328 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			328 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include rdft/simd/hc2cbv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 71 FP additions, 51 FP multiplications, | ||
|  |  * (or, 45 additions, 25 multiplications, 26 fused multiply/add), | ||
|  |  * 56 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cbv.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) { | ||
|  | 	       V Tk, Tw, Td, TA, T11, T1f, TF, TP, Tt, TB, TY, T1e; | ||
|  | 	       { | ||
|  | 		    V T2, Tm, T7, T8, Tp, Tq, T5, Tu, Tg, Tr, Tj, Tn, Tb, Tv, T3; | ||
|  | 		    V T4, Te, Tf, Th, Ti, T9, Ta, T6, Tc, TZ, T10, TD, TE, To, Ts; | ||
|  | 		    V TW, TX; | ||
|  | 		    T2 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 		    Tm = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T8 = VCONJ(T7); | ||
|  | 		    Tp = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 		    Tq = VCONJ(Tp); | ||
|  | 		    T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | ||
|  | 		    T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T5 = VFMACONJ(T4, T3); | ||
|  | 		    Tu = VFNMSCONJ(T4, T3); | ||
|  | 		    Te = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tf = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tg = VSUB(Te, Tf); | ||
|  | 		    Tr = VADD(Te, Tf); | ||
|  | 		    Th = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 		    Ti = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | ||
|  | 		    Tj = VSUB(Th, Ti); | ||
|  | 		    Tn = VADD(Ti, Th); | ||
|  | 		    T9 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 		    Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Tb = VFMACONJ(Ta, T9); | ||
|  | 		    Tv = VFMSCONJ(Ta, T9); | ||
|  | 		    Tk = VFMACONJ(Tj, Tg); | ||
|  | 		    Tw = VSUB(Tu, Tv); | ||
|  | 		    T6 = VFNMS(LDK(KP500000000), T5, T2); | ||
|  | 		    Tc = VFNMS(LDK(KP500000000), Tb, T8); | ||
|  | 		    Td = VSUB(T6, Tc); | ||
|  | 		    TA = VADD(T6, Tc); | ||
|  | 		    TZ = VFMACONJ(Tn, Tm); | ||
|  | 		    T10 = VFMACONJ(Tp, Tr); | ||
|  | 		    T11 = VSUB(TZ, T10); | ||
|  | 		    T1f = VADD(TZ, T10); | ||
|  | 		    TD = VFNMSCONJ(Tj, Tg); | ||
|  | 		    TE = VADD(Tu, Tv); | ||
|  | 		    TF = VMUL(LDK(KP866025403), VSUB(TD, TE)); | ||
|  | 		    TP = VMUL(LDK(KP866025403), VADD(TE, TD)); | ||
|  | 		    To = VFNMS(LDK(KP500000000), VCONJ(Tn), Tm); | ||
|  | 		    Ts = VFNMS(LDK(KP500000000), Tr, Tq); | ||
|  | 		    Tt = VSUB(To, Ts); | ||
|  | 		    TB = VADD(To, Ts); | ||
|  | 		    TW = VADD(T2, T5); | ||
|  | 		    TX = VFMACONJ(T7, Tb); | ||
|  | 		    TY = VSUB(TW, TX); | ||
|  | 		    T1e = VADD(TW, TX); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T1l, T12, TG, TU, Ty, T1k, TV, TC, Tz, TT, Tl, Tx, T1, T1j, TH; | ||
|  | 		    V TI, T1n, T1m, T14, T13, T18, T1g, TQ, T16, TM, T1c, T17, T1d, TO, TN; | ||
|  | 		    V T15, TK, TL, TJ, T1b, TR, TS, T1i, T1h, T1a, T19; | ||
|  | 		    T1l = VADD(T1e, T1f); | ||
|  | 		    TV = LDW(&(W[TWVL * 4])); | ||
|  | 		    T12 = VZMULI(TV, VFNMSI(T11, TY)); | ||
|  | 		    TC = VSUB(TA, TB); | ||
|  | 		    Tz = LDW(&(W[TWVL * 18])); | ||
|  | 		    TG = VZMUL(Tz, VFNMSI(TF, TC)); | ||
|  | 		    TT = LDW(&(W[TWVL * 2])); | ||
|  | 		    TU = VZMUL(TT, VFMAI(TF, TC)); | ||
|  | 		    Tl = VFMA(LDK(KP866025403), Tk, Td); | ||
|  | 		    Tx = VFMA(LDK(KP866025403), Tw, Tt); | ||
|  | 		    T1 = LDW(&(W[TWVL * 20])); | ||
|  | 		    Ty = VZMULI(T1, VFNMSI(Tx, Tl)); | ||
|  | 		    T1j = LDW(&(W[0])); | ||
|  | 		    T1k = VZMULI(T1j, VFMAI(Tx, Tl)); | ||
|  | 		    TH = VADD(Ty, TG); | ||
|  | 		    ST(&(Rp[WS(rs, 5)]), TH, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    TI = VCONJ(VSUB(TG, Ty)); | ||
|  | 		    ST(&(Rm[WS(rs, 5)]), TI, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1n = VCONJ(VSUB(T1l, T1k)); | ||
|  | 		    ST(&(Rm[0]), T1n, -ms, &(Rm[0])); | ||
|  | 		    T1m = VADD(T1k, T1l); | ||
|  | 		    ST(&(Rp[0]), T1m, ms, &(Rp[0])); | ||
|  | 		    T14 = VADD(TU, T12); | ||
|  | 		    ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T13 = VCONJ(VSUB(TU, T12)); | ||
|  | 		    ST(&(Rm[WS(rs, 1)]), T13, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T17 = LDW(&(W[TWVL * 16])); | ||
|  | 		    T18 = VZMULI(T17, VFMAI(T11, TY)); | ||
|  | 		    T1d = LDW(&(W[TWVL * 10])); | ||
|  | 		    T1g = VZMUL(T1d, VSUB(T1e, T1f)); | ||
|  | 		    TO = VADD(TA, TB); | ||
|  | 		    TN = LDW(&(W[TWVL * 6])); | ||
|  | 		    TQ = VZMUL(TN, VFMAI(TP, TO)); | ||
|  | 		    T15 = LDW(&(W[TWVL * 14])); | ||
|  | 		    T16 = VZMUL(T15, VFNMSI(TP, TO)); | ||
|  | 		    TK = VFNMS(LDK(KP866025403), Tk, Td); | ||
|  | 		    TL = VFNMS(LDK(KP866025403), Tw, Tt); | ||
|  | 		    TJ = LDW(&(W[TWVL * 8])); | ||
|  | 		    TM = VZMULI(TJ, VFMAI(TL, TK)); | ||
|  | 		    T1b = LDW(&(W[TWVL * 12])); | ||
|  | 		    T1c = VZMULI(T1b, VFNMSI(TL, TK)); | ||
|  | 		    TR = VADD(TM, TQ); | ||
|  | 		    ST(&(Rp[WS(rs, 2)]), TR, ms, &(Rp[0])); | ||
|  | 		    TS = VCONJ(VSUB(TQ, TM)); | ||
|  | 		    ST(&(Rm[WS(rs, 2)]), TS, -ms, &(Rm[0])); | ||
|  | 		    T1i = VCONJ(VSUB(T1g, T1c)); | ||
|  | 		    ST(&(Rm[WS(rs, 3)]), T1i, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1h = VADD(T1c, T1g); | ||
|  | 		    ST(&(Rp[WS(rs, 3)]), T1h, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1a = VADD(T16, T18); | ||
|  | 		    ST(&(Rp[WS(rs, 4)]), T1a, ms, &(Rp[0])); | ||
|  | 		    T19 = VCONJ(VSUB(T16, T18)); | ||
|  | 		    ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      VTW(1, 8), | ||
|  |      VTW(1, 9), | ||
|  |      VTW(1, 10), | ||
|  |      VTW(1, 11), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, { 45, 25, 26, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cbdftv_12) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include rdft/simd/hc2cbv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 71 FP additions, 30 FP multiplications, | ||
|  |  * (or, 67 additions, 26 multiplications, 4 fused multiply/add), | ||
|  |  * 90 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cbv.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) { | ||
|  | 	       V TY, TZ, Tf, TC, Tq, TG, Tm, TF, Ty, TD, T13, T1h, T2, T9, T3; | ||
|  | 	       V T5, T6, Tc, Tb, Td, T8, T4, Ta, T7, Te, To, Tp, Tr, Tv, Ti; | ||
|  | 	       V Ts, Tl, Tw, Tu, Tg, Th, Tj, Tk, Tt, Tx, T11, T12; | ||
|  | 	       T2 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T8 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       T9 = VCONJ(T8); | ||
|  | 	       T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | ||
|  | 	       T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       T5 = VCONJ(T4); | ||
|  | 	       T6 = VADD(T3, T5); | ||
|  | 	       Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Tb = VCONJ(Ta); | ||
|  | 	       Td = VADD(Tb, Tc); | ||
|  | 	       TY = VADD(T2, T6); | ||
|  | 	       TZ = VADD(T9, Td); | ||
|  | 	       T7 = VFNMS(LDK(KP500000000), T6, T2); | ||
|  | 	       Te = VFNMS(LDK(KP500000000), Td, T9); | ||
|  | 	       Tf = VSUB(T7, Te); | ||
|  | 	       TC = VADD(T7, Te); | ||
|  | 	       To = VSUB(T3, T5); | ||
|  | 	       Tp = VSUB(Tb, Tc); | ||
|  | 	       Tq = VMUL(LDK(KP866025403), VSUB(To, Tp)); | ||
|  | 	       TG = VADD(To, Tp); | ||
|  | 	       Tr = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tu = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       Tv = VCONJ(Tu); | ||
|  | 	       Tg = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | ||
|  | 	       Th = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       Ti = VCONJ(VSUB(Tg, Th)); | ||
|  | 	       Ts = VCONJ(VADD(Tg, Th)); | ||
|  | 	       Tj = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tl = VSUB(Tj, Tk); | ||
|  | 	       Tw = VADD(Tj, Tk); | ||
|  | 	       Tm = VMUL(LDK(KP866025403), VSUB(Ti, Tl)); | ||
|  | 	       TF = VADD(Ti, Tl); | ||
|  | 	       Tt = VFNMS(LDK(KP500000000), Ts, Tr); | ||
|  | 	       Tx = VFNMS(LDK(KP500000000), Tw, Tv); | ||
|  | 	       Ty = VSUB(Tt, Tx); | ||
|  | 	       TD = VADD(Tt, Tx); | ||
|  | 	       T11 = VADD(Tr, Ts); | ||
|  | 	       T12 = VADD(Tv, Tw); | ||
|  | 	       T13 = VBYI(VSUB(T11, T12)); | ||
|  | 	       T1h = VADD(T11, T12); | ||
|  | 	       { | ||
|  | 		    V T1n, T1i, T14, T1a, TA, T1m, TS, T18, TO, T1e, TI, TW, T1g, T1f, T10; | ||
|  | 		    V TX, T19, Tn, Tz, T1, T1l, TQ, TR, TP, T17, TM, TN, TL, T1d, TE; | ||
|  | 		    V TH, TB, TV, TJ, T1p, T1k, TT, T1o, TK, TU, T1j, T1b, T16, T1c, T15; | ||
|  | 		    T1g = VADD(TY, TZ); | ||
|  | 		    T1n = VADD(T1g, T1h); | ||
|  | 		    T1f = LDW(&(W[TWVL * 10])); | ||
|  | 		    T1i = VZMUL(T1f, VSUB(T1g, T1h)); | ||
|  | 		    T10 = VSUB(TY, TZ); | ||
|  | 		    TX = LDW(&(W[TWVL * 4])); | ||
|  | 		    T14 = VZMULI(TX, VSUB(T10, T13)); | ||
|  | 		    T19 = LDW(&(W[TWVL * 16])); | ||
|  | 		    T1a = VZMULI(T19, VADD(T10, T13)); | ||
|  | 		    Tn = VSUB(Tf, Tm); | ||
|  | 		    Tz = VBYI(VADD(Tq, Ty)); | ||
|  | 		    T1 = LDW(&(W[TWVL * 20])); | ||
|  | 		    TA = VZMULI(T1, VSUB(Tn, Tz)); | ||
|  | 		    T1l = LDW(&(W[0])); | ||
|  | 		    T1m = VZMULI(T1l, VADD(Tn, Tz)); | ||
|  | 		    TQ = VBYI(VMUL(LDK(KP866025403), VADD(TG, TF))); | ||
|  | 		    TR = VADD(TC, TD); | ||
|  | 		    TP = LDW(&(W[TWVL * 6])); | ||
|  | 		    TS = VZMUL(TP, VADD(TQ, TR)); | ||
|  | 		    T17 = LDW(&(W[TWVL * 14])); | ||
|  | 		    T18 = VZMUL(T17, VSUB(TR, TQ)); | ||
|  | 		    TM = VADD(Tf, Tm); | ||
|  | 		    TN = VBYI(VSUB(Ty, Tq)); | ||
|  | 		    TL = LDW(&(W[TWVL * 8])); | ||
|  | 		    TO = VZMULI(TL, VADD(TM, TN)); | ||
|  | 		    T1d = LDW(&(W[TWVL * 12])); | ||
|  | 		    T1e = VZMULI(T1d, VSUB(TM, TN)); | ||
|  | 		    TE = VSUB(TC, TD); | ||
|  | 		    TH = VBYI(VMUL(LDK(KP866025403), VSUB(TF, TG))); | ||
|  | 		    TB = LDW(&(W[TWVL * 18])); | ||
|  | 		    TI = VZMUL(TB, VSUB(TE, TH)); | ||
|  | 		    TV = LDW(&(W[TWVL * 2])); | ||
|  | 		    TW = VZMUL(TV, VADD(TH, TE)); | ||
|  | 		    TJ = VADD(TA, TI); | ||
|  | 		    ST(&(Rp[WS(rs, 5)]), TJ, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1p = VCONJ(VSUB(T1n, T1m)); | ||
|  | 		    ST(&(Rm[0]), T1p, -ms, &(Rm[0])); | ||
|  | 		    T1k = VCONJ(VSUB(T1i, T1e)); | ||
|  | 		    ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    TT = VADD(TO, TS); | ||
|  | 		    ST(&(Rp[WS(rs, 2)]), TT, ms, &(Rp[0])); | ||
|  | 		    T1o = VADD(T1m, T1n); | ||
|  | 		    ST(&(Rp[0]), T1o, ms, &(Rp[0])); | ||
|  | 		    TK = VCONJ(VSUB(TI, TA)); | ||
|  | 		    ST(&(Rm[WS(rs, 5)]), TK, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    TU = VCONJ(VSUB(TS, TO)); | ||
|  | 		    ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0])); | ||
|  | 		    T1j = VADD(T1e, T1i); | ||
|  | 		    ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1b = VCONJ(VSUB(T18, T1a)); | ||
|  | 		    ST(&(Rm[WS(rs, 4)]), T1b, -ms, &(Rm[0])); | ||
|  | 		    T16 = VADD(TW, T14); | ||
|  | 		    ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1c = VADD(T18, T1a); | ||
|  | 		    ST(&(Rp[WS(rs, 4)]), T1c, ms, &(Rp[0])); | ||
|  | 		    T15 = VCONJ(VSUB(TW, T14)); | ||
|  | 		    ST(&(Rm[WS(rs, 1)]), T15, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      VTW(1, 8), | ||
|  |      VTW(1, 9), | ||
|  |      VTW(1, 10), | ||
|  |      VTW(1, 11), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, { 67, 26, 4, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cbdftv_12) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |