443, Tq, KP642787609 * Tv); | ||
|  | 			 TH = FMA(KP173648177, TB, KP984807753 * TG); | ||
|  | 			 TI = Tw + TH; | ||
|  | 			 TN = KP866025403 * (TH - Tw); | ||
|  | 			 TK = FNMS(KP642787609, Tq, KP766044443 * Tv); | ||
|  | 			 TL = FNMS(KP984807753, TB, KP173648177 * TG); | ||
|  | 			 TM = KP866025403 * (TK - TL); | ||
|  | 			 TT = TK + TL; | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 1)] = Tl + TI; | ||
|  | 		    io[WS(os, 1)] = TS + TT; | ||
|  | 		    TJ = FNMS(KP500000000, TI, Tl); | ||
|  | 		    ro[WS(os, 7)] = TJ - TM; | ||
|  | 		    ro[WS(os, 4)] = TJ + TM; | ||
|  | 		    TU = FNMS(KP500000000, TT, TS); | ||
|  | 		    io[WS(os, 4)] = TN + TU; | ||
|  | 		    io[WS(os, 7)] = TU - TN; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TV, T14, T12, T13, T17, T1a, T18, T19; | ||
|  | 		    TV = Th - Tk; | ||
|  | 		    T14 = TR - TO; | ||
|  | 		    { | ||
|  | 			 E TY, T11, T15, T16; | ||
|  | 			 TY = FMA(KP173648177, TW, KP984807753 * TX); | ||
|  | 			 T11 = FNMS(KP939692620, T10, KP342020143 * TZ); | ||
|  | 			 T12 = TY + T11; | ||
|  | 			 T13 = KP866025403 * (T11 - TY); | ||
|  | 			 T15 = FNMS(KP984807753, TW, KP173648177 * TX); | ||
|  | 			 T16 = FMA(KP342020143, T10, KP939692620 * TZ); | ||
|  | 			 T17 = T15 - T16; | ||
|  | 			 T1a = KP866025403 * (T15 + T16); | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 2)] = TV + T12; | ||
|  | 		    io[WS(os, 2)] = T14 + T17; | ||
|  | 		    T18 = FNMS(KP500000000, T17, T14); | ||
|  | 		    io[WS(os, 5)] = T13 + T18; | ||
|  | 		    io[WS(os, 8)] = T18 - T13; | ||
|  | 		    T19 = FNMS(KP500000000, T12, TV); | ||
|  | 		    ro[WS(os, 8)] = T19 - T1a; | ||
|  | 		    ro[WS(os, 5)] = T19 + T1a; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 9, "n1_9", { 60, 20, 20, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_9) (planner *p) { X(kdft_register) (p, n1_9, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |