561 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			561 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:25 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name n1_16 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 144 FP additions, 40 FP multiplications, | ||
|  |  * (or, 104 additions, 0 multiplications, 40 fused multiply/add), | ||
|  |  * 50 stack variables, 3 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) { | ||
|  | 	       E T7, T1R, T25, TC, TN, T1x, T1H, T1l, Tt, T22, T2h, T1b, T1g, T1E, T1Z; | ||
|  | 	       E T1D, Te, T1S, T26, TJ, TQ, T1m, T1n, TT, Tm, T1X, T2g, T10, T15, T1B; | ||
|  | 	       E T1U, T1A; | ||
|  | 	       { | ||
|  | 		    E T3, TL, Ty, T1k, T6, T1j, TB, TM; | ||
|  | 		    { | ||
|  | 			 E T1, T2, Tw, Tx; | ||
|  | 			 T1 = ri[0]; | ||
|  | 			 T2 = ri[WS(is, 8)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 TL = T1 - T2; | ||
|  | 			 Tw = ii[0]; | ||
|  | 			 Tx = ii[WS(is, 8)]; | ||
|  | 			 Ty = Tw + Tx; | ||
|  | 			 T1k = Tw - Tx; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, Tz, TA; | ||
|  | 			 T4 = ri[WS(is, 4)]; | ||
|  | 			 T5 = ri[WS(is, 12)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T1j = T4 - T5; | ||
|  | 			 Tz = ii[WS(is, 4)]; | ||
|  | 			 TA = ii[WS(is, 12)]; | ||
|  | 			 TB = Tz + TA; | ||
|  | 			 TM = Tz - TA; | ||
|  | 		    } | ||
|  | 		    T7 = T3 + T6; | ||
|  | 		    T1R = T3 - T6; | ||
|  | 		    T25 = Ty - TB; | ||
|  | 		    TC = Ty + TB; | ||
|  | 		    TN = TL - TM; | ||
|  | 		    T1x = TL + TM; | ||
|  | 		    T1H = T1k - T1j; | ||
|  | 		    T1l = T1j + T1k; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tp, T1c, T1a, T20, Ts, T17, T1f, T21; | ||
|  | 		    { | ||
|  | 			 E Tn, To, T18, T19; | ||
|  | 			 Tn = ri[WS(is, 15)]; | ||
|  | 			 To = ri[WS(is, 7)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 T1c = Tn - To; | ||
|  | 			 T18 = ii[WS(is, 15)]; | ||
|  | 			 T19 = ii[WS(is, 7)]; | ||
|  | 			 T1a = T18 - T19; | ||
|  | 			 T20 = T18 + T19; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, T1d, T1e; | ||
|  | 			 Tq = ri[WS(is, 3)]; | ||
|  | 			 Tr = ri[WS(is, 11)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 T17 = Tq - Tr; | ||
|  | 			 T1d = ii[WS(is, 3)]; | ||
|  | 			 T1e = ii[WS(is, 11)]; | ||
|  | 			 T1f = T1d - T1e; | ||
|  | 			 T21 = T1d + T1e; | ||
|  | 		    } | ||
|  | 		    Tt = Tp + Ts; | ||
|  | 		    T22 = T20 - T21; | ||
|  | 		    T2h = T20 + T21; | ||
|  | 		    T1b = T17 + T1a; | ||
|  | 		    T1g = T1c - T1f; | ||
|  | 		    T1E = T1a - T17; | ||
|  | 		    T1Z = Tp - Ts; | ||
|  | 		    T1D = T1c + T1f; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, TP, TF, TO, Td, TR, TI, TS; | ||
|  | 		    { | ||
|  | 			 E T8, T9, TD, TE; | ||
|  | 			 T8 = ri[WS(is, 2)]; | ||
|  | 			 T9 = ri[WS(is, 10)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 TP = T8 - T9; | ||
|  | 			 TD = ii[WS(is, 2)]; | ||
|  | 			 TE = ii[WS(is, 10)]; | ||
|  | 			 TF = TD + TE; | ||
|  | 			 TO = TD - TE; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, TG, TH; | ||
|  | 			 Tb = ri[WS(is, 14)]; | ||
|  | 			 Tc = ri[WS(is, 6)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 TR = Tb - Tc; | ||
|  | 			 TG = ii[WS(is, 14)]; | ||
|  | 			 TH = ii[WS(is, 6)]; | ||
|  | 			 TI = TG + TH; | ||
|  | 			 TS = TG - TH; | ||
|  | 		    } | ||
|  | 		    Te = Ta + Td; | ||
|  | 		    T1S = TF - TI; | ||
|  | 		    T26 = Td - Ta; | ||
|  | 		    TJ = TF + TI; | ||
|  | 		    TQ = TO - TP; | ||
|  | 		    T1m = TR - TS; | ||
|  | 		    T1n = TP + TO; | ||
|  | 		    TT = TR + TS; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, T11, TZ, T1V, Tl, TW, T14, T1W; | ||
|  | 		    { | ||
|  | 			 E Tg, Th, TX, TY; | ||
|  | 			 Tg = ri[WS(is, 1)]; | ||
|  | 			 Th = ri[WS(is, 9)]; | ||
|  | 			 Ti = Tg + Th; | ||
|  | 			 T11 = Tg - Th; | ||
|  | 			 TX = ii[WS(is, 1)]; | ||
|  | 			 TY = ii[WS(is, 9)]; | ||
|  | 			 TZ = TX - TY; | ||
|  | 			 T1V = TX + TY; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj, Tk, T12, T13; | ||
|  | 			 Tj = ri[WS(is, 5)]; | ||
|  | 			 Tk = ri[WS(is, 13)]; | ||
|  | 			 Tl = Tj + Tk; | ||
|  | 			 TW = Tj - Tk; | ||
|  | 			 T12 = ii[WS(is, 5)]; | ||
|  | 			 T13 = ii[WS(is, 13)]; | ||
|  | 			 T14 = T12 - T13; | ||
|  | 			 T1W = T12 + T13; | ||
|  | 		    } | ||
|  | 		    Tm = Ti + Tl; | ||
|  | 		    T1X = T1V - T1W; | ||
|  | 		    T2g = T1V + T1W; | ||
|  | 		    T10 = TW + TZ; | ||
|  | 		    T15 = T11 - T14; | ||
|  | 		    T1B = TZ - TW; | ||
|  | 		    T1U = Ti - Tl; | ||
|  | 		    T1A = T11 + T14; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tf, Tu, T2j, T2k; | ||
|  | 		    Tf = T7 + Te; | ||
|  | 		    Tu = Tm + Tt; | ||
|  | 		    ro[WS(os, 8)] = Tf - Tu; | ||
|  | 		    ro[0] = Tf + Tu; | ||
|  | 		    T2j = TC + TJ; | ||
|  | 		    T2k = T2g + T2h; | ||
|  | 		    io[WS(os, 8)] = T2j - T2k; | ||
|  | 		    io[0] = T2j + T2k; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tv, TK, T2f, T2i; | ||
|  | 		    Tv = Tt - Tm; | ||
|  | 		    TK = TC - TJ; | ||
|  | 		    io[WS(os, 4)] = Tv + TK; | ||
|  | 		    io[WS(os, 12)] = TK - Tv; | ||
|  | 		    T2f = T7 - Te; | ||
|  | 		    T2i = T2g - T2h; | ||
|  | 		    ro[WS(os, 12)] = T2f - T2i; | ||
|  | 		    ro[WS(os, 4)] = T2f + T2i; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1T, T27, T24, T28, T1Y, T23; | ||
|  | 		    T1T = T1R + T1S; | ||
|  | 		    T27 = T25 - T26; | ||
|  | 		    T1Y = T1U + T1X; | ||
|  | 		    T23 = T1Z - T22; | ||
|  | 		    T24 = T1Y + T23; | ||
|  | 		    T28 = T23 - T1Y; | ||
|  | 		    ro[WS(os, 10)] = FNMS(KP707106781, T24, T1T); | ||
|  | 		    io[WS(os, 6)] = FMA(KP707106781, T28, T27); | ||
|  | 		    ro[WS(os, 2)] = FMA(KP707106781, T24, T1T); | ||
|  | 		    io[WS(os, 14)] = FNMS(KP707106781, T28, T27); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T29, T2d, T2c, T2e, T2a, T2b; | ||
|  | 		    T29 = T1R - T1S; | ||
|  | 		    T2d = T26 + T25; | ||
|  | 		    T2a = T1X - T1U; | ||
|  | 		    T2b = T1Z + T22; | ||
|  | 		    T2c = T2a - T2b; | ||
|  | 		    T2e = T2a + T2b; | ||
|  | 		    ro[WS(os, 14)] = FNMS(KP707106781, T2c, T29); | ||
|  | 		    io[WS(os, 2)] = FMA(KP707106781, T2e, T2d); | ||
|  | 		    ro[WS(os, 6)] = FMA(KP707106781, T2c, T29); | ||
|  | 		    io[WS(os, 10)] = FNMS(KP707106781, T2e, T2d); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TV, T1v, T1p, T1r, T1i, T1q, T1u, T1w, TU, T1o; | ||
|  | 		    TU = TQ - TT; | ||
|  | 		    TV = FMA(KP707106781, TU, TN); | ||
|  | 		    T1v = FNMS(KP707106781, TU, TN); | ||
|  | 		    T1o = T1m - T1n; | ||
|  | 		    T1p = FNMS(KP707106781, T1o, T1l); | ||
|  | 		    T1r = FMA(KP707106781, T1o, T1l); | ||
|  | 		    { | ||
|  | 			 E T16, T1h, T1s, T1t; | ||
|  | 			 T16 = FMA(KP414213562, T15, T10); | ||
|  | 			 T1h = FNMS(KP414213562, T1g, T1b); | ||
|  | 			 T1i = T16 - T1h; | ||
|  | 			 T1q = T16 + T1h; | ||
|  | 			 T1s = FMA(KP414213562, T1b, T1g); | ||
|  | 			 T1t = FNMS(KP414213562, T10, T15); | ||
|  | 			 T1u = T1s - T1t; | ||
|  | 			 T1w = T1t + T1s; | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 11)] = FNMS(KP923879532, T1i, TV); | ||
|  | 		    io[WS(os, 11)] = FNMS(KP923879532, T1u, T1r); | ||
|  | 		    ro[WS(os, 3)] = FMA(KP923879532, T1i, TV); | ||
|  | 		    io[WS(os, 3)] = FMA(KP923879532, T1u, T1r); | ||
|  | 		    io[WS(os, 7)] = FNMS(KP923879532, T1q, T1p); | ||
|  | 		    ro[WS(os, 7)] = FNMS(KP923879532, T1w, T1v); | ||
|  | 		    io[WS(os, 15)] = FMA(KP923879532, T1q, T1p); | ||
|  | 		    ro[WS(os, 15)] = FMA(KP923879532, T1w, T1v); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1z, T1L, T1J, T1P, T1G, T1K, T1O, T1Q, T1y, T1I; | ||
|  | 		    T1y = T1n + T1m; | ||
|  | 		    T1z = FMA(KP707106781, T1y, T1x); | ||
|  | 		    T1L = FNMS(KP707106781, T1y, T1x); | ||
|  | 		    T1I = TQ + TT; | ||
|  | 		    T1J = FNMS(KP707106781, T1I, T1H); | ||
|  | 		    T1P = FMA(KP707106781, T1I, T1H); | ||
|  | 		    { | ||
|  | 			 E T1C, T1F, T1M, T1N; | ||
|  | 			 T1C = FMA(KP414213562, T1B, T1A); | ||
|  | 			 T1F = FNMS(KP414213562, T1E, T1D); | ||
|  | 			 T1G = T1C + T1F; | ||
|  | 			 T1K = T1F - T1C; | ||
|  | 			 T1M = FNMS(KP414213562, T1A, T1B); | ||
|  | 			 T1N = FMA(KP414213562, T1D, T1E); | ||
|  | 			 T1O = T1M - T1N; | ||
|  | 			 T1Q = T1M + T1N; | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 9)] = FNMS(KP923879532, T1G, T1z); | ||
|  | 		    io[WS(os, 9)] = FNMS(KP923879532, T1Q, T1P); | ||
|  | 		    ro[WS(os, 1)] = FMA(KP923879532, T1G, T1z); | ||
|  | 		    io[WS(os, 1)] = FMA(KP923879532, T1Q, T1P); | ||
|  | 		    io[WS(os, 13)] = FNMS(KP923879532, T1K, T1J); | ||
|  | 		    ro[WS(os, 13)] = FNMS(KP923879532, T1O, T1L); | ||
|  | 		    io[WS(os, 5)] = FMA(KP923879532, T1K, T1J); | ||
|  | 		    ro[WS(os, 5)] = FMA(KP923879532, T1O, T1L); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 16, "n1_16", { 104, 0, 40, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_16) (planner *p) { X(kdft_register) (p, n1_16, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 16 -name n1_16 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 144 FP additions, 24 FP multiplications, | ||
|  |  * (or, 136 additions, 16 multiplications, 8 fused multiply/add), | ||
|  |  * 50 stack variables, 3 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) { | ||
|  | 	       E T7, T1R, T25, TC, TN, T1x, T1H, T1l, Tt, T22, T2h, T1b, T1g, T1E, T1Z; | ||
|  | 	       E T1D, Te, T1S, T26, TJ, TQ, T1m, T1n, TT, Tm, T1X, T2g, T10, T15, T1B; | ||
|  | 	       E T1U, T1A; | ||
|  | 	       { | ||
|  | 		    E T3, TL, Ty, T1k, T6, T1j, TB, TM; | ||
|  | 		    { | ||
|  | 			 E T1, T2, Tw, Tx; | ||
|  | 			 T1 = ri[0]; | ||
|  | 			 T2 = ri[WS(is, 8)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 TL = T1 - T2; | ||
|  | 			 Tw = ii[0]; | ||
|  | 			 Tx = ii[WS(is, 8)]; | ||
|  | 			 Ty = Tw + Tx; | ||
|  | 			 T1k = Tw - Tx; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, Tz, TA; | ||
|  | 			 T4 = ri[WS(is, 4)]; | ||
|  | 			 T5 = ri[WS(is, 12)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T1j = T4 - T5; | ||
|  | 			 Tz = ii[WS(is, 4)]; | ||
|  | 			 TA = ii[WS(is, 12)]; | ||
|  | 			 TB = Tz + TA; | ||
|  | 			 TM = Tz - TA; | ||
|  | 		    } | ||
|  | 		    T7 = T3 + T6; | ||
|  | 		    T1R = T3 - T6; | ||
|  | 		    T25 = Ty - TB; | ||
|  | 		    TC = Ty + TB; | ||
|  | 		    TN = TL - TM; | ||
|  | 		    T1x = TL + TM; | ||
|  | 		    T1H = T1k - T1j; | ||
|  | 		    T1l = T1j + T1k; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tp, T17, T1f, T20, Ts, T1c, T1a, T21; | ||
|  | 		    { | ||
|  | 			 E Tn, To, T1d, T1e; | ||
|  | 			 Tn = ri[WS(is, 15)]; | ||
|  | 			 To = ri[WS(is, 7)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 T17 = Tn - To; | ||
|  | 			 T1d = ii[WS(is, 15)]; | ||
|  | 			 T1e = ii[WS(is, 7)]; | ||
|  | 			 T1f = T1d - T1e; | ||
|  | 			 T20 = T1d + T1e; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, T18, T19; | ||
|  | 			 Tq = ri[WS(is, 3)]; | ||
|  | 			 Tr = ri[WS(is, 11)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 T1c = Tq - Tr; | ||
|  | 			 T18 = ii[WS(is, 3)]; | ||
|  | 			 T19 = ii[WS(is, 11)]; | ||
|  | 			 T1a = T18 - T19; | ||
|  | 			 T21 = T18 + T19; | ||
|  | 		    } | ||
|  | 		    Tt = Tp + Ts; | ||
|  | 		    T22 = T20 - T21; | ||
|  | 		    T2h = T20 + T21; | ||
|  | 		    T1b = T17 - T1a; | ||
|  | 		    T1g = T1c + T1f; | ||
|  | 		    T1E = T1f - T1c; | ||
|  | 		    T1Z = Tp - Ts; | ||
|  | 		    T1D = T17 + T1a; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, TP, TF, TO, Td, TR, TI, TS; | ||
|  | 		    { | ||
|  | 			 E T8, T9, TD, TE; | ||
|  | 			 T8 = ri[WS(is, 2)]; | ||
|  | 			 T9 = ri[WS(is, 10)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 TP = T8 - T9; | ||
|  | 			 TD = ii[WS(is, 2)]; | ||
|  | 			 TE = ii[WS(is, 10)]; | ||
|  | 			 TF = TD + TE; | ||
|  | 			 TO = TD - TE; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, TG, TH; | ||
|  | 			 Tb = ri[WS(is, 14)]; | ||
|  | 			 Tc = ri[WS(is, 6)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 TR = Tb - Tc; | ||
|  | 			 TG = ii[WS(is, 14)]; | ||
|  | 			 TH = ii[WS(is, 6)]; | ||
|  | 			 TI = TG + TH; | ||
|  | 			 TS = TG - TH; | ||
|  | 		    } | ||
|  | 		    Te = Ta + Td; | ||
|  | 		    T1S = TF - TI; | ||
|  | 		    T26 = Td - Ta; | ||
|  | 		    TJ = TF + TI; | ||
|  | 		    TQ = TO - TP; | ||
|  | 		    T1m = TR - TS; | ||
|  | 		    T1n = TP + TO; | ||
|  | 		    TT = TR + TS; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, T11, TZ, T1V, Tl, TW, T14, T1W; | ||
|  | 		    { | ||
|  | 			 E Tg, Th, TX, TY; | ||
|  | 			 Tg = ri[WS(is, 1)]; | ||
|  | 			 Th = ri[WS(is, 9)]; | ||
|  | 			 Ti = Tg + Th; | ||
|  | 			 T11 = Tg - Th; | ||
|  | 			 TX = ii[WS(is, 1)]; | ||
|  | 			 TY = ii[WS(is, 9)]; | ||
|  | 			 TZ = TX - TY; | ||
|  | 			 T1V = TX + TY; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj, Tk, T12, T13; | ||
|  | 			 Tj = ri[WS(is, 5)]; | ||
|  | 			 Tk = ri[WS(is, 13)]; | ||
|  | 			 Tl = Tj + Tk; | ||
|  | 			 TW = Tj - Tk; | ||
|  | 			 T12 = ii[WS(is, 5)]; | ||
|  | 			 T13 = ii[WS(is, 13)]; | ||
|  | 			 T14 = T12 - T13; | ||
|  | 			 T1W = T12 + T13; | ||
|  | 		    } | ||
|  | 		    Tm = Ti + Tl; | ||
|  | 		    T1X = T1V - T1W; | ||
|  | 		    T2g = T1V + T1W; | ||
|  | 		    T10 = TW + TZ; | ||
|  | 		    T15 = T11 - T14; | ||
|  | 		    T1B = T11 + T14; | ||
|  | 		    T1U = Ti - Tl; | ||
|  | 		    T1A = TZ - TW; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tf, Tu, T2j, T2k; | ||
|  | 		    Tf = T7 + Te; | ||
|  | 		    Tu = Tm + Tt; | ||
|  | 		    ro[WS(os, 8)] = Tf - Tu; | ||
|  | 		    ro[0] = Tf + Tu; | ||
|  | 		    T2j = TC + TJ; | ||
|  | 		    T2k = T2g + T2h; | ||
|  | 		    io[WS(os, 8)] = T2j - T2k; | ||
|  | 		    io[0] = T2j + T2k; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tv, TK, T2f, T2i; | ||
|  | 		    Tv = Tt - Tm; | ||
|  | 		    TK = TC - TJ; | ||
|  | 		    io[WS(os, 4)] = Tv + TK; | ||
|  | 		    io[WS(os, 12)] = TK - Tv; | ||
|  | 		    T2f = T7 - Te; | ||
|  | 		    T2i = T2g - T2h; | ||
|  | 		    ro[WS(os, 12)] = T2f - T2i; | ||
|  | 		    ro[WS(os, 4)] = T2f + T2i; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1T, T27, T24, T28, T1Y, T23; | ||
|  | 		    T1T = T1R + T1S; | ||
|  | 		    T27 = T25 - T26; | ||
|  | 		    T1Y = T1U + T1X; | ||
|  | 		    T23 = T1Z - T22; | ||
|  | 		    T24 = KP707106781 * (T1Y + T23); | ||
|  | 		    T28 = KP707106781 * (T23 - T1Y); | ||
|  | 		    ro[WS(os, 10)] = T1T - T24; | ||
|  | 		    io[WS(os, 6)] = T27 + T28; | ||
|  | 		    ro[WS(os, 2)] = T1T + T24; | ||
|  | 		    io[WS(os, 14)] = T27 - T28; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T29, T2d, T2c, T2e, T2a, T2b; | ||
|  | 		    T29 = T1R - T1S; | ||
|  | 		    T2d = T26 + T25; | ||
|  | 		    T2a = T1X - T1U; | ||
|  | 		    T2b = T1Z + T22; | ||
|  | 		    T2c = KP707106781 * (T2a - T2b); | ||
|  | 		    T2e = KP707106781 * (T2a + T2b); | ||
|  | 		    ro[WS(os, 14)] = T29 - T2c; | ||
|  | 		    io[WS(os, 2)] = T2d + T2e; | ||
|  | 		    ro[WS(os, 6)] = T29 + T2c; | ||
|  | 		    io[WS(os, 10)] = T2d - T2e; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TV, T1r, T1p, T1v, T1i, T1q, T1u, T1w, TU, T1o; | ||
|  | 		    TU = KP707106781 * (TQ - TT); | ||
|  | 		    TV = TN + TU; | ||
|  | 		    T1r = TN - TU; | ||
|  | 		    T1o = KP707106781 * (T1m - T1n); | ||
|  | 		    T1p = T1l - T1o; | ||
|  | 		    T1v = T1l + T1o; | ||
|  | 		    { | ||
|  | 			 E T16, T1h, T1s, T1t; | ||
|  | 			 T16 = FMA(KP923879532, T10, KP382683432 * T15); | ||
|  | 			 T1h = FNMS(KP923879532, T1g, KP382683432 * T1b); | ||
|  | 			 T1i = T16 + T1h; | ||
|  | 			 T1q = T1h - T16; | ||
|  | 			 T1s = FNMS(KP923879532, T15, KP382683432 * T10); | ||
|  | 			 T1t = FMA(KP382683432, T1g, KP923879532 * T1b); | ||
|  | 			 T1u = T1s - T1t; | ||
|  | 			 T1w = T1s + T1t; | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 11)] = TV - T1i; | ||
|  | 		    io[WS(os, 11)] = T1v - T1w; | ||
|  | 		    ro[WS(os, 3)] = TV + T1i; | ||
|  | 		    io[WS(os, 3)] = T1v + T1w; | ||
|  | 		    io[WS(os, 15)] = T1p - T1q; | ||
|  | 		    ro[WS(os, 15)] = T1r - T1u; | ||
|  | 		    io[WS(os, 7)] = T1p + T1q; | ||
|  | 		    ro[WS(os, 7)] = T1r + T1u; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1z, T1L, T1J, T1P, T1G, T1K, T1O, T1Q, T1y, T1I; | ||
|  | 		    T1y = KP707106781 * (T1n + T1m); | ||
|  | 		    T1z = T1x + T1y; | ||
|  | 		    T1L = T1x - T1y; | ||
|  | 		    T1I = KP707106781 * (TQ + TT); | ||
|  | 		    T1J = T1H - T1I; | ||
|  | 		    T1P = T1H + T1I; | ||
|  | 		    { | ||
|  | 			 E T1C, T1F, T1M, T1N; | ||
|  | 			 T1C = FMA(KP382683432, T1A, KP923879532 * T1B); | ||
|  | 			 T1F = FNMS(KP382683432, T1E, KP923879532 * T1D); | ||
|  | 			 T1G = T1C + T1F; | ||
|  | 			 T1K = T1F - T1C; | ||
|  | 			 T1M = FNMS(KP382683432, T1B, KP923879532 * T1A); | ||
|  | 			 T1N = FMA(KP923879532, T1E, KP382683432 * T1D); | ||
|  | 			 T1O = T1M - T1N; | ||
|  | 			 T1Q = T1M + T1N; | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 9)] = T1z - T1G; | ||
|  | 		    io[WS(os, 9)] = T1P - T1Q; | ||
|  | 		    ro[WS(os, 1)] = T1z + T1G; | ||
|  | 		    io[WS(os, 1)] = T1P + T1Q; | ||
|  | 		    io[WS(os, 13)] = T1J - T1K; | ||
|  | 		    ro[WS(os, 13)] = T1L - T1O; | ||
|  | 		    io[WS(os, 5)] = T1J + T1K; | ||
|  | 		    ro[WS(os, 5)] = T1L + T1O; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 16, "n1_16", { 136, 16, 8, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_16) (planner *p) { X(kdft_register) (p, n1_16, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |