363 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			363 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:24 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 84 FP additions, 36 FP multiplications, | ||
|  |  * (or, 48 additions, 0 multiplications, 36 fused multiply/add), | ||
|  |  * 41 stack variables, 4 constants, and 40 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) { | ||
|  | 	       E T3, Tj, TN, T1b, TU, TV, T1j, T1i, Tm, Tp, Tq, Ta, Th, Ti, TA; | ||
|  | 	       E TH, T17, T14, T1c, T1d, T1e, TO, TP, TQ; | ||
|  | 	       { | ||
|  | 		    E T1, T2, TL, TM; | ||
|  | 		    T1 = ri[0]; | ||
|  | 		    T2 = ri[WS(is, 5)]; | ||
|  | 		    T3 = T1 - T2; | ||
|  | 		    Tj = T1 + T2; | ||
|  | 		    TL = ii[0]; | ||
|  | 		    TM = ii[WS(is, 5)]; | ||
|  | 		    TN = TL - TM; | ||
|  | 		    T1b = TL + TM; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, Tk, Tg, To, T9, Tl, Td, Tn; | ||
|  | 		    { | ||
|  | 			 E T4, T5, Te, Tf; | ||
|  | 			 T4 = ri[WS(is, 2)]; | ||
|  | 			 T5 = ri[WS(is, 7)]; | ||
|  | 			 T6 = T4 - T5; | ||
|  | 			 Tk = T4 + T5; | ||
|  | 			 Te = ri[WS(is, 6)]; | ||
|  | 			 Tf = ri[WS(is, 1)]; | ||
|  | 			 Tg = Te - Tf; | ||
|  | 			 To = Te + Tf; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, T8, Tb, Tc; | ||
|  | 			 T7 = ri[WS(is, 8)]; | ||
|  | 			 T8 = ri[WS(is, 3)]; | ||
|  | 			 T9 = T7 - T8; | ||
|  | 			 Tl = T7 + T8; | ||
|  | 			 Tb = ri[WS(is, 4)]; | ||
|  | 			 Tc = ri[WS(is, 9)]; | ||
|  | 			 Td = Tb - Tc; | ||
|  | 			 Tn = Tb + Tc; | ||
|  | 		    } | ||
|  | 		    TU = T6 - T9; | ||
|  | 		    TV = Td - Tg; | ||
|  | 		    T1j = Tk - Tl; | ||
|  | 		    T1i = Tn - To; | ||
|  | 		    Tm = Tk + Tl; | ||
|  | 		    Tp = Tn + To; | ||
|  | 		    Tq = Tm + Tp; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Th = Td + Tg; | ||
|  | 		    Ti = Ta + Th; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, T15, TG, T13, Tz, T16, TD, T12; | ||
|  | 		    { | ||
|  | 			 E Tu, Tv, TE, TF; | ||
|  | 			 Tu = ii[WS(is, 2)]; | ||
|  | 			 Tv = ii[WS(is, 7)]; | ||
|  | 			 Tw = Tu - Tv; | ||
|  | 			 T15 = Tu + Tv; | ||
|  | 			 TE = ii[WS(is, 6)]; | ||
|  | 			 TF = ii[WS(is, 1)]; | ||
|  | 			 TG = TE - TF; | ||
|  | 			 T13 = TE + TF; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tx, Ty, TB, TC; | ||
|  | 			 Tx = ii[WS(is, 8)]; | ||
|  | 			 Ty = ii[WS(is, 3)]; | ||
|  | 			 Tz = Tx - Ty; | ||
|  | 			 T16 = Tx + Ty; | ||
|  | 			 TB = ii[WS(is, 4)]; | ||
|  | 			 TC = ii[WS(is, 9)]; | ||
|  | 			 TD = TB - TC; | ||
|  | 			 T12 = TB + TC; | ||
|  | 		    } | ||
|  | 		    TA = Tw - Tz; | ||
|  | 		    TH = TD - TG; | ||
|  | 		    T17 = T15 - T16; | ||
|  | 		    T14 = T12 - T13; | ||
|  | 		    T1c = T15 + T16; | ||
|  | 		    T1d = T12 + T13; | ||
|  | 		    T1e = T1c + T1d; | ||
|  | 		    TO = Tw + Tz; | ||
|  | 		    TP = TD + TG; | ||
|  | 		    TQ = TO + TP; | ||
|  | 	       } | ||
|  | 	       ro[WS(os, 5)] = T3 + Ti; | ||
|  | 	       io[WS(os, 5)] = TN + TQ; | ||
|  | 	       ro[0] = Tj + Tq; | ||
|  | 	       io[0] = T1b + T1e; | ||
|  | 	       { | ||
|  | 		    E TI, TK, Tt, TJ, Tr, Ts; | ||
|  | 		    TI = FMA(KP618033988, TH, TA); | ||
|  | 		    TK = FNMS(KP618033988, TA, TH); | ||
|  | 		    Tr = FNMS(KP250000000, Ti, T3); | ||
|  | 		    Ts = Ta - Th; | ||
|  | 		    Tt = FMA(KP559016994, Ts, Tr); | ||
|  | 		    TJ = FNMS(KP559016994, Ts, Tr); | ||
|  | 		    ro[WS(os, 9)] = FNMS(KP951056516, TI, Tt); | ||
|  | 		    ro[WS(os, 3)] = FMA(KP951056516, TK, TJ); | ||
|  | 		    ro[WS(os, 1)] = FMA(KP951056516, TI, Tt); | ||
|  | 		    ro[WS(os, 7)] = FNMS(KP951056516, TK, TJ); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TW, TY, TT, TX, TR, TS; | ||
|  | 		    TW = FMA(KP618033988, TV, TU); | ||
|  | 		    TY = FNMS(KP618033988, TU, TV); | ||
|  | 		    TR = FNMS(KP250000000, TQ, TN); | ||
|  | 		    TS = TO - TP; | ||
|  | 		    TT = FMA(KP559016994, TS, TR); | ||
|  | 		    TX = FNMS(KP559016994, TS, TR); | ||
|  | 		    io[WS(os, 1)] = FNMS(KP951056516, TW, TT); | ||
|  | 		    io[WS(os, 7)] = FMA(KP951056516, TY, TX); | ||
|  | 		    io[WS(os, 9)] = FMA(KP951056516, TW, TT); | ||
|  | 		    io[WS(os, 3)] = FNMS(KP951056516, TY, TX); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T18, T1a, T11, T19, TZ, T10; | ||
|  | 		    T18 = FNMS(KP618033988, T17, T14); | ||
|  | 		    T1a = FMA(KP618033988, T14, T17); | ||
|  | 		    TZ = FNMS(KP250000000, Tq, Tj); | ||
|  | 		    T10 = Tm - Tp; | ||
|  | 		    T11 = FNMS(KP559016994, T10, TZ); | ||
|  | 		    T19 = FMA(KP559016994, T10, TZ); | ||
|  | 		    ro[WS(os, 2)] = FNMS(KP951056516, T18, T11); | ||
|  | 		    ro[WS(os, 6)] = FMA(KP951056516, T1a, T19); | ||
|  | 		    ro[WS(os, 8)] = FMA(KP951056516, T18, T11); | ||
|  | 		    ro[WS(os, 4)] = FNMS(KP951056516, T1a, T19); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1k, T1m, T1h, T1l, T1f, T1g; | ||
|  | 		    T1k = FNMS(KP618033988, T1j, T1i); | ||
|  | 		    T1m = FMA(KP618033988, T1i, T1j); | ||
|  | 		    T1f = FNMS(KP250000000, T1e, T1b); | ||
|  | 		    T1g = T1c - T1d; | ||
|  | 		    T1h = FNMS(KP559016994, T1g, T1f); | ||
|  | 		    T1l = FMA(KP559016994, T1g, T1f); | ||
|  | 		    io[WS(os, 2)] = FMA(KP951056516, T1k, T1h); | ||
|  | 		    io[WS(os, 6)] = FNMS(KP951056516, T1m, T1l); | ||
|  | 		    io[WS(os, 8)] = FNMS(KP951056516, T1k, T1h); | ||
|  | 		    io[WS(os, 4)] = FMA(KP951056516, T1m, T1l); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 10, "n1_10", { 48, 0, 36, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_10) (planner *p) { X(kdft_register) (p, n1_10, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 84 FP additions, 24 FP multiplications, | ||
|  |  * (or, 72 additions, 12 multiplications, 12 fused multiply/add), | ||
|  |  * 41 stack variables, 4 constants, and 40 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) { | ||
|  | 	       E T3, Tj, TQ, T1e, TU, TV, T1c, T1b, Tm, Tp, Tq, Ta, Th, Ti, TA; | ||
|  | 	       E TH, T17, T14, T1f, T1g, T1h, TL, TM, TR; | ||
|  | 	       { | ||
|  | 		    E T1, T2, TO, TP; | ||
|  | 		    T1 = ri[0]; | ||
|  | 		    T2 = ri[WS(is, 5)]; | ||
|  | 		    T3 = T1 - T2; | ||
|  | 		    Tj = T1 + T2; | ||
|  | 		    TO = ii[0]; | ||
|  | 		    TP = ii[WS(is, 5)]; | ||
|  | 		    TQ = TO - TP; | ||
|  | 		    T1e = TO + TP; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, Tk, Tg, To, T9, Tl, Td, Tn; | ||
|  | 		    { | ||
|  | 			 E T4, T5, Te, Tf; | ||
|  | 			 T4 = ri[WS(is, 2)]; | ||
|  | 			 T5 = ri[WS(is, 7)]; | ||
|  | 			 T6 = T4 - T5; | ||
|  | 			 Tk = T4 + T5; | ||
|  | 			 Te = ri[WS(is, 6)]; | ||
|  | 			 Tf = ri[WS(is, 1)]; | ||
|  | 			 Tg = Te - Tf; | ||
|  | 			 To = Te + Tf; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, T8, Tb, Tc; | ||
|  | 			 T7 = ri[WS(is, 8)]; | ||
|  | 			 T8 = ri[WS(is, 3)]; | ||
|  | 			 T9 = T7 - T8; | ||
|  | 			 Tl = T7 + T8; | ||
|  | 			 Tb = ri[WS(is, 4)]; | ||
|  | 			 Tc = ri[WS(is, 9)]; | ||
|  | 			 Td = Tb - Tc; | ||
|  | 			 Tn = Tb + Tc; | ||
|  | 		    } | ||
|  | 		    TU = T6 - T9; | ||
|  | 		    TV = Td - Tg; | ||
|  | 		    T1c = Tk - Tl; | ||
|  | 		    T1b = Tn - To; | ||
|  | 		    Tm = Tk + Tl; | ||
|  | 		    Tp = Tn + To; | ||
|  | 		    Tq = Tm + Tp; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Th = Td + Tg; | ||
|  | 		    Ti = Ta + Th; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, T15, TG, T13, Tz, T16, TD, T12; | ||
|  | 		    { | ||
|  | 			 E Tu, Tv, TE, TF; | ||
|  | 			 Tu = ii[WS(is, 2)]; | ||
|  | 			 Tv = ii[WS(is, 7)]; | ||
|  | 			 Tw = Tu - Tv; | ||
|  | 			 T15 = Tu + Tv; | ||
|  | 			 TE = ii[WS(is, 6)]; | ||
|  | 			 TF = ii[WS(is, 1)]; | ||
|  | 			 TG = TE - TF; | ||
|  | 			 T13 = TE + TF; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tx, Ty, TB, TC; | ||
|  | 			 Tx = ii[WS(is, 8)]; | ||
|  | 			 Ty = ii[WS(is, 3)]; | ||
|  | 			 Tz = Tx - Ty; | ||
|  | 			 T16 = Tx + Ty; | ||
|  | 			 TB = ii[WS(is, 4)]; | ||
|  | 			 TC = ii[WS(is, 9)]; | ||
|  | 			 TD = TB - TC; | ||
|  | 			 T12 = TB + TC; | ||
|  | 		    } | ||
|  | 		    TA = Tw - Tz; | ||
|  | 		    TH = TD - TG; | ||
|  | 		    T17 = T15 - T16; | ||
|  | 		    T14 = T12 - T13; | ||
|  | 		    T1f = T15 + T16; | ||
|  | 		    T1g = T12 + T13; | ||
|  | 		    T1h = T1f + T1g; | ||
|  | 		    TL = Tw + Tz; | ||
|  | 		    TM = TD + TG; | ||
|  | 		    TR = TL + TM; | ||
|  | 	       } | ||
|  | 	       ro[WS(os, 5)] = T3 + Ti; | ||
|  | 	       io[WS(os, 5)] = TQ + TR; | ||
|  | 	       ro[0] = Tj + Tq; | ||
|  | 	       io[0] = T1e + T1h; | ||
|  | 	       { | ||
|  | 		    E TI, TK, Tt, TJ, Tr, Ts; | ||
|  | 		    TI = FMA(KP951056516, TA, KP587785252 * TH); | ||
|  | 		    TK = FNMS(KP587785252, TA, KP951056516 * TH); | ||
|  | 		    Tr = KP559016994 * (Ta - Th); | ||
|  | 		    Ts = FNMS(KP250000000, Ti, T3); | ||
|  | 		    Tt = Tr + Ts; | ||
|  | 		    TJ = Ts - Tr; | ||
|  | 		    ro[WS(os, 9)] = Tt - TI; | ||
|  | 		    ro[WS(os, 3)] = TJ + TK; | ||
|  | 		    ro[WS(os, 1)] = Tt + TI; | ||
|  | 		    ro[WS(os, 7)] = TJ - TK; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TW, TY, TT, TX, TN, TS; | ||
|  | 		    TW = FMA(KP951056516, TU, KP587785252 * TV); | ||
|  | 		    TY = FNMS(KP587785252, TU, KP951056516 * TV); | ||
|  | 		    TN = KP559016994 * (TL - TM); | ||
|  | 		    TS = FNMS(KP250000000, TR, TQ); | ||
|  | 		    TT = TN + TS; | ||
|  | 		    TX = TS - TN; | ||
|  | 		    io[WS(os, 1)] = TT - TW; | ||
|  | 		    io[WS(os, 7)] = TY + TX; | ||
|  | 		    io[WS(os, 9)] = TW + TT; | ||
|  | 		    io[WS(os, 3)] = TX - TY; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T18, T1a, T11, T19, TZ, T10; | ||
|  | 		    T18 = FNMS(KP587785252, T17, KP951056516 * T14); | ||
|  | 		    T1a = FMA(KP951056516, T17, KP587785252 * T14); | ||
|  | 		    TZ = FNMS(KP250000000, Tq, Tj); | ||
|  | 		    T10 = KP559016994 * (Tm - Tp); | ||
|  | 		    T11 = TZ - T10; | ||
|  | 		    T19 = T10 + TZ; | ||
|  | 		    ro[WS(os, 2)] = T11 - T18; | ||
|  | 		    ro[WS(os, 6)] = T19 + T1a; | ||
|  | 		    ro[WS(os, 8)] = T11 + T18; | ||
|  | 		    ro[WS(os, 4)] = T19 - T1a; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1d, T1l, T1k, T1m, T1i, T1j; | ||
|  | 		    T1d = FNMS(KP587785252, T1c, KP951056516 * T1b); | ||
|  | 		    T1l = FMA(KP951056516, T1c, KP587785252 * T1b); | ||
|  | 		    T1i = FNMS(KP250000000, T1h, T1e); | ||
|  | 		    T1j = KP559016994 * (T1f - T1g); | ||
|  | 		    T1k = T1i - T1j; | ||
|  | 		    T1m = T1j + T1i; | ||
|  | 		    io[WS(os, 2)] = T1d + T1k; | ||
|  | 		    io[WS(os, 6)] = T1m - T1l; | ||
|  | 		    io[WS(os, 8)] = T1k - T1d; | ||
|  | 		    io[WS(os, 4)] = T1l + T1m; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 10, "n1_10", { 72, 12, 12, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_10) (planner *p) { X(kdft_register) (p, n1_10, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |