177 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
		
		
			
		
	
	
			177 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
|   | (*
 | ||
|  |  * Copyright (c) 1997-1999 Massachusetts Institute of Technology | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  *) | ||
|  | 
 | ||
|  | (* various utility functions *) | ||
|  | open List | ||
|  | open Unix  | ||
|  | 
 | ||
|  | (*****************************************
 | ||
|  |  * Integer operations | ||
|  |  *****************************************) | ||
|  | (* fint the inverse of n modulo m *) | ||
|  | let invmod n m = | ||
|  |     let rec loop i = | ||
|  | 	if ((i * n) mod m == 1) then i | ||
|  | 	else loop (i + 1) | ||
|  |     in | ||
|  | 	loop 1 | ||
|  | 
 | ||
|  | (* Yooklid's algorithm *) | ||
|  | let rec gcd n m = | ||
|  |     if (n > m) | ||
|  |       then gcd m n | ||
|  |     else | ||
|  |       let r = m mod n | ||
|  |       in | ||
|  | 	  if (r == 0) then n | ||
|  | 	  else gcd r n | ||
|  | 
 | ||
|  | (* reduce the fraction m/n to lowest terms, modulo factors of n/n *) | ||
|  | let lowest_terms n m = | ||
|  |     if (m mod n == 0) then | ||
|  |       (1,0) | ||
|  |     else | ||
|  |       let nn = (abs n) in let mm = m * (n / nn) | ||
|  |       in let mpos =  | ||
|  | 	  if (mm > 0) then (mm mod nn) | ||
|  | 	  else (mm + (1 + (abs mm) / nn) * nn) mod nn | ||
|  |       and d = gcd nn (abs mm) | ||
|  |       in (nn / d, mpos / d) | ||
|  | 
 | ||
|  | (* find a generator for the multiplicative group mod p
 | ||
|  |    (where p must be prime for a generator to exist!!) *) | ||
|  | 
 | ||
|  | exception No_Generator | ||
|  | 
 | ||
|  | let find_generator p = | ||
|  |     let rec period x prod = | ||
|  |  	if (prod == 1) then 1 | ||
|  | 	else 1 + (period x (prod * x mod p)) | ||
|  |     in let rec findgen x = | ||
|  | 	if (x == 0) then raise No_Generator | ||
|  | 	else if ((period x x) == (p - 1)) then x | ||
|  | 	else findgen ((x + 1) mod p) | ||
|  |     in findgen 1 | ||
|  | 
 | ||
|  | (* raise x to a power n modulo p (requires n > 0) (in principle,
 | ||
|  |    negative powers would be fine, provided that x and p are relatively | ||
|  |    prime...we don't need this functionality, though) *) | ||
|  | 
 | ||
|  | exception Negative_Power | ||
|  | 
 | ||
|  | let rec pow_mod x n p = | ||
|  |     if (n == 0) then 1 | ||
|  |     else if (n < 0) then raise Negative_Power | ||
|  |     else if (n mod 2 == 0) then pow_mod (x * x mod p) (n / 2) p | ||
|  |     else x * (pow_mod x (n - 1) p) mod p | ||
|  | 
 | ||
|  | (******************************************
 | ||
|  |  * auxiliary functions  | ||
|  |  ******************************************) | ||
|  | let rec forall id combiner a b f = | ||
|  |     if (a >= b) then id | ||
|  |     else combiner (f a) (forall id combiner (a + 1) b f) | ||
|  | 
 | ||
|  | let sum_list l = fold_right (+) l 0 | ||
|  | let max_list l = fold_right (max) l (-999999) | ||
|  | let min_list l = fold_right (min) l 999999 | ||
|  | let count pred = fold_left  | ||
|  |     (fun a elem -> if (pred elem) then 1 + a else a) 0 | ||
|  | let remove elem = List.filter (fun e -> (e != elem)) | ||
|  | let cons a b = a :: b | ||
|  | let null = function  | ||
|  |     [] -> true | ||
|  |   | _ -> false | ||
|  | let for_list l f = List.iter f l | ||
|  | let rmap l f = List.map f l | ||
|  | 
 | ||
|  | (* functional composition *) | ||
|  | let (@@) f g x = f (g x) | ||
|  | 
 | ||
|  | let forall_flat a b = forall [] (@) a b | ||
|  | 
 | ||
|  | let identity x = x | ||
|  | 
 | ||
|  | let rec minimize f = function | ||
|  |     [] -> None | ||
|  |   | elem :: rest -> | ||
|  |       match minimize f rest with | ||
|  | 	None -> Some elem | ||
|  |       |	Some x -> if (f x) >= (f elem) then Some elem else Some x | ||
|  | 
 | ||
|  | 
 | ||
|  | let rec find_elem condition = function | ||
|  |     [] -> None | ||
|  |   | elem :: rest -> | ||
|  |       if condition elem then | ||
|  | 	Some elem | ||
|  |       else | ||
|  | 	find_elem condition rest | ||
|  | 
 | ||
|  | 
 | ||
|  | (* find x, x >= a, such that (p x) is true *) | ||
|  | let rec suchthat a pred = | ||
|  |   if (pred a) then a else suchthat (a + 1) pred | ||
|  | 
 | ||
|  | (* print an information message *) | ||
|  | let info string = | ||
|  |   if !Magic.verbose then begin | ||
|  |     let now = Unix.times ()  | ||
|  |     and pid = Unix.getpid () in | ||
|  |     prerr_string ((string_of_int pid) ^ ": " ^ | ||
|  | 		  "at t = " ^  (string_of_float now.tms_utime) ^ " : "); | ||
|  |     prerr_string (string ^ "\n"); | ||
|  |     flush Pervasives.stderr; | ||
|  |   end | ||
|  | 
 | ||
|  | (* iota n produces the list [0; 1; ...; n - 1] *) | ||
|  | let iota n = forall [] cons 0 n identity | ||
|  | 
 | ||
|  | (* interval a b produces the list [a; a + 1; ...; b - 1] *) | ||
|  | let interval a b = List.map ((+) a) (iota (b - a)) | ||
|  | 
 | ||
|  | (*
 | ||
|  |  * freeze a function, i.e., compute it only once on demand, and | ||
|  |  * cache it into an array. | ||
|  |  *) | ||
|  | let array n f = | ||
|  |   let a = Array.init n (fun i -> lazy (f i)) | ||
|  |   in fun i -> Lazy.force a.(i) | ||
|  | 
 | ||
|  | 
 | ||
|  | let rec take n l = | ||
|  |   match (n, l) with | ||
|  |     (0, _) -> [] | ||
|  |   | (n, (a :: b)) -> a :: (take (n - 1) b) | ||
|  |   | _ -> failwith "take" | ||
|  | 
 | ||
|  | let rec drop n l = | ||
|  |   match (n, l) with | ||
|  |     (0, _) -> l | ||
|  |   | (n, (_ :: b)) -> drop (n - 1) b | ||
|  |   | _ -> failwith "drop" | ||
|  | 
 | ||
|  | 
 | ||
|  | let either a b = | ||
|  |   match a with | ||
|  |     Some x -> x | ||
|  |   | _ -> b |