1065 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1065 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:08 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 246 FP additions, 148 FP multiplications, | ||
|  |  * (or, 136 additions, 38 multiplications, 110 fused multiply/add), | ||
|  |  * 91 stack variables, 4 constants, and 80 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { | ||
|  | 	       E T7, T4e, T4z, TE, T1t, T2W, T3z, T2l, T13, T3G, T3H, T1i, T2g, T4H, T4G; | ||
|  | 	       E T2d, T1B, T4u, T4r, T1A, T2s, T3l, T2t, T3s, T2m, T2n, T2o, T1u, T1v, T1w; | ||
|  | 	       E TC, T29, T3C, T3E, T4l, T4n, TL, TN, T3b, T3d, T4C, T4E; | ||
|  | 	       { | ||
|  | 		    E T3, T2U, T1p, T3x, T6, T3y, T1s, T2V; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T1n, T1o; | ||
|  | 			 T1 = Rp[0]; | ||
|  | 			 T2 = Rm[WS(rs, 9)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T2U = T1 - T2; | ||
|  | 			 T1n = Ip[0]; | ||
|  | 			 T1o = Im[WS(rs, 9)]; | ||
|  | 			 T1p = T1n - T1o; | ||
|  | 			 T3x = T1n + T1o; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, T1q, T1r; | ||
|  | 			 T4 = Rp[WS(rs, 5)]; | ||
|  | 			 T5 = Rm[WS(rs, 4)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T3y = T4 - T5; | ||
|  | 			 T1q = Ip[WS(rs, 5)]; | ||
|  | 			 T1r = Im[WS(rs, 4)]; | ||
|  | 			 T1s = T1q - T1r; | ||
|  | 			 T2V = T1q + T1r; | ||
|  | 		    } | ||
|  | 		    T7 = T3 + T6; | ||
|  | 		    T4e = T2U - T2V; | ||
|  | 		    T4z = T3y + T3x; | ||
|  | 		    TE = T3 - T6; | ||
|  | 		    T1t = T1p - T1s; | ||
|  | 		    T2W = T2U + T2V; | ||
|  | 		    T3z = T3x - T3y; | ||
|  | 		    T2l = T1p + T1s; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Te, T4f, T4p, TF, T1a, T2Z, T3o, T2b, TA, T4j, T4t, TJ, T12, T39, T3k; | ||
|  | 		    E T2f, Tl, T4g, T4q, TG, T1h, T32, T3r, T2c, Tt, T4i, T4s, TI, TV, T36; | ||
|  | 		    E T3h, T2e; | ||
|  | 		    { | ||
|  | 			 E Ta, T2X, T16, T3m, Td, T3n, T19, T2Y; | ||
|  | 			 { | ||
|  | 			      E T8, T9, T14, T15; | ||
|  | 			      T8 = Rp[WS(rs, 4)]; | ||
|  | 			      T9 = Rm[WS(rs, 5)]; | ||
|  | 			      Ta = T8 + T9; | ||
|  | 			      T2X = T8 - T9; | ||
|  | 			      T14 = Ip[WS(rs, 4)]; | ||
|  | 			      T15 = Im[WS(rs, 5)]; | ||
|  | 			      T16 = T14 - T15; | ||
|  | 			      T3m = T14 + T15; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tb, Tc, T17, T18; | ||
|  | 			      Tb = Rp[WS(rs, 9)]; | ||
|  | 			      Tc = Rm[0]; | ||
|  | 			      Td = Tb + Tc; | ||
|  | 			      T3n = Tb - Tc; | ||
|  | 			      T17 = Ip[WS(rs, 9)]; | ||
|  | 			      T18 = Im[0]; | ||
|  | 			      T19 = T17 - T18; | ||
|  | 			      T2Y = T17 + T18; | ||
|  | 			 } | ||
|  | 			 Te = Ta + Td; | ||
|  | 			 T4f = T2X - T2Y; | ||
|  | 			 T4p = T3n + T3m; | ||
|  | 			 TF = Ta - Td; | ||
|  | 			 T1a = T16 - T19; | ||
|  | 			 T2Z = T2X + T2Y; | ||
|  | 			 T3o = T3m - T3n; | ||
|  | 			 T2b = T16 + T19; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tw, T37, TY, T3j, Tz, T3i, T11, T38; | ||
|  | 			 { | ||
|  | 			      E Tu, Tv, TW, TX; | ||
|  | 			      Tu = Rm[WS(rs, 7)]; | ||
|  | 			      Tv = Rp[WS(rs, 2)]; | ||
|  | 			      Tw = Tu + Tv; | ||
|  | 			      T37 = Tu - Tv; | ||
|  | 			      TW = Ip[WS(rs, 2)]; | ||
|  | 			      TX = Im[WS(rs, 7)]; | ||
|  | 			      TY = TW - TX; | ||
|  | 			      T3j = TW + TX; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tx, Ty, TZ, T10; | ||
|  | 			      Tx = Rm[WS(rs, 2)]; | ||
|  | 			      Ty = Rp[WS(rs, 7)]; | ||
|  | 			      Tz = Tx + Ty; | ||
|  | 			      T3i = Tx - Ty; | ||
|  | 			      TZ = Ip[WS(rs, 7)]; | ||
|  | 			      T10 = Im[WS(rs, 2)]; | ||
|  | 			      T11 = TZ - T10; | ||
|  | 			      T38 = TZ + T10; | ||
|  | 			 } | ||
|  | 			 TA = Tw + Tz; | ||
|  | 			 T4j = T37 + T38; | ||
|  | 			 T4t = T3i - T3j; | ||
|  | 			 TJ = Tw - Tz; | ||
|  | 			 T12 = TY - T11; | ||
|  | 			 T39 = T37 - T38; | ||
|  | 			 T3k = T3i + T3j; | ||
|  | 			 T2f = TY + T11; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Th, T30, T1d, T3q, Tk, T3p, T1g, T31; | ||
|  | 			 { | ||
|  | 			      E Tf, Tg, T1b, T1c; | ||
|  | 			      Tf = Rm[WS(rs, 3)]; | ||
|  | 			      Tg = Rp[WS(rs, 6)]; | ||
|  | 			      Th = Tf + Tg; | ||
|  | 			      T30 = Tf - Tg; | ||
|  | 			      T1b = Ip[WS(rs, 6)]; | ||
|  | 			      T1c = Im[WS(rs, 3)]; | ||
|  | 			      T1d = T1b - T1c; | ||
|  | 			      T3q = T1b + T1c; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Ti, Tj, T1e, T1f; | ||
|  | 			      Ti = Rp[WS(rs, 1)]; | ||
|  | 			      Tj = Rm[WS(rs, 8)]; | ||
|  | 			      Tk = Ti + Tj; | ||
|  | 			      T3p = Ti - Tj; | ||
|  | 			      T1e = Ip[WS(rs, 1)]; | ||
|  | 			      T1f = Im[WS(rs, 8)]; | ||
|  | 			      T1g = T1e - T1f; | ||
|  | 			      T31 = T1e + T1f; | ||
|  | 			 } | ||
|  | 			 Tl = Th + Tk; | ||
|  | 			 T4g = T30 - T31; | ||
|  | 			 T4q = T3p - T3q; | ||
|  | 			 TG = Th - Tk; | ||
|  | 			 T1h = T1d - T1g; | ||
|  | 			 T32 = T30 + T31; | ||
|  | 			 T3r = T3p + T3q; | ||
|  | 			 T2c = T1d + T1g; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tp, T34, TR, T3f, Ts, T3g, TU, T35; | ||
|  | 			 { | ||
|  | 			      E Tn, To, TP, TQ; | ||
|  | 			      Tn = Rp[WS(rs, 8)]; | ||
|  | 			      To = Rm[WS(rs, 1)]; | ||
|  | 			      Tp = Tn + To; | ||
|  | 			      T34 = Tn - To; | ||
|  | 			      TP = Ip[WS(rs, 8)]; | ||
|  | 			      TQ = Im[WS(rs, 1)]; | ||
|  | 			      TR = TP - TQ; | ||
|  | 			      T3f = TP + TQ; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tq, Tr, TS, TT; | ||
|  | 			      Tq = Rm[WS(rs, 6)]; | ||
|  | 			      Tr = Rp[WS(rs, 3)]; | ||
|  | 			      Ts = Tq + Tr; | ||
|  | 			      T3g = Tq - Tr; | ||
|  | 			      TS = Ip[WS(rs, 3)]; | ||
|  | 			      TT = Im[WS(rs, 6)]; | ||
|  | 			      TU = TS - TT; | ||
|  | 			      T35 = TS + TT; | ||
|  | 			 } | ||
|  | 			 Tt = Tp + Ts; | ||
|  | 			 T4i = T34 + T35; | ||
|  | 			 T4s = T3g + T3f; | ||
|  | 			 TI = Tp - Ts; | ||
|  | 			 TV = TR - TU; | ||
|  | 			 T36 = T34 - T35; | ||
|  | 			 T3h = T3f - T3g; | ||
|  | 			 T2e = TR + TU; | ||
|  | 		    } | ||
|  | 		    T13 = TV - T12; | ||
|  | 		    T3G = T36 - T39; | ||
|  | 		    T3H = T2Z - T32; | ||
|  | 		    T1i = T1a - T1h; | ||
|  | 		    T2g = T2e - T2f; | ||
|  | 		    T4H = T4i - T4j; | ||
|  | 		    T4G = T4f - T4g; | ||
|  | 		    T2d = T2b - T2c; | ||
|  | 		    T1B = TF - TG; | ||
|  | 		    T4u = T4s - T4t; | ||
|  | 		    T4r = T4p - T4q; | ||
|  | 		    T1A = TI - TJ; | ||
|  | 		    T2s = Te - Tl; | ||
|  | 		    T3l = T3h + T3k; | ||
|  | 		    T2t = Tt - TA; | ||
|  | 		    T3s = T3o + T3r; | ||
|  | 		    T2m = T2b + T2c; | ||
|  | 		    T2n = T2e + T2f; | ||
|  | 		    T2o = T2m + T2n; | ||
|  | 		    T1u = T1a + T1h; | ||
|  | 		    T1v = TV + T12; | ||
|  | 		    T1w = T1u + T1v; | ||
|  | 		    { | ||
|  | 			 E Tm, TB, TH, TK; | ||
|  | 			 Tm = Te + Tl; | ||
|  | 			 TB = Tt + TA; | ||
|  | 			 TC = Tm + TB; | ||
|  | 			 T29 = Tm - TB; | ||
|  | 			 { | ||
|  | 			      E T3A, T3B, T4h, T4k; | ||
|  | 			      T3A = T3o - T3r; | ||
|  | 			      T3B = T3h - T3k; | ||
|  | 			      T3C = T3A + T3B; | ||
|  | 			      T3E = T3A - T3B; | ||
|  | 			      T4h = T4f + T4g; | ||
|  | 			      T4k = T4i + T4j; | ||
|  | 			      T4l = T4h + T4k; | ||
|  | 			      T4n = T4h - T4k; | ||
|  | 			 } | ||
|  | 			 TH = TF + TG; | ||
|  | 			 TK = TI + TJ; | ||
|  | 			 TL = TH + TK; | ||
|  | 			 TN = TH - TK; | ||
|  | 			 { | ||
|  | 			      E T33, T3a, T4A, T4B; | ||
|  | 			      T33 = T2Z + T32; | ||
|  | 			      T3a = T36 + T39; | ||
|  | 			      T3b = T33 + T3a; | ||
|  | 			      T3d = T33 - T3a; | ||
|  | 			      T4A = T4p + T4q; | ||
|  | 			      T4B = T4s + T4t; | ||
|  | 			      T4C = T4A + T4B; | ||
|  | 			      T4E = T4A - T4B; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       Rp[0] = T7 + TC; | ||
|  | 	       Rm[0] = T2l + T2o; | ||
|  | 	       { | ||
|  | 		    E T25, T21, T23, T24, T26, T22; | ||
|  | 		    T25 = T1t + T1w; | ||
|  | 		    T22 = TE + TL; | ||
|  | 		    T21 = W[18]; | ||
|  | 		    T23 = T21 * T22; | ||
|  | 		    T24 = W[19]; | ||
|  | 		    T26 = T24 * T22; | ||
|  | 		    Rp[WS(rs, 5)] = FNMS(T24, T25, T23); | ||
|  | 		    Rm[WS(rs, 5)] = FMA(T21, T25, T26); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T58, T5b, T59, T5c, T57, T5a; | ||
|  | 		    T58 = T4e + T4l; | ||
|  | 		    T5b = T4z + T4C; | ||
|  | 		    T57 = W[8]; | ||
|  | 		    T59 = T57 * T58; | ||
|  | 		    T5c = T57 * T5b; | ||
|  | 		    T5a = W[9]; | ||
|  | 		    Ip[WS(rs, 2)] = FNMS(T5a, T5b, T59); | ||
|  | 		    Im[WS(rs, 2)] = FMA(T5a, T58, T5c); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T48, T4b, T49, T4c, T47, T4a; | ||
|  | 		    T48 = T2W + T3b; | ||
|  | 		    T4b = T3z + T3C; | ||
|  | 		    T47 = W[28]; | ||
|  | 		    T49 = T47 * T48; | ||
|  | 		    T4c = T47 * T4b; | ||
|  | 		    T4a = W[29]; | ||
|  | 		    Ip[WS(rs, 7)] = FNMS(T4a, T4b, T49); | ||
|  | 		    Im[WS(rs, 7)] = FMA(T4a, T48, T4c); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3u, T42, T3M, T3U, T3J, T45, T3P, T3Z; | ||
|  | 		    { | ||
|  | 			 E T3t, T3T, T3e, T3S, T3c; | ||
|  | 			 T3t = FNMS(KP618033988, T3s, T3l); | ||
|  | 			 T3T = FMA(KP618033988, T3l, T3s); | ||
|  | 			 T3c = FNMS(KP250000000, T3b, T2W); | ||
|  | 			 T3e = FNMS(KP559016994, T3d, T3c); | ||
|  | 			 T3S = FMA(KP559016994, T3d, T3c); | ||
|  | 			 T3u = FNMS(KP951056516, T3t, T3e); | ||
|  | 			 T42 = FMA(KP951056516, T3T, T3S); | ||
|  | 			 T3M = FMA(KP951056516, T3t, T3e); | ||
|  | 			 T3U = FNMS(KP951056516, T3T, T3S); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3I, T3Y, T3F, T3X, T3D; | ||
|  | 			 T3I = FNMS(KP618033988, T3H, T3G); | ||
|  | 			 T3Y = FMA(KP618033988, T3G, T3H); | ||
|  | 			 T3D = FNMS(KP250000000, T3C, T3z); | ||
|  | 			 T3F = FNMS(KP559016994, T3E, T3D); | ||
|  | 			 T3X = FMA(KP559016994, T3E, T3D); | ||
|  | 			 T3J = FMA(KP951056516, T3I, T3F); | ||
|  | 			 T45 = FNMS(KP951056516, T3Y, T3X); | ||
|  | 			 T3P = FNMS(KP951056516, T3I, T3F); | ||
|  | 			 T3Z = FMA(KP951056516, T3Y, T3X); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3v, T3K, T2T, T3w; | ||
|  | 			 T2T = W[4]; | ||
|  | 			 T3v = T2T * T3u; | ||
|  | 			 T3K = T2T * T3J; | ||
|  | 			 T3w = W[5]; | ||
|  | 			 Ip[WS(rs, 1)] = FNMS(T3w, T3J, T3v); | ||
|  | 			 Im[WS(rs, 1)] = FMA(T3w, T3u, T3K); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T43, T46, T41, T44; | ||
|  | 			 T41 = W[36]; | ||
|  | 			 T43 = T41 * T42; | ||
|  | 			 T46 = T41 * T45; | ||
|  | 			 T44 = W[37]; | ||
|  | 			 Ip[WS(rs, 9)] = FNMS(T44, T45, T43); | ||
|  | 			 Im[WS(rs, 9)] = FMA(T44, T42, T46); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3N, T3Q, T3L, T3O; | ||
|  | 			 T3L = W[12]; | ||
|  | 			 T3N = T3L * T3M; | ||
|  | 			 T3Q = T3L * T3P; | ||
|  | 			 T3O = W[13]; | ||
|  | 			 Ip[WS(rs, 3)] = FNMS(T3O, T3P, T3N); | ||
|  | 			 Im[WS(rs, 3)] = FMA(T3O, T3M, T3Q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3V, T40, T3R, T3W; | ||
|  | 			 T3R = W[20]; | ||
|  | 			 T3V = T3R * T3U; | ||
|  | 			 T40 = T3R * T3Z; | ||
|  | 			 T3W = W[21]; | ||
|  | 			 Ip[WS(rs, 5)] = FNMS(T3W, T3Z, T3V); | ||
|  | 			 Im[WS(rs, 5)] = FMA(T3W, T3U, T40); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4w, T52, T4M, T4U, T4J, T55, T4P, T4Z; | ||
|  | 		    { | ||
|  | 			 E T4v, T4T, T4o, T4S, T4m; | ||
|  | 			 T4v = FMA(KP618033988, T4u, T4r); | ||
|  | 			 T4T = FNMS(KP618033988, T4r, T4u); | ||
|  | 			 T4m = FNMS(KP250000000, T4l, T4e); | ||
|  | 			 T4o = FMA(KP559016994, T4n, T4m); | ||
|  | 			 T4S = FNMS(KP559016994, T4n, T4m); | ||
|  | 			 T4w = FNMS(KP951056516, T4v, T4o); | ||
|  | 			 T52 = FMA(KP951056516, T4T, T4S); | ||
|  | 			 T4M = FMA(KP951056516, T4v, T4o); | ||
|  | 			 T4U = FNMS(KP951056516, T4T, T4S); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4I, T4Y, T4F, T4X, T4D; | ||
|  | 			 T4I = FMA(KP618033988, T4H, T4G); | ||
|  | 			 T4Y = FNMS(KP618033988, T4G, T4H); | ||
|  | 			 T4D = FNMS(KP250000000, T4C, T4z); | ||
|  | 			 T4F = FMA(KP559016994, T4E, T4D); | ||
|  | 			 T4X = FNMS(KP559016994, T4E, T4D); | ||
|  | 			 T4J = FMA(KP951056516, T4I, T4F); | ||
|  | 			 T55 = FNMS(KP951056516, T4Y, T4X); | ||
|  | 			 T4P = FNMS(KP951056516, T4I, T4F); | ||
|  | 			 T4Z = FMA(KP951056516, T4Y, T4X); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4x, T4K, T4d, T4y; | ||
|  | 			 T4d = W[0]; | ||
|  | 			 T4x = T4d * T4w; | ||
|  | 			 T4K = T4d * T4J; | ||
|  | 			 T4y = W[1]; | ||
|  | 			 Ip[0] = FNMS(T4y, T4J, T4x); | ||
|  | 			 Im[0] = FMA(T4y, T4w, T4K); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T53, T56, T51, T54; | ||
|  | 			 T51 = W[32]; | ||
|  | 			 T53 = T51 * T52; | ||
|  | 			 T56 = T51 * T55; | ||
|  | 			 T54 = W[33]; | ||
|  | 			 Ip[WS(rs, 8)] = FNMS(T54, T55, T53); | ||
|  | 			 Im[WS(rs, 8)] = FMA(T54, T52, T56); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4N, T4Q, T4L, T4O; | ||
|  | 			 T4L = W[16]; | ||
|  | 			 T4N = T4L * T4M; | ||
|  | 			 T4Q = T4L * T4P; | ||
|  | 			 T4O = W[17]; | ||
|  | 			 Ip[WS(rs, 4)] = FNMS(T4O, T4P, T4N); | ||
|  | 			 Im[WS(rs, 4)] = FMA(T4O, T4M, T4Q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4V, T50, T4R, T4W; | ||
|  | 			 T4R = W[24]; | ||
|  | 			 T4V = T4R * T4U; | ||
|  | 			 T50 = T4R * T4Z; | ||
|  | 			 T4W = W[25]; | ||
|  | 			 Ip[WS(rs, 6)] = FNMS(T4W, T4Z, T4V); | ||
|  | 			 Im[WS(rs, 6)] = FMA(T4W, T4U, T50); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2u, T2K, T2r, T2J, T2i, T2O, T2y, T2G, T2p, T2q; | ||
|  | 		    T2u = FMA(KP618033988, T2t, T2s); | ||
|  | 		    T2K = FNMS(KP618033988, T2s, T2t); | ||
|  | 		    T2p = FNMS(KP250000000, T2o, T2l); | ||
|  | 		    T2q = T2m - T2n; | ||
|  | 		    T2r = FMA(KP559016994, T2q, T2p); | ||
|  | 		    T2J = FNMS(KP559016994, T2q, T2p); | ||
|  | 		    { | ||
|  | 			 E T2h, T2F, T2a, T2E, T28; | ||
|  | 			 T2h = FMA(KP618033988, T2g, T2d); | ||
|  | 			 T2F = FNMS(KP618033988, T2d, T2g); | ||
|  | 			 T28 = FNMS(KP250000000, TC, T7); | ||
|  | 			 T2a = FMA(KP559016994, T29, T28); | ||
|  | 			 T2E = FNMS(KP559016994, T29, T28); | ||
|  | 			 T2i = FMA(KP951056516, T2h, T2a); | ||
|  | 			 T2O = FMA(KP951056516, T2F, T2E); | ||
|  | 			 T2y = FNMS(KP951056516, T2h, T2a); | ||
|  | 			 T2G = FNMS(KP951056516, T2F, T2E); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2v, T2k, T2w, T27, T2j; | ||
|  | 			 T2v = FNMS(KP951056516, T2u, T2r); | ||
|  | 			 T2k = W[7]; | ||
|  | 			 T2w = T2k * T2i; | ||
|  | 			 T27 = W[6]; | ||
|  | 			 T2j = T27 * T2i; | ||
|  | 			 Rp[WS(rs, 2)] = FNMS(T2k, T2v, T2j); | ||
|  | 			 Rm[WS(rs, 2)] = FMA(T27, T2v, T2w); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2R, T2Q, T2S, T2N, T2P; | ||
|  | 			 T2R = FNMS(KP951056516, T2K, T2J); | ||
|  | 			 T2Q = W[23]; | ||
|  | 			 T2S = T2Q * T2O; | ||
|  | 			 T2N = W[22]; | ||
|  | 			 T2P = T2N * T2O; | ||
|  | 			 Rp[WS(rs, 6)] = FNMS(T2Q, T2R, T2P); | ||
|  | 			 Rm[WS(rs, 6)] = FMA(T2N, T2R, T2S); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2B, T2A, T2C, T2x, T2z; | ||
|  | 			 T2B = FMA(KP951056516, T2u, T2r); | ||
|  | 			 T2A = W[31]; | ||
|  | 			 T2C = T2A * T2y; | ||
|  | 			 T2x = W[30]; | ||
|  | 			 T2z = T2x * T2y; | ||
|  | 			 Rp[WS(rs, 8)] = FNMS(T2A, T2B, T2z); | ||
|  | 			 Rm[WS(rs, 8)] = FMA(T2x, T2B, T2C); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2L, T2I, T2M, T2D, T2H; | ||
|  | 			 T2L = FMA(KP951056516, T2K, T2J); | ||
|  | 			 T2I = W[15]; | ||
|  | 			 T2M = T2I * T2G; | ||
|  | 			 T2D = W[14]; | ||
|  | 			 T2H = T2D * T2G; | ||
|  | 			 Rp[WS(rs, 4)] = FNMS(T2I, T2L, T2H); | ||
|  | 			 Rm[WS(rs, 4)] = FMA(T2D, T2L, T2M); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1C, T1S, T1z, T1R, T1k, T1W, T1G, T1O, T1x, T1y; | ||
|  | 		    T1C = FNMS(KP618033988, T1B, T1A); | ||
|  | 		    T1S = FMA(KP618033988, T1A, T1B); | ||
|  | 		    T1x = FNMS(KP250000000, T1w, T1t); | ||
|  | 		    T1y = T1u - T1v; | ||
|  | 		    T1z = FNMS(KP559016994, T1y, T1x); | ||
|  | 		    T1R = FMA(KP559016994, T1y, T1x); | ||
|  | 		    { | ||
|  | 			 E T1j, T1N, TO, T1M, TM; | ||
|  | 			 T1j = FNMS(KP618033988, T1i, T13); | ||
|  | 			 T1N = FMA(KP618033988, T13, T1i); | ||
|  | 			 TM = FNMS(KP250000000, TL, TE); | ||
|  | 			 TO = FNMS(KP559016994, TN, TM); | ||
|  | 			 T1M = FMA(KP559016994, TN, TM); | ||
|  | 			 T1k = FMA(KP951056516, T1j, TO); | ||
|  | 			 T1W = FMA(KP951056516, T1N, T1M); | ||
|  | 			 T1G = FNMS(KP951056516, T1j, TO); | ||
|  | 			 T1O = FNMS(KP951056516, T1N, T1M); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1D, T1m, T1E, TD, T1l; | ||
|  | 			 T1D = FNMS(KP951056516, T1C, T1z); | ||
|  | 			 T1m = W[3]; | ||
|  | 			 T1E = T1m * T1k; | ||
|  | 			 TD = W[2]; | ||
|  | 			 T1l = TD * T1k; | ||
|  | 			 Rp[WS(rs, 1)] = FNMS(T1m, T1D, T1l); | ||
|  | 			 Rm[WS(rs, 1)] = FMA(TD, T1D, T1E); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1Z, T1Y, T20, T1V, T1X; | ||
|  | 			 T1Z = FNMS(KP951056516, T1S, T1R); | ||
|  | 			 T1Y = W[27]; | ||
|  | 			 T20 = T1Y * T1W; | ||
|  | 			 T1V = W[26]; | ||
|  | 			 T1X = T1V * T1W; | ||
|  | 			 Rp[WS(rs, 7)] = FNMS(T1Y, T1Z, T1X); | ||
|  | 			 Rm[WS(rs, 7)] = FMA(T1V, T1Z, T20); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1J, T1I, T1K, T1F, T1H; | ||
|  | 			 T1J = FMA(KP951056516, T1C, T1z); | ||
|  | 			 T1I = W[35]; | ||
|  | 			 T1K = T1I * T1G; | ||
|  | 			 T1F = W[34]; | ||
|  | 			 T1H = T1F * T1G; | ||
|  | 			 Rp[WS(rs, 9)] = FNMS(T1I, T1J, T1H); | ||
|  | 			 Rm[WS(rs, 9)] = FMA(T1F, T1J, T1K); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1T, T1Q, T1U, T1L, T1P; | ||
|  | 			 T1T = FMA(KP951056516, T1S, T1R); | ||
|  | 			 T1Q = W[11]; | ||
|  | 			 T1U = T1Q * T1O; | ||
|  | 			 T1L = W[10]; | ||
|  | 			 T1P = T1L * T1O; | ||
|  | 			 Rp[WS(rs, 3)] = FNMS(T1Q, T1T, T1P); | ||
|  | 			 Rm[WS(rs, 3)] = FMA(T1L, T1T, T1U); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 20 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, { 136, 38, 110, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cb_20) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 246 FP additions, 124 FP multiplications, | ||
|  |  * (or, 184 additions, 62 multiplications, 62 fused multiply/add), | ||
|  |  * 97 stack variables, 4 constants, and 80 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { | ||
|  | 	       E T7, T3T, T49, TE, T1v, T2T, T3g, T2d, T13, T3n, T3o, T1i, T26, T4e, T4d; | ||
|  | 	       E T23, T1n, T42, T3Z, T1m, T2h, T2I, T2i, T2P, T30, T37, T38, Tm, TB, TC; | ||
|  | 	       E T46, T47, T4a, T2a, T2b, T2e, T1w, T1x, T1y, T3O, T3R, T3U, T3h, T3i, T3j; | ||
|  | 	       E TH, TK, TL; | ||
|  | 	       { | ||
|  | 		    E T3, T2R, T1r, T3e, T6, T3f, T1u, T2S; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T1p, T1q; | ||
|  | 			 T1 = Rp[0]; | ||
|  | 			 T2 = Rm[WS(rs, 9)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T2R = T1 - T2; | ||
|  | 			 T1p = Ip[0]; | ||
|  | 			 T1q = Im[WS(rs, 9)]; | ||
|  | 			 T1r = T1p - T1q; | ||
|  | 			 T3e = T1p + T1q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, T1s, T1t; | ||
|  | 			 T4 = Rp[WS(rs, 5)]; | ||
|  | 			 T5 = Rm[WS(rs, 4)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T3f = T4 - T5; | ||
|  | 			 T1s = Ip[WS(rs, 5)]; | ||
|  | 			 T1t = Im[WS(rs, 4)]; | ||
|  | 			 T1u = T1s - T1t; | ||
|  | 			 T2S = T1s + T1t; | ||
|  | 		    } | ||
|  | 		    T7 = T3 + T6; | ||
|  | 		    T3T = T2R - T2S; | ||
|  | 		    T49 = T3f + T3e; | ||
|  | 		    TE = T3 - T6; | ||
|  | 		    T1v = T1r - T1u; | ||
|  | 		    T2T = T2R + T2S; | ||
|  | 		    T3g = T3e - T3f; | ||
|  | 		    T2d = T1r + T1u; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Te, T3M, T3X, TF, TV, T2E, T2W, T21, TA, T3Q, T41, TJ, T1h, T2O, T36; | ||
|  | 		    E T25, Tl, T3N, T3Y, TG, T12, T2H, T2Z, T22, Tt, T3P, T40, TI, T1a, T2L; | ||
|  | 		    E T33, T24; | ||
|  | 		    { | ||
|  | 			 E Ta, T2U, TR, T2C, Td, T2D, TU, T2V; | ||
|  | 			 { | ||
|  | 			      E T8, T9, TP, TQ; | ||
|  | 			      T8 = Rp[WS(rs, 4)]; | ||
|  | 			      T9 = Rm[WS(rs, 5)]; | ||
|  | 			      Ta = T8 + T9; | ||
|  | 			      T2U = T8 - T9; | ||
|  | 			      TP = Ip[WS(rs, 4)]; | ||
|  | 			      TQ = Im[WS(rs, 5)]; | ||
|  | 			      TR = TP - TQ; | ||
|  | 			      T2C = TP + TQ; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tb, Tc, TS, TT; | ||
|  | 			      Tb = Rp[WS(rs, 9)]; | ||
|  | 			      Tc = Rm[0]; | ||
|  | 			      Td = Tb + Tc; | ||
|  | 			      T2D = Tb - Tc; | ||
|  | 			      TS = Ip[WS(rs, 9)]; | ||
|  | 			      TT = Im[0]; | ||
|  | 			      TU = TS - TT; | ||
|  | 			      T2V = TS + TT; | ||
|  | 			 } | ||
|  | 			 Te = Ta + Td; | ||
|  | 			 T3M = T2U - T2V; | ||
|  | 			 T3X = T2D + T2C; | ||
|  | 			 TF = Ta - Td; | ||
|  | 			 TV = TR - TU; | ||
|  | 			 T2E = T2C - T2D; | ||
|  | 			 T2W = T2U + T2V; | ||
|  | 			 T21 = TR + TU; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tw, T34, T1d, T2N, Tz, T2M, T1g, T35; | ||
|  | 			 { | ||
|  | 			      E Tu, Tv, T1b, T1c; | ||
|  | 			      Tu = Rm[WS(rs, 7)]; | ||
|  | 			      Tv = Rp[WS(rs, 2)]; | ||
|  | 			      Tw = Tu + Tv; | ||
|  | 			      T34 = Tu - Tv; | ||
|  | 			      T1b = Ip[WS(rs, 2)]; | ||
|  | 			      T1c = Im[WS(rs, 7)]; | ||
|  | 			      T1d = T1b - T1c; | ||
|  | 			      T2N = T1b + T1c; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tx, Ty, T1e, T1f; | ||
|  | 			      Tx = Rm[WS(rs, 2)]; | ||
|  | 			      Ty = Rp[WS(rs, 7)]; | ||
|  | 			      Tz = Tx + Ty; | ||
|  | 			      T2M = Tx - Ty; | ||
|  | 			      T1e = Ip[WS(rs, 7)]; | ||
|  | 			      T1f = Im[WS(rs, 2)]; | ||
|  | 			      T1g = T1e - T1f; | ||
|  | 			      T35 = T1e + T1f; | ||
|  | 			 } | ||
|  | 			 TA = Tw + Tz; | ||
|  | 			 T3Q = T34 + T35; | ||
|  | 			 T41 = T2M - T2N; | ||
|  | 			 TJ = Tw - Tz; | ||
|  | 			 T1h = T1d - T1g; | ||
|  | 			 T2O = T2M + T2N; | ||
|  | 			 T36 = T34 - T35; | ||
|  | 			 T25 = T1d + T1g; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Th, T2X, TY, T2G, Tk, T2F, T11, T2Y; | ||
|  | 			 { | ||
|  | 			      E Tf, Tg, TW, TX; | ||
|  | 			      Tf = Rm[WS(rs, 3)]; | ||
|  | 			      Tg = Rp[WS(rs, 6)]; | ||
|  | 			      Th = Tf + Tg; | ||
|  | 			      T2X = Tf - Tg; | ||
|  | 			      TW = Ip[WS(rs, 6)]; | ||
|  | 			      TX = Im[WS(rs, 3)]; | ||
|  | 			      TY = TW - TX; | ||
|  | 			      T2G = TW + TX; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Ti, Tj, TZ, T10; | ||
|  | 			      Ti = Rp[WS(rs, 1)]; | ||
|  | 			      Tj = Rm[WS(rs, 8)]; | ||
|  | 			      Tk = Ti + Tj; | ||
|  | 			      T2F = Ti - Tj; | ||
|  | 			      TZ = Ip[WS(rs, 1)]; | ||
|  | 			      T10 = Im[WS(rs, 8)]; | ||
|  | 			      T11 = TZ - T10; | ||
|  | 			      T2Y = TZ + T10; | ||
|  | 			 } | ||
|  | 			 Tl = Th + Tk; | ||
|  | 			 T3N = T2X - T2Y; | ||
|  | 			 T3Y = T2F - T2G; | ||
|  | 			 TG = Th - Tk; | ||
|  | 			 T12 = TY - T11; | ||
|  | 			 T2H = T2F + T2G; | ||
|  | 			 T2Z = T2X + T2Y; | ||
|  | 			 T22 = TY + T11; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tp, T31, T16, T2J, Ts, T2K, T19, T32; | ||
|  | 			 { | ||
|  | 			      E Tn, To, T14, T15; | ||
|  | 			      Tn = Rp[WS(rs, 8)]; | ||
|  | 			      To = Rm[WS(rs, 1)]; | ||
|  | 			      Tp = Tn + To; | ||
|  | 			      T31 = Tn - To; | ||
|  | 			      T14 = Ip[WS(rs, 8)]; | ||
|  | 			      T15 = Im[WS(rs, 1)]; | ||
|  | 			      T16 = T14 - T15; | ||
|  | 			      T2J = T14 + T15; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tq, Tr, T17, T18; | ||
|  | 			      Tq = Rm[WS(rs, 6)]; | ||
|  | 			      Tr = Rp[WS(rs, 3)]; | ||
|  | 			      Ts = Tq + Tr; | ||
|  | 			      T2K = Tq - Tr; | ||
|  | 			      T17 = Ip[WS(rs, 3)]; | ||
|  | 			      T18 = Im[WS(rs, 6)]; | ||
|  | 			      T19 = T17 - T18; | ||
|  | 			      T32 = T17 + T18; | ||
|  | 			 } | ||
|  | 			 Tt = Tp + Ts; | ||
|  | 			 T3P = T31 + T32; | ||
|  | 			 T40 = T2K + T2J; | ||
|  | 			 TI = Tp - Ts; | ||
|  | 			 T1a = T16 - T19; | ||
|  | 			 T2L = T2J - T2K; | ||
|  | 			 T33 = T31 - T32; | ||
|  | 			 T24 = T16 + T19; | ||
|  | 		    } | ||
|  | 		    T13 = TV - T12; | ||
|  | 		    T3n = T2W - T2Z; | ||
|  | 		    T3o = T33 - T36; | ||
|  | 		    T1i = T1a - T1h; | ||
|  | 		    T26 = T24 - T25; | ||
|  | 		    T4e = T3P - T3Q; | ||
|  | 		    T4d = T3M - T3N; | ||
|  | 		    T23 = T21 - T22; | ||
|  | 		    T1n = TI - TJ; | ||
|  | 		    T42 = T40 - T41; | ||
|  | 		    T3Z = T3X - T3Y; | ||
|  | 		    T1m = TF - TG; | ||
|  | 		    T2h = Te - Tl; | ||
|  | 		    T2I = T2E + T2H; | ||
|  | 		    T2i = Tt - TA; | ||
|  | 		    T2P = T2L + T2O; | ||
|  | 		    T30 = T2W + T2Z; | ||
|  | 		    T37 = T33 + T36; | ||
|  | 		    T38 = T30 + T37; | ||
|  | 		    Tm = Te + Tl; | ||
|  | 		    TB = Tt + TA; | ||
|  | 		    TC = Tm + TB; | ||
|  | 		    T46 = T3X + T3Y; | ||
|  | 		    T47 = T40 + T41; | ||
|  | 		    T4a = T46 + T47; | ||
|  | 		    T2a = T21 + T22; | ||
|  | 		    T2b = T24 + T25; | ||
|  | 		    T2e = T2a + T2b; | ||
|  | 		    T1w = TV + T12; | ||
|  | 		    T1x = T1a + T1h; | ||
|  | 		    T1y = T1w + T1x; | ||
|  | 		    T3O = T3M + T3N; | ||
|  | 		    T3R = T3P + T3Q; | ||
|  | 		    T3U = T3O + T3R; | ||
|  | 		    T3h = T2E - T2H; | ||
|  | 		    T3i = T2L - T2O; | ||
|  | 		    T3j = T3h + T3i; | ||
|  | 		    TH = TF + TG; | ||
|  | 		    TK = TI + TJ; | ||
|  | 		    TL = TH + TK; | ||
|  | 	       } | ||
|  | 	       Rp[0] = T7 + TC; | ||
|  | 	       Rm[0] = T2d + T2e; | ||
|  | 	       { | ||
|  | 		    E T1U, T1W, T1T, T1V; | ||
|  | 		    T1U = TE + TL; | ||
|  | 		    T1W = T1v + T1y; | ||
|  | 		    T1T = W[18]; | ||
|  | 		    T1V = W[19]; | ||
|  | 		    Rp[WS(rs, 5)] = FNMS(T1V, T1W, T1T * T1U); | ||
|  | 		    Rm[WS(rs, 5)] = FMA(T1V, T1U, T1T * T1W); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4y, T4A, T4x, T4z; | ||
|  | 		    T4y = T3T + T3U; | ||
|  | 		    T4A = T49 + T4a; | ||
|  | 		    T4x = W[8]; | ||
|  | 		    T4z = W[9]; | ||
|  | 		    Ip[WS(rs, 2)] = FNMS(T4z, T4A, T4x * T4y); | ||
|  | 		    Im[WS(rs, 2)] = FMA(T4x, T4A, T4z * T4y); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3I, T3K, T3H, T3J; | ||
|  | 		    T3I = T2T + T38; | ||
|  | 		    T3K = T3g + T3j; | ||
|  | 		    T3H = W[28]; | ||
|  | 		    T3J = W[29]; | ||
|  | 		    Ip[WS(rs, 7)] = FNMS(T3J, T3K, T3H * T3I); | ||
|  | 		    Im[WS(rs, 7)] = FMA(T3H, T3K, T3J * T3I); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T27, T2j, T2v, T2r, T2g, T2u, T20, T2q; | ||
|  | 		    T27 = FMA(KP951056516, T23, KP587785252 * T26); | ||
|  | 		    T2j = FMA(KP951056516, T2h, KP587785252 * T2i); | ||
|  | 		    T2v = FNMS(KP951056516, T2i, KP587785252 * T2h); | ||
|  | 		    T2r = FNMS(KP951056516, T26, KP587785252 * T23); | ||
|  | 		    { | ||
|  | 			 E T2c, T2f, T1Y, T1Z; | ||
|  | 			 T2c = KP559016994 * (T2a - T2b); | ||
|  | 			 T2f = FNMS(KP250000000, T2e, T2d); | ||
|  | 			 T2g = T2c + T2f; | ||
|  | 			 T2u = T2f - T2c; | ||
|  | 			 T1Y = KP559016994 * (Tm - TB); | ||
|  | 			 T1Z = FNMS(KP250000000, TC, T7); | ||
|  | 			 T20 = T1Y + T1Z; | ||
|  | 			 T2q = T1Z - T1Y; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T28, T2k, T1X, T29; | ||
|  | 			 T28 = T20 + T27; | ||
|  | 			 T2k = T2g - T2j; | ||
|  | 			 T1X = W[6]; | ||
|  | 			 T29 = W[7]; | ||
|  | 			 Rp[WS(rs, 2)] = FNMS(T29, T2k, T1X * T28); | ||
|  | 			 Rm[WS(rs, 2)] = FMA(T29, T28, T1X * T2k); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2y, T2A, T2x, T2z; | ||
|  | 			 T2y = T2q - T2r; | ||
|  | 			 T2A = T2v + T2u; | ||
|  | 			 T2x = W[22]; | ||
|  | 			 T2z = W[23]; | ||
|  | 			 Rp[WS(rs, 6)] = FNMS(T2z, T2A, T2x * T2y); | ||
|  | 			 Rm[WS(rs, 6)] = FMA(T2z, T2y, T2x * T2A); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2m, T2o, T2l, T2n; | ||
|  | 			 T2m = T20 - T27; | ||
|  | 			 T2o = T2j + T2g; | ||
|  | 			 T2l = W[30]; | ||
|  | 			 T2n = W[31]; | ||
|  | 			 Rp[WS(rs, 8)] = FNMS(T2n, T2o, T2l * T2m); | ||
|  | 			 Rm[WS(rs, 8)] = FMA(T2n, T2m, T2l * T2o); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2s, T2w, T2p, T2t; | ||
|  | 			 T2s = T2q + T2r; | ||
|  | 			 T2w = T2u - T2v; | ||
|  | 			 T2p = W[14]; | ||
|  | 			 T2t = W[15]; | ||
|  | 			 Rp[WS(rs, 4)] = FNMS(T2t, T2w, T2p * T2s); | ||
|  | 			 Rm[WS(rs, 4)] = FMA(T2t, T2s, T2p * T2w); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T43, T4f, T4r, T4m, T4c, T4q, T3W, T4n; | ||
|  | 		    T43 = FMA(KP951056516, T3Z, KP587785252 * T42); | ||
|  | 		    T4f = FMA(KP951056516, T4d, KP587785252 * T4e); | ||
|  | 		    T4r = FNMS(KP951056516, T4e, KP587785252 * T4d); | ||
|  | 		    T4m = FNMS(KP951056516, T42, KP587785252 * T3Z); | ||
|  | 		    { | ||
|  | 			 E T48, T4b, T3S, T3V; | ||
|  | 			 T48 = KP559016994 * (T46 - T47); | ||
|  | 			 T4b = FNMS(KP250000000, T4a, T49); | ||
|  | 			 T4c = T48 + T4b; | ||
|  | 			 T4q = T4b - T48; | ||
|  | 			 T3S = KP559016994 * (T3O - T3R); | ||
|  | 			 T3V = FNMS(KP250000000, T3U, T3T); | ||
|  | 			 T3W = T3S + T3V; | ||
|  | 			 T4n = T3V - T3S; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T44, T4g, T3L, T45; | ||
|  | 			 T44 = T3W - T43; | ||
|  | 			 T4g = T4c + T4f; | ||
|  | 			 T3L = W[0]; | ||
|  | 			 T45 = W[1]; | ||
|  | 			 Ip[0] = FNMS(T45, T4g, T3L * T44); | ||
|  | 			 Im[0] = FMA(T3L, T4g, T45 * T44); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4u, T4w, T4t, T4v; | ||
|  | 			 T4u = T4n - T4m; | ||
|  | 			 T4w = T4q + T4r; | ||
|  | 			 T4t = W[32]; | ||
|  | 			 T4v = W[33]; | ||
|  | 			 Ip[WS(rs, 8)] = FNMS(T4v, T4w, T4t * T4u); | ||
|  | 			 Im[WS(rs, 8)] = FMA(T4t, T4w, T4v * T4u); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4i, T4k, T4h, T4j; | ||
|  | 			 T4i = T43 + T3W; | ||
|  | 			 T4k = T4c - T4f; | ||
|  | 			 T4h = W[16]; | ||
|  | 			 T4j = W[17]; | ||
|  | 			 Ip[WS(rs, 4)] = FNMS(T4j, T4k, T4h * T4i); | ||
|  | 			 Im[WS(rs, 4)] = FMA(T4h, T4k, T4j * T4i); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4o, T4s, T4l, T4p; | ||
|  | 			 T4o = T4m + T4n; | ||
|  | 			 T4s = T4q - T4r; | ||
|  | 			 T4l = W[24]; | ||
|  | 			 T4p = W[25]; | ||
|  | 			 Ip[WS(rs, 6)] = FNMS(T4p, T4s, T4l * T4o); | ||
|  | 			 Im[WS(rs, 6)] = FMA(T4l, T4s, T4p * T4o); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1j, T1o, T1M, T1J, T1B, T1N, TO, T1I; | ||
|  | 		    T1j = FNMS(KP951056516, T1i, KP587785252 * T13); | ||
|  | 		    T1o = FNMS(KP951056516, T1n, KP587785252 * T1m); | ||
|  | 		    T1M = FMA(KP951056516, T1m, KP587785252 * T1n); | ||
|  | 		    T1J = FMA(KP951056516, T13, KP587785252 * T1i); | ||
|  | 		    { | ||
|  | 			 E T1z, T1A, TM, TN; | ||
|  | 			 T1z = FNMS(KP250000000, T1y, T1v); | ||
|  | 			 T1A = KP559016994 * (T1w - T1x); | ||
|  | 			 T1B = T1z - T1A; | ||
|  | 			 T1N = T1A + T1z; | ||
|  | 			 TM = FNMS(KP250000000, TL, TE); | ||
|  | 			 TN = KP559016994 * (TH - TK); | ||
|  | 			 TO = TM - TN; | ||
|  | 			 T1I = TN + TM; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1k, T1C, TD, T1l; | ||
|  | 			 T1k = TO - T1j; | ||
|  | 			 T1C = T1o + T1B; | ||
|  | 			 TD = W[2]; | ||
|  | 			 T1l = W[3]; | ||
|  | 			 Rp[WS(rs, 1)] = FNMS(T1l, T1C, TD * T1k); | ||
|  | 			 Rm[WS(rs, 1)] = FMA(T1l, T1k, TD * T1C); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1Q, T1S, T1P, T1R; | ||
|  | 			 T1Q = T1I + T1J; | ||
|  | 			 T1S = T1N - T1M; | ||
|  | 			 T1P = W[26]; | ||
|  | 			 T1R = W[27]; | ||
|  | 			 Rp[WS(rs, 7)] = FNMS(T1R, T1S, T1P * T1Q); | ||
|  | 			 Rm[WS(rs, 7)] = FMA(T1R, T1Q, T1P * T1S); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1E, T1G, T1D, T1F; | ||
|  | 			 T1E = TO + T1j; | ||
|  | 			 T1G = T1B - T1o; | ||
|  | 			 T1D = W[34]; | ||
|  | 			 T1F = W[35]; | ||
|  | 			 Rp[WS(rs, 9)] = FNMS(T1F, T1G, T1D * T1E); | ||
|  | 			 Rm[WS(rs, 9)] = FMA(T1F, T1E, T1D * T1G); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1K, T1O, T1H, T1L; | ||
|  | 			 T1K = T1I - T1J; | ||
|  | 			 T1O = T1M + T1N; | ||
|  | 			 T1H = W[10]; | ||
|  | 			 T1L = W[11]; | ||
|  | 			 Rp[WS(rs, 3)] = FNMS(T1L, T1O, T1H * T1K); | ||
|  | 			 Rm[WS(rs, 3)] = FMA(T1L, T1K, T1H * T1O); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2Q, T3p, T3B, T3x, T3m, T3A, T3b, T3w; | ||
|  | 		    T2Q = FNMS(KP951056516, T2P, KP587785252 * T2I); | ||
|  | 		    T3p = FNMS(KP951056516, T3o, KP587785252 * T3n); | ||
|  | 		    T3B = FMA(KP951056516, T3n, KP587785252 * T3o); | ||
|  | 		    T3x = FMA(KP951056516, T2I, KP587785252 * T2P); | ||
|  | 		    { | ||
|  | 			 E T3k, T3l, T39, T3a; | ||
|  | 			 T3k = FNMS(KP250000000, T3j, T3g); | ||
|  | 			 T3l = KP559016994 * (T3h - T3i); | ||
|  | 			 T3m = T3k - T3l; | ||
|  | 			 T3A = T3l + T3k; | ||
|  | 			 T39 = FNMS(KP250000000, T38, T2T); | ||
|  | 			 T3a = KP559016994 * (T30 - T37); | ||
|  | 			 T3b = T39 - T3a; | ||
|  | 			 T3w = T3a + T39; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3c, T3q, T2B, T3d; | ||
|  | 			 T3c = T2Q + T3b; | ||
|  | 			 T3q = T3m - T3p; | ||
|  | 			 T2B = W[4]; | ||
|  | 			 T3d = W[5]; | ||
|  | 			 Ip[WS(rs, 1)] = FNMS(T3d, T3q, T2B * T3c); | ||
|  | 			 Im[WS(rs, 1)] = FMA(T2B, T3q, T3d * T3c); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3E, T3G, T3D, T3F; | ||
|  | 			 T3E = T3x + T3w; | ||
|  | 			 T3G = T3A - T3B; | ||
|  | 			 T3D = W[36]; | ||
|  | 			 T3F = W[37]; | ||
|  | 			 Ip[WS(rs, 9)] = FNMS(T3F, T3G, T3D * T3E); | ||
|  | 			 Im[WS(rs, 9)] = FMA(T3D, T3G, T3F * T3E); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3s, T3u, T3r, T3t; | ||
|  | 			 T3s = T3b - T2Q; | ||
|  | 			 T3u = T3m + T3p; | ||
|  | 			 T3r = W[12]; | ||
|  | 			 T3t = W[13]; | ||
|  | 			 Ip[WS(rs, 3)] = FNMS(T3t, T3u, T3r * T3s); | ||
|  | 			 Im[WS(rs, 3)] = FMA(T3r, T3u, T3t * T3s); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3y, T3C, T3v, T3z; | ||
|  | 			 T3y = T3w - T3x; | ||
|  | 			 T3C = T3A + T3B; | ||
|  | 			 T3v = W[20]; | ||
|  | 			 T3z = W[21]; | ||
|  | 			 Ip[WS(rs, 5)] = FNMS(T3z, T3C, T3v * T3y); | ||
|  | 			 Im[WS(rs, 5)] = FMA(T3v, T3C, T3z * T3y); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 20 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, { 184, 62, 62, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cb_20) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT); | ||
|  | } | ||
|  | #endif
 |