514 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			514 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:50 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 102 FP additions, 72 FP multiplications, | ||
|  |  * (or, 48 additions, 18 multiplications, 54 fused multiply/add), | ||
|  |  * 47 stack variables, 4 constants, and 40 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { | ||
|  | 	       E TH, T1B, TB, T11, T1E, T1G, TK, TM, T1x, T1V, T3, T1g, Tl, T1I, T1J; | ||
|  | 	       E TO, TP, T1p, Ti, Tk, T1n, T1o, TF, TG; | ||
|  | 	       TF = ci[WS(rs, 9)]; | ||
|  | 	       TG = cr[WS(rs, 5)]; | ||
|  | 	       TH = TF - TG; | ||
|  | 	       T1B = TF + TG; | ||
|  | 	       { | ||
|  | 		    E Tp, T1u, Tz, T1s, Ts, T1v, Tw, T1r; | ||
|  | 		    { | ||
|  | 			 E Tn, To, Tx, Ty; | ||
|  | 			 Tn = ci[WS(rs, 5)]; | ||
|  | 			 To = cr[WS(rs, 9)]; | ||
|  | 			 Tp = Tn - To; | ||
|  | 			 T1u = Tn + To; | ||
|  | 			 Tx = ci[WS(rs, 6)]; | ||
|  | 			 Ty = cr[WS(rs, 8)]; | ||
|  | 			 Tz = Tx - Ty; | ||
|  | 			 T1s = Tx + Ty; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, Tu, Tv; | ||
|  | 			 Tq = ci[WS(rs, 8)]; | ||
|  | 			 Tr = cr[WS(rs, 6)]; | ||
|  | 			 Ts = Tq - Tr; | ||
|  | 			 T1v = Tq + Tr; | ||
|  | 			 Tu = ci[WS(rs, 7)]; | ||
|  | 			 Tv = cr[WS(rs, 7)]; | ||
|  | 			 Tw = Tu - Tv; | ||
|  | 			 T1r = Tu + Tv; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tt, TA, T1C, T1D; | ||
|  | 			 Tt = Tp - Ts; | ||
|  | 			 TA = Tw - Tz; | ||
|  | 			 TB = FNMS(KP618033988, TA, Tt); | ||
|  | 			 T11 = FMA(KP618033988, Tt, TA); | ||
|  | 			 T1C = T1r - T1s; | ||
|  | 			 T1D = T1u - T1v; | ||
|  | 			 T1E = T1C + T1D; | ||
|  | 			 T1G = T1C - T1D; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TI, TJ, T1t, T1w; | ||
|  | 			 TI = Tw + Tz; | ||
|  | 			 TJ = Tp + Ts; | ||
|  | 			 TK = TI + TJ; | ||
|  | 			 TM = TI - TJ; | ||
|  | 			 T1t = T1r + T1s; | ||
|  | 			 T1w = T1u + T1v; | ||
|  | 			 T1x = FMA(KP618033988, T1w, T1t); | ||
|  | 			 T1V = FNMS(KP618033988, T1t, T1w); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Td, T1k, Tg, T1l, Th, T1m, T6, T1h, T9, T1i, Ta, T1j, T1, T2; | ||
|  | 		    T1 = cr[0]; | ||
|  | 		    T2 = ci[WS(rs, 4)]; | ||
|  | 		    T3 = T1 + T2; | ||
|  | 		    T1g = T1 - T2; | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Te, Tf; | ||
|  | 			 Tb = cr[WS(rs, 4)]; | ||
|  | 			 Tc = ci[0]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 T1k = Tb - Tc; | ||
|  | 			 Te = ci[WS(rs, 3)]; | ||
|  | 			 Tf = cr[WS(rs, 1)]; | ||
|  | 			 Tg = Te + Tf; | ||
|  | 			 T1l = Te - Tf; | ||
|  | 		    } | ||
|  | 		    Th = Td + Tg; | ||
|  | 		    T1m = T1k + T1l; | ||
|  | 		    { | ||
|  | 			 E T4, T5, T7, T8; | ||
|  | 			 T4 = cr[WS(rs, 2)]; | ||
|  | 			 T5 = ci[WS(rs, 2)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T1h = T4 - T5; | ||
|  | 			 T7 = ci[WS(rs, 1)]; | ||
|  | 			 T8 = cr[WS(rs, 3)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 T1i = T7 - T8; | ||
|  | 		    } | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    T1j = T1h + T1i; | ||
|  | 		    Tl = Ta - Th; | ||
|  | 		    T1I = T1h - T1i; | ||
|  | 		    T1J = T1k - T1l; | ||
|  | 		    TO = Td - Tg; | ||
|  | 		    TP = T6 - T9; | ||
|  | 		    T1p = T1j - T1m; | ||
|  | 		    Ti = Ta + Th; | ||
|  | 		    Tk = FNMS(KP250000000, Ti, T3); | ||
|  | 		    T1n = T1j + T1m; | ||
|  | 		    T1o = FNMS(KP250000000, T1n, T1g); | ||
|  | 	       } | ||
|  | 	       cr[0] = T3 + Ti; | ||
|  | 	       ci[0] = TH + TK; | ||
|  | 	       { | ||
|  | 		    E T2d, T29, T2b, T2c, T2e, T2a; | ||
|  | 		    T2d = T1B + T1E; | ||
|  | 		    T2a = T1g + T1n; | ||
|  | 		    T29 = W[8]; | ||
|  | 		    T2b = T29 * T2a; | ||
|  | 		    T2c = W[9]; | ||
|  | 		    T2e = T2c * T2a; | ||
|  | 		    cr[WS(rs, 5)] = FNMS(T2c, T2d, T2b); | ||
|  | 		    ci[WS(rs, 5)] = FMA(T29, T2d, T2e); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TQ, T16, TC, TU, TN, T15, T12, T1a, Tm, TL, T10; | ||
|  | 		    TQ = FNMS(KP618033988, TP, TO); | ||
|  | 		    T16 = FMA(KP618033988, TO, TP); | ||
|  | 		    Tm = FNMS(KP559016994, Tl, Tk); | ||
|  | 		    TC = FMA(KP951056516, TB, Tm); | ||
|  | 		    TU = FNMS(KP951056516, TB, Tm); | ||
|  | 		    TL = FNMS(KP250000000, TK, TH); | ||
|  | 		    TN = FNMS(KP559016994, TM, TL); | ||
|  | 		    T15 = FMA(KP559016994, TM, TL); | ||
|  | 		    T10 = FMA(KP559016994, Tl, Tk); | ||
|  | 		    T12 = FMA(KP951056516, T11, T10); | ||
|  | 		    T1a = FNMS(KP951056516, T11, T10); | ||
|  | 		    { | ||
|  | 			 E TR, TE, TS, Tj, TD; | ||
|  | 			 TR = FNMS(KP951056516, TQ, TN); | ||
|  | 			 TE = W[3]; | ||
|  | 			 TS = TE * TC; | ||
|  | 			 Tj = W[2]; | ||
|  | 			 TD = Tj * TC; | ||
|  | 			 cr[WS(rs, 2)] = FNMS(TE, TR, TD); | ||
|  | 			 ci[WS(rs, 2)] = FMA(Tj, TR, TS); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1d, T1c, T1e, T19, T1b; | ||
|  | 			 T1d = FMA(KP951056516, T16, T15); | ||
|  | 			 T1c = W[11]; | ||
|  | 			 T1e = T1c * T1a; | ||
|  | 			 T19 = W[10]; | ||
|  | 			 T1b = T19 * T1a; | ||
|  | 			 cr[WS(rs, 6)] = FNMS(T1c, T1d, T1b); | ||
|  | 			 ci[WS(rs, 6)] = FMA(T19, T1d, T1e); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TX, TW, TY, TT, TV; | ||
|  | 			 TX = FMA(KP951056516, TQ, TN); | ||
|  | 			 TW = W[15]; | ||
|  | 			 TY = TW * TU; | ||
|  | 			 TT = W[14]; | ||
|  | 			 TV = TT * TU; | ||
|  | 			 cr[WS(rs, 8)] = FNMS(TW, TX, TV); | ||
|  | 			 ci[WS(rs, 8)] = FMA(TT, TX, TY); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T17, T14, T18, TZ, T13; | ||
|  | 			 T17 = FNMS(KP951056516, T16, T15); | ||
|  | 			 T14 = W[7]; | ||
|  | 			 T18 = T14 * T12; | ||
|  | 			 TZ = W[6]; | ||
|  | 			 T13 = TZ * T12; | ||
|  | 			 cr[WS(rs, 4)] = FNMS(T14, T17, T13); | ||
|  | 			 ci[WS(rs, 4)] = FMA(TZ, T17, T18); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1K, T20, T1y, T1O, T1H, T1Z, T1W, T24, T1q, T1F, T1U; | ||
|  | 		    T1K = FMA(KP618033988, T1J, T1I); | ||
|  | 		    T20 = FNMS(KP618033988, T1I, T1J); | ||
|  | 		    T1q = FMA(KP559016994, T1p, T1o); | ||
|  | 		    T1y = FNMS(KP951056516, T1x, T1q); | ||
|  | 		    T1O = FMA(KP951056516, T1x, T1q); | ||
|  | 		    T1F = FNMS(KP250000000, T1E, T1B); | ||
|  | 		    T1H = FMA(KP559016994, T1G, T1F); | ||
|  | 		    T1Z = FNMS(KP559016994, T1G, T1F); | ||
|  | 		    T1U = FNMS(KP559016994, T1p, T1o); | ||
|  | 		    T1W = FNMS(KP951056516, T1V, T1U); | ||
|  | 		    T24 = FMA(KP951056516, T1V, T1U); | ||
|  | 		    { | ||
|  | 			 E T1L, T1A, T1M, T1f, T1z; | ||
|  | 			 T1L = FMA(KP951056516, T1K, T1H); | ||
|  | 			 T1A = W[1]; | ||
|  | 			 T1M = T1A * T1y; | ||
|  | 			 T1f = W[0]; | ||
|  | 			 T1z = T1f * T1y; | ||
|  | 			 cr[WS(rs, 1)] = FNMS(T1A, T1L, T1z); | ||
|  | 			 ci[WS(rs, 1)] = FMA(T1f, T1L, T1M); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T27, T26, T28, T23, T25; | ||
|  | 			 T27 = FNMS(KP951056516, T20, T1Z); | ||
|  | 			 T26 = W[13]; | ||
|  | 			 T28 = T26 * T24; | ||
|  | 			 T23 = W[12]; | ||
|  | 			 T25 = T23 * T24; | ||
|  | 			 cr[WS(rs, 7)] = FNMS(T26, T27, T25); | ||
|  | 			 ci[WS(rs, 7)] = FMA(T23, T27, T28); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1R, T1Q, T1S, T1N, T1P; | ||
|  | 			 T1R = FNMS(KP951056516, T1K, T1H); | ||
|  | 			 T1Q = W[17]; | ||
|  | 			 T1S = T1Q * T1O; | ||
|  | 			 T1N = W[16]; | ||
|  | 			 T1P = T1N * T1O; | ||
|  | 			 cr[WS(rs, 9)] = FNMS(T1Q, T1R, T1P); | ||
|  | 			 ci[WS(rs, 9)] = FMA(T1N, T1R, T1S); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T21, T1Y, T22, T1T, T1X; | ||
|  | 			 T21 = FMA(KP951056516, T20, T1Z); | ||
|  | 			 T1Y = W[5]; | ||
|  | 			 T22 = T1Y * T1W; | ||
|  | 			 T1T = W[4]; | ||
|  | 			 T1X = T1T * T1W; | ||
|  | 			 cr[WS(rs, 3)] = FNMS(T1Y, T21, T1X); | ||
|  | 			 ci[WS(rs, 3)] = FMA(T1T, T21, T22); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 10 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, { 48, 18, 54, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb_10) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb_10, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 102 FP additions, 60 FP multiplications, | ||
|  |  * (or, 72 additions, 30 multiplications, 30 fused multiply/add), | ||
|  |  * 41 stack variables, 4 constants, and 40 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { | ||
|  | 	       E T3, T18, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, TJ, T1i, Tt, TA, T1w; | ||
|  | 	       E T1v, T1p, T1E, TM, TO; | ||
|  | 	       { | ||
|  | 		    E T1, T2, TH, TI; | ||
|  | 		    T1 = cr[0]; | ||
|  | 		    T2 = ci[WS(rs, 4)]; | ||
|  | 		    T3 = T1 + T2; | ||
|  | 		    T18 = T1 - T2; | ||
|  | 		    { | ||
|  | 			 E T6, T19, Tg, T1d, T9, T1a, Td, T1c; | ||
|  | 			 { | ||
|  | 			      E T4, T5, Te, Tf; | ||
|  | 			      T4 = cr[WS(rs, 2)]; | ||
|  | 			      T5 = ci[WS(rs, 2)]; | ||
|  | 			      T6 = T4 + T5; | ||
|  | 			      T19 = T4 - T5; | ||
|  | 			      Te = ci[WS(rs, 3)]; | ||
|  | 			      Tf = cr[WS(rs, 1)]; | ||
|  | 			      Tg = Te + Tf; | ||
|  | 			      T1d = Te - Tf; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T7, T8, Tb, Tc; | ||
|  | 			      T7 = ci[WS(rs, 1)]; | ||
|  | 			      T8 = cr[WS(rs, 3)]; | ||
|  | 			      T9 = T7 + T8; | ||
|  | 			      T1a = T7 - T8; | ||
|  | 			      Tb = cr[WS(rs, 4)]; | ||
|  | 			      Tc = ci[0]; | ||
|  | 			      Td = Tb + Tc; | ||
|  | 			      T1c = Tb - Tc; | ||
|  | 			 } | ||
|  | 			 TE = T6 - T9; | ||
|  | 			 TF = Td - Tg; | ||
|  | 			 T1B = T1c - T1d; | ||
|  | 			 T1A = T19 - T1a; | ||
|  | 			 { | ||
|  | 			      E T1b, T1e, Ta, Th; | ||
|  | 			      T1b = T19 + T1a; | ||
|  | 			      T1e = T1c + T1d; | ||
|  | 			      T1f = T1b + T1e; | ||
|  | 			      T1t = KP559016994 * (T1b - T1e); | ||
|  | 			      Ta = T6 + T9; | ||
|  | 			      Th = Td + Tg; | ||
|  | 			      Ti = Ta + Th; | ||
|  | 			      Tl = KP559016994 * (Ta - Th); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    TH = ci[WS(rs, 9)]; | ||
|  | 		    TI = cr[WS(rs, 5)]; | ||
|  | 		    TJ = TH - TI; | ||
|  | 		    T1i = TH + TI; | ||
|  | 		    { | ||
|  | 			 E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m; | ||
|  | 			 { | ||
|  | 			      E Tn, To, Tx, Ty; | ||
|  | 			      Tn = ci[WS(rs, 7)]; | ||
|  | 			      To = cr[WS(rs, 7)]; | ||
|  | 			      Tp = Tn - To; | ||
|  | 			      T1j = Tn + To; | ||
|  | 			      Tx = ci[WS(rs, 8)]; | ||
|  | 			      Ty = cr[WS(rs, 6)]; | ||
|  | 			      Tz = Tx - Ty; | ||
|  | 			      T1n = Tx + Ty; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tq, Tr, Tu, Tv; | ||
|  | 			      Tq = ci[WS(rs, 6)]; | ||
|  | 			      Tr = cr[WS(rs, 8)]; | ||
|  | 			      Ts = Tq - Tr; | ||
|  | 			      T1k = Tq + Tr; | ||
|  | 			      Tu = ci[WS(rs, 5)]; | ||
|  | 			      Tv = cr[WS(rs, 9)]; | ||
|  | 			      Tw = Tu - Tv; | ||
|  | 			      T1m = Tu + Tv; | ||
|  | 			 } | ||
|  | 			 Tt = Tp - Ts; | ||
|  | 			 TA = Tw - Tz; | ||
|  | 			 T1w = T1m + T1n; | ||
|  | 			 T1v = T1j + T1k; | ||
|  | 			 { | ||
|  | 			      E T1l, T1o, TK, TL; | ||
|  | 			      T1l = T1j - T1k; | ||
|  | 			      T1o = T1m - T1n; | ||
|  | 			      T1p = T1l + T1o; | ||
|  | 			      T1E = KP559016994 * (T1l - T1o); | ||
|  | 			      TK = Tp + Ts; | ||
|  | 			      TL = Tw + Tz; | ||
|  | 			      TM = TK + TL; | ||
|  | 			      TO = KP559016994 * (TK - TL); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       cr[0] = T3 + Ti; | ||
|  | 	       ci[0] = TJ + TM; | ||
|  | 	       { | ||
|  | 		    E T1g, T1q, T17, T1h; | ||
|  | 		    T1g = T18 + T1f; | ||
|  | 		    T1q = T1i + T1p; | ||
|  | 		    T17 = W[8]; | ||
|  | 		    T1h = W[9]; | ||
|  | 		    cr[WS(rs, 5)] = FNMS(T1h, T1q, T17 * T1g); | ||
|  | 		    ci[WS(rs, 5)] = FMA(T1h, T1g, T17 * T1q); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk; | ||
|  | 		    TB = FNMS(KP951056516, TA, KP587785252 * Tt); | ||
|  | 		    TG = FNMS(KP951056516, TF, KP587785252 * TE); | ||
|  | 		    T11 = FMA(KP951056516, TE, KP587785252 * TF); | ||
|  | 		    TX = FMA(KP951056516, Tt, KP587785252 * TA); | ||
|  | 		    TN = FNMS(KP250000000, TM, TJ); | ||
|  | 		    TP = TN - TO; | ||
|  | 		    T10 = TO + TN; | ||
|  | 		    Tk = FNMS(KP250000000, Ti, T3); | ||
|  | 		    Tm = Tk - Tl; | ||
|  | 		    TW = Tl + Tk; | ||
|  | 		    { | ||
|  | 			 E TC, TQ, Tj, TD; | ||
|  | 			 TC = Tm - TB; | ||
|  | 			 TQ = TG + TP; | ||
|  | 			 Tj = W[2]; | ||
|  | 			 TD = W[3]; | ||
|  | 			 cr[WS(rs, 2)] = FNMS(TD, TQ, Tj * TC); | ||
|  | 			 ci[WS(rs, 2)] = FMA(TD, TC, Tj * TQ); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T14, T16, T13, T15; | ||
|  | 			 T14 = TW - TX; | ||
|  | 			 T16 = T11 + T10; | ||
|  | 			 T13 = W[10]; | ||
|  | 			 T15 = W[11]; | ||
|  | 			 cr[WS(rs, 6)] = FNMS(T15, T16, T13 * T14); | ||
|  | 			 ci[WS(rs, 6)] = FMA(T15, T14, T13 * T16); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TS, TU, TR, TT; | ||
|  | 			 TS = Tm + TB; | ||
|  | 			 TU = TP - TG; | ||
|  | 			 TR = W[14]; | ||
|  | 			 TT = W[15]; | ||
|  | 			 cr[WS(rs, 8)] = FNMS(TT, TU, TR * TS); | ||
|  | 			 ci[WS(rs, 8)] = FMA(TT, TS, TR * TU); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TY, T12, TV, TZ; | ||
|  | 			 TY = TW + TX; | ||
|  | 			 T12 = T10 - T11; | ||
|  | 			 TV = W[6]; | ||
|  | 			 TZ = W[7]; | ||
|  | 			 cr[WS(rs, 4)] = FNMS(TZ, T12, TV * TY); | ||
|  | 			 ci[WS(rs, 4)] = FMA(TZ, TY, TV * T12); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s; | ||
|  | 		    T1x = FNMS(KP951056516, T1w, KP587785252 * T1v); | ||
|  | 		    T1C = FNMS(KP951056516, T1B, KP587785252 * T1A); | ||
|  | 		    T1Q = FMA(KP951056516, T1A, KP587785252 * T1B); | ||
|  | 		    T1N = FMA(KP951056516, T1v, KP587785252 * T1w); | ||
|  | 		    T1D = FNMS(KP250000000, T1p, T1i); | ||
|  | 		    T1F = T1D - T1E; | ||
|  | 		    T1R = T1E + T1D; | ||
|  | 		    T1s = FNMS(KP250000000, T1f, T18); | ||
|  | 		    T1u = T1s - T1t; | ||
|  | 		    T1M = T1t + T1s; | ||
|  | 		    { | ||
|  | 			 E T1y, T1G, T1r, T1z; | ||
|  | 			 T1y = T1u - T1x; | ||
|  | 			 T1G = T1C + T1F; | ||
|  | 			 T1r = W[12]; | ||
|  | 			 T1z = W[13]; | ||
|  | 			 cr[WS(rs, 7)] = FNMS(T1z, T1G, T1r * T1y); | ||
|  | 			 ci[WS(rs, 7)] = FMA(T1r, T1G, T1z * T1y); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1U, T1W, T1T, T1V; | ||
|  | 			 T1U = T1M + T1N; | ||
|  | 			 T1W = T1R - T1Q; | ||
|  | 			 T1T = W[16]; | ||
|  | 			 T1V = W[17]; | ||
|  | 			 cr[WS(rs, 9)] = FNMS(T1V, T1W, T1T * T1U); | ||
|  | 			 ci[WS(rs, 9)] = FMA(T1T, T1W, T1V * T1U); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1I, T1K, T1H, T1J; | ||
|  | 			 T1I = T1u + T1x; | ||
|  | 			 T1K = T1F - T1C; | ||
|  | 			 T1H = W[4]; | ||
|  | 			 T1J = W[5]; | ||
|  | 			 cr[WS(rs, 3)] = FNMS(T1J, T1K, T1H * T1I); | ||
|  | 			 ci[WS(rs, 3)] = FMA(T1H, T1K, T1J * T1I); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1O, T1S, T1L, T1P; | ||
|  | 			 T1O = T1M - T1N; | ||
|  | 			 T1S = T1Q + T1R; | ||
|  | 			 T1L = W[0]; | ||
|  | 			 T1P = W[1]; | ||
|  | 			 cr[WS(rs, 1)] = FNMS(T1P, T1S, T1L * T1O); | ||
|  | 			 ci[WS(rs, 1)] = FMA(T1L, T1S, T1P * T1O); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 10 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, { 72, 30, 30, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb_10) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb_10, &desc); | ||
|  | } | ||
|  | #endif
 |