1156 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1156 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:38 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include rdft/scalar/hc2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 286 FP additions, 188 FP multiplications, | ||
|  |  * (or, 176 additions, 78 multiplications, 110 fused multiply/add), | ||
|  |  * 153 stack variables, 5 constants, and 80 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cf.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { | ||
|  | 	       E T2E, T4W, T3v, T4k, T2M, T4V, T3w, T4j, T2p, T2T, T5a, T5A, T3o, T3D, T4b; | ||
|  | 	       E T4B, T1Y, T2S, T57, T5z, T3h, T3C, T44, T4A, TH, T2P, T50, T5x, T32, T3z; | ||
|  | 	       E T3P, T4D, T1o, T2Q, T53, T5w, T39, T3A, T3W, T4E; | ||
|  | 	       { | ||
|  | 		    E T9, T1V, Tu, T2w, T1, T5, T6, T2Y, T1R, T1T, T1U, T40, T10, T2F, TE; | ||
|  | 		    E T2C, T1y, T2m, T4g, TX, T33, TS, TW, Tw, TA, TB, T3L, T2y, T2A, T2B; | ||
|  | 		    E T3t, T1q, T1u, T1v, T3d, T2i, T2k, T2l, T48, Tm, Tq, Tr, T3J, T2s, T2u; | ||
|  | 		    E T2v, T3r, T1g, T20, T1l, T23, T1h, T3S, T21, T3k, TL, T2H, TQ, T2K, TM; | ||
|  | 		    E T35, T2I, T4h, T1I, T1D, T2g, T2f, T46, T2c, T2e, T1E, T3b, T16, T1b, T29; | ||
|  | 		    E T28, T3i, T25, T27, T17, T3Q, Tj, Te, T1P, T1O, T3Y, T1L, T1N, Tf, T2W; | ||
|  | 		    E T2x, T2D; | ||
|  | 		    { | ||
|  | 			 E T7, T8, Ts, Tt; | ||
|  | 			 T7 = Rp[WS(rs, 9)]; | ||
|  | 			 T8 = Rm[WS(rs, 9)]; | ||
|  | 			 T9 = T7 - T8; | ||
|  | 			 T1V = T7 + T8; | ||
|  | 			 Ts = Rp[WS(rs, 2)]; | ||
|  | 			 Tt = Rm[WS(rs, 2)]; | ||
|  | 			 Tu = Ts + Tt; | ||
|  | 			 T2w = Ts - Tt; | ||
|  | 			 { | ||
|  | 			      E T4, T1S, T2, T3; | ||
|  | 			      T2 = Ip[WS(rs, 9)]; | ||
|  | 			      T3 = Im[WS(rs, 9)]; | ||
|  | 			      T4 = T2 + T3; | ||
|  | 			      T1S = T2 - T3; | ||
|  | 			      T1 = W[36]; | ||
|  | 			      T5 = T1 * T4; | ||
|  | 			      T6 = W[37]; | ||
|  | 			      T2Y = T6 * T4; | ||
|  | 			      T1R = W[34]; | ||
|  | 			      T1T = T1R * T1S; | ||
|  | 			      T1U = W[35]; | ||
|  | 			      T40 = T1U * T1S; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TY, TZ, TC, TD; | ||
|  | 			 TY = Ip[0]; | ||
|  | 			 TZ = Im[0]; | ||
|  | 			 T10 = TY + TZ; | ||
|  | 			 T2F = TY - TZ; | ||
|  | 			 TC = Rp[WS(rs, 7)]; | ||
|  | 			 TD = Rm[WS(rs, 7)]; | ||
|  | 			 TE = TC + TD; | ||
|  | 			 T2C = TC - TD; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1w, T1x, TT, TU, TV; | ||
|  | 			 T1w = Rp[WS(rs, 1)]; | ||
|  | 			 T1x = Rm[WS(rs, 1)]; | ||
|  | 			 T1y = T1w - T1x; | ||
|  | 			 T2m = T1w + T1x; | ||
|  | 			 TT = Rm[0]; | ||
|  | 			 TU = Rp[0]; | ||
|  | 			 TV = TT - TU; | ||
|  | 			 T4g = TU + TT; | ||
|  | 			 TX = W[0]; | ||
|  | 			 T33 = TX * TV; | ||
|  | 			 TS = W[1]; | ||
|  | 			 TW = TS * TV; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1d, T1Z, TI, T2G; | ||
|  | 			 { | ||
|  | 			      E Tz, T2z, Tx, Ty; | ||
|  | 			      Tx = Ip[WS(rs, 7)]; | ||
|  | 			      Ty = Im[WS(rs, 7)]; | ||
|  | 			      Tz = Tx - Ty; | ||
|  | 			      T2z = Tx + Ty; | ||
|  | 			      Tw = W[26]; | ||
|  | 			      TA = Tw * Tz; | ||
|  | 			      TB = W[27]; | ||
|  | 			      T3L = TB * Tz; | ||
|  | 			      T2y = W[28]; | ||
|  | 			      T2A = T2y * T2z; | ||
|  | 			      T2B = W[29]; | ||
|  | 			      T3t = T2B * T2z; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1t, T2j, T1r, T1s; | ||
|  | 			      T1r = Ip[WS(rs, 1)]; | ||
|  | 			      T1s = Im[WS(rs, 1)]; | ||
|  | 			      T1t = T1r + T1s; | ||
|  | 			      T2j = T1r - T1s; | ||
|  | 			      T1q = W[4]; | ||
|  | 			      T1u = T1q * T1t; | ||
|  | 			      T1v = W[5]; | ||
|  | 			      T3d = T1v * T1t; | ||
|  | 			      T2i = W[2]; | ||
|  | 			      T2k = T2i * T2j; | ||
|  | 			      T2l = W[3]; | ||
|  | 			      T48 = T2l * T2j; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tp, T2t, Tn, To; | ||
|  | 			      Tn = Ip[WS(rs, 2)]; | ||
|  | 			      To = Im[WS(rs, 2)]; | ||
|  | 			      Tp = Tn - To; | ||
|  | 			      T2t = Tn + To; | ||
|  | 			      Tm = W[6]; | ||
|  | 			      Tq = Tm * Tp; | ||
|  | 			      Tr = W[7]; | ||
|  | 			      T3J = Tr * Tp; | ||
|  | 			      T2s = W[8]; | ||
|  | 			      T2u = T2s * T2t; | ||
|  | 			      T2v = W[9]; | ||
|  | 			      T3r = T2v * T2t; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1e, T1f, T1j, T1k; | ||
|  | 			      T1e = Ip[WS(rs, 3)]; | ||
|  | 			      T1f = Im[WS(rs, 3)]; | ||
|  | 			      T1g = T1e - T1f; | ||
|  | 			      T20 = T1e + T1f; | ||
|  | 			      T1j = Rp[WS(rs, 3)]; | ||
|  | 			      T1k = Rm[WS(rs, 3)]; | ||
|  | 			      T1l = T1j + T1k; | ||
|  | 			      T23 = T1j - T1k; | ||
|  | 			 } | ||
|  | 			 T1d = W[10]; | ||
|  | 			 T1h = T1d * T1g; | ||
|  | 			 T3S = T1d * T1l; | ||
|  | 			 T1Z = W[12]; | ||
|  | 			 T21 = T1Z * T20; | ||
|  | 			 T3k = T1Z * T23; | ||
|  | 			 { | ||
|  | 			      E TJ, TK, TO, TP; | ||
|  | 			      TJ = Ip[WS(rs, 5)]; | ||
|  | 			      TK = Im[WS(rs, 5)]; | ||
|  | 			      TL = TJ + TK; | ||
|  | 			      T2H = TJ - TK; | ||
|  | 			      TO = Rp[WS(rs, 5)]; | ||
|  | 			      TP = Rm[WS(rs, 5)]; | ||
|  | 			      TQ = TO - TP; | ||
|  | 			      T2K = TO + TP; | ||
|  | 			 } | ||
|  | 			 TI = W[20]; | ||
|  | 			 TM = TI * TL; | ||
|  | 			 T35 = TI * TQ; | ||
|  | 			 T2G = W[18]; | ||
|  | 			 T2I = T2G * T2H; | ||
|  | 			 T4h = T2G * T2K; | ||
|  | 			 { | ||
|  | 			      E T1G, T1H, T2d, T1B, T1C, T1A; | ||
|  | 			      T1G = Rm[WS(rs, 6)]; | ||
|  | 			      T1H = Rp[WS(rs, 6)]; | ||
|  | 			      T1I = T1G - T1H; | ||
|  | 			      T1B = Ip[WS(rs, 6)]; | ||
|  | 			      T1C = Im[WS(rs, 6)]; | ||
|  | 			      T1D = T1B + T1C; | ||
|  | 			      T2d = T1B - T1C; | ||
|  | 			      T2g = T1H + T1G; | ||
|  | 			      T2f = W[23]; | ||
|  | 			      T46 = T2f * T2d; | ||
|  | 			      T2c = W[22]; | ||
|  | 			      T2e = T2c * T2d; | ||
|  | 			      T1A = W[24]; | ||
|  | 			      T1E = T1A * T1D; | ||
|  | 			      T3b = T1A * T1I; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T14, T15, T26, T19, T1a, T13; | ||
|  | 			      T14 = Ip[WS(rs, 8)]; | ||
|  | 			      T15 = Im[WS(rs, 8)]; | ||
|  | 			      T16 = T14 - T15; | ||
|  | 			      T19 = Rp[WS(rs, 8)]; | ||
|  | 			      T1a = Rm[WS(rs, 8)]; | ||
|  | 			      T1b = T19 + T1a; | ||
|  | 			      T26 = T1a - T19; | ||
|  | 			      T29 = T14 + T15; | ||
|  | 			      T28 = W[32]; | ||
|  | 			      T3i = T28 * T26; | ||
|  | 			      T25 = W[33]; | ||
|  | 			      T27 = T25 * T26; | ||
|  | 			      T13 = W[30]; | ||
|  | 			      T17 = T13 * T16; | ||
|  | 			      T3Q = T13 * T1b; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Th, Ti, T1M, Tc, Td, Tb; | ||
|  | 			      Th = Rm[WS(rs, 4)]; | ||
|  | 			      Ti = Rp[WS(rs, 4)]; | ||
|  | 			      Tj = Th - Ti; | ||
|  | 			      Tc = Ip[WS(rs, 4)]; | ||
|  | 			      Td = Im[WS(rs, 4)]; | ||
|  | 			      Te = Tc + Td; | ||
|  | 			      T1M = Tc - Td; | ||
|  | 			      T1P = Ti + Th; | ||
|  | 			      T1O = W[15]; | ||
|  | 			      T3Y = T1O * T1M; | ||
|  | 			      T1L = W[14]; | ||
|  | 			      T1N = T1L * T1M; | ||
|  | 			      Tb = W[16]; | ||
|  | 			      Tf = Tb * Te; | ||
|  | 			      T2W = Tb * Tj; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    T2x = FNMS(T2v, T2w, T2u); | ||
|  | 		    T2D = FNMS(T2B, T2C, T2A); | ||
|  | 		    T2E = T2x - T2D; | ||
|  | 		    T4W = T2x + T2D; | ||
|  | 		    { | ||
|  | 			 E T3s, T3u, T2L, T4i, T2J; | ||
|  | 			 T3s = FMA(T2s, T2w, T3r); | ||
|  | 			 T3u = FMA(T2y, T2C, T3t); | ||
|  | 			 T3v = T3s + T3u; | ||
|  | 			 T4k = T3u - T3s; | ||
|  | 			 T2J = W[19]; | ||
|  | 			 T2L = FNMS(T2J, T2K, T2I); | ||
|  | 			 T4i = FMA(T2J, T2H, T4h); | ||
|  | 			 T2M = T2F - T2L; | ||
|  | 			 T4V = T4g + T4i; | ||
|  | 			 T3w = T2L + T2F; | ||
|  | 			 T4j = T4g - T4i; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2a, T3j, T24, T3l, T2o, T3n, T4a, T59, T22; | ||
|  | 			 T2a = FMA(T28, T29, T27); | ||
|  | 			 T3j = FNMS(T25, T29, T3i); | ||
|  | 			 T22 = W[13]; | ||
|  | 			 T24 = FNMS(T22, T23, T21); | ||
|  | 			 T3l = FMA(T22, T20, T3k); | ||
|  | 			 { | ||
|  | 			      E T2h, T2n, T47, T49; | ||
|  | 			      T2h = FNMS(T2f, T2g, T2e); | ||
|  | 			      T2n = FNMS(T2l, T2m, T2k); | ||
|  | 			      T2o = T2h - T2n; | ||
|  | 			      T3n = T2h + T2n; | ||
|  | 			      T47 = FMA(T2c, T2g, T46); | ||
|  | 			      T49 = FMA(T2i, T2m, T48); | ||
|  | 			      T4a = T47 - T49; | ||
|  | 			      T59 = T47 + T49; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2b, T58, T3m, T45; | ||
|  | 			      T2b = T24 - T2a; | ||
|  | 			      T2p = T2b - T2o; | ||
|  | 			      T2T = T2b + T2o; | ||
|  | 			      T58 = T2a + T24; | ||
|  | 			      T5a = T58 + T59; | ||
|  | 			      T5A = T59 - T58; | ||
|  | 			      T3m = T3j - T3l; | ||
|  | 			      T3o = T3m - T3n; | ||
|  | 			      T3D = T3m + T3n; | ||
|  | 			      T45 = T3j + T3l; | ||
|  | 			      T4b = T45 + T4a; | ||
|  | 			      T4B = T4a - T45; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1z, T3e, T1J, T3c, T1X, T3g, T42, T55, T1F; | ||
|  | 			 T1z = FNMS(T1v, T1y, T1u); | ||
|  | 			 T3e = FMA(T1q, T1y, T3d); | ||
|  | 			 T1F = W[25]; | ||
|  | 			 T1J = FMA(T1F, T1I, T1E); | ||
|  | 			 T3c = FNMS(T1F, T1D, T3b); | ||
|  | 			 { | ||
|  | 			      E T1Q, T1W, T3Z, T41; | ||
|  | 			      T1Q = FNMS(T1O, T1P, T1N); | ||
|  | 			      T1W = FNMS(T1U, T1V, T1T); | ||
|  | 			      T1X = T1Q - T1W; | ||
|  | 			      T3g = T1Q + T1W; | ||
|  | 			      T3Z = FMA(T1L, T1P, T3Y); | ||
|  | 			      T41 = FMA(T1R, T1V, T40); | ||
|  | 			      T42 = T3Z - T41; | ||
|  | 			      T55 = T3Z + T41; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1K, T56, T3f, T43; | ||
|  | 			      T1K = T1z - T1J; | ||
|  | 			      T1Y = T1K - T1X; | ||
|  | 			      T2S = T1X + T1K; | ||
|  | 			      T56 = T1J + T1z; | ||
|  | 			      T57 = T55 + T56; | ||
|  | 			      T5z = T55 - T56; | ||
|  | 			      T3f = T3c - T3e; | ||
|  | 			      T3h = T3f - T3g; | ||
|  | 			      T3C = T3g + T3f; | ||
|  | 			      T43 = T3c + T3e; | ||
|  | 			      T44 = T42 + T43; | ||
|  | 			      T4A = T42 - T43; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta, T2Z, Tk, T2X, TG, T31, T3N, T4Y, Tg; | ||
|  | 			 Ta = FNMS(T6, T9, T5); | ||
|  | 			 T2Z = FMA(T1, T9, T2Y); | ||
|  | 			 Tg = W[17]; | ||
|  | 			 Tk = FMA(Tg, Tj, Tf); | ||
|  | 			 T2X = FNMS(Tg, Te, T2W); | ||
|  | 			 { | ||
|  | 			      E Tv, TF, T3K, T3M; | ||
|  | 			      Tv = FNMS(Tr, Tu, Tq); | ||
|  | 			      TF = FNMS(TB, TE, TA); | ||
|  | 			      TG = Tv - TF; | ||
|  | 			      T31 = Tv + TF; | ||
|  | 			      T3K = FMA(Tm, Tu, T3J); | ||
|  | 			      T3M = FMA(Tw, TE, T3L); | ||
|  | 			      T3N = T3K - T3M; | ||
|  | 			      T4Y = T3K + T3M; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tl, T4Z, T30, T3O; | ||
|  | 			      Tl = Ta - Tk; | ||
|  | 			      TH = Tl - TG; | ||
|  | 			      T2P = TG + Tl; | ||
|  | 			      T4Z = Tk + Ta; | ||
|  | 			      T50 = T4Y + T4Z; | ||
|  | 			      T5x = T4Y - T4Z; | ||
|  | 			      T30 = T2X - T2Z; | ||
|  | 			      T32 = T30 - T31; | ||
|  | 			      T3z = T31 + T30; | ||
|  | 			      T3O = T2X + T2Z; | ||
|  | 			      T3P = T3N + T3O; | ||
|  | 			      T4D = T3N - T3O; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T11, T34, TR, T36, T1c, T3R, T1m, T3T, TN, T18, T1i; | ||
|  | 			 T11 = FMA(TX, T10, TW); | ||
|  | 			 T34 = FNMS(TS, T10, T33); | ||
|  | 			 TN = W[21]; | ||
|  | 			 TR = FNMS(TN, TQ, TM); | ||
|  | 			 T36 = FMA(TN, TL, T35); | ||
|  | 			 T18 = W[31]; | ||
|  | 			 T1c = FNMS(T18, T1b, T17); | ||
|  | 			 T3R = FMA(T18, T16, T3Q); | ||
|  | 			 T1i = W[11]; | ||
|  | 			 T1m = FNMS(T1i, T1l, T1h); | ||
|  | 			 T3T = FMA(T1i, T1g, T3S); | ||
|  | 			 { | ||
|  | 			      E T12, T1n, T51, T52; | ||
|  | 			      T12 = TR - T11; | ||
|  | 			      T1n = T1c - T1m; | ||
|  | 			      T1o = T12 - T1n; | ||
|  | 			      T2Q = T1n + T12; | ||
|  | 			      T51 = T3R + T3T; | ||
|  | 			      T52 = TR + T11; | ||
|  | 			      T53 = T51 + T52; | ||
|  | 			      T5w = T51 - T52; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T37, T38, T3U, T3V; | ||
|  | 			      T37 = T34 - T36; | ||
|  | 			      T38 = T1c + T1m; | ||
|  | 			      T39 = T37 - T38; | ||
|  | 			      T3A = T38 + T37; | ||
|  | 			      T3U = T3R - T3T; | ||
|  | 			      T3V = T36 + T34; | ||
|  | 			      T3W = T3U + T3V; | ||
|  | 			      T4E = T3U - T3V; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4G, T4I, T2N, T2r, T4x, T4y, T4H, T4z; | ||
|  | 		    { | ||
|  | 			 E T4C, T4F, T1p, T2q; | ||
|  | 			 T4C = T4A - T4B; | ||
|  | 			 T4F = T4D - T4E; | ||
|  | 			 T4G = FNMS(KP618033988, T4F, T4C); | ||
|  | 			 T4I = FMA(KP618033988, T4C, T4F); | ||
|  | 			 T2N = T2E + T2M; | ||
|  | 			 T1p = TH + T1o; | ||
|  | 			 T2q = T1Y + T2p; | ||
|  | 			 T2r = T1p + T2q; | ||
|  | 			 T4x = FMA(KP250000000, T2r, T2N); | ||
|  | 			 T4y = T1p - T2q; | ||
|  | 		    } | ||
|  | 		    Im[WS(rs, 4)] = KP500000000 * (T2r - T2N); | ||
|  | 		    T4H = FNMS(KP559016994, T4y, T4x); | ||
|  | 		    Im[0] = -(KP500000000 * (FMA(KP951056516, T4I, T4H))); | ||
|  | 		    Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP951056516, T4I, T4H))); | ||
|  | 		    T4z = FMA(KP559016994, T4y, T4x); | ||
|  | 		    Ip[WS(rs, 3)] = KP500000000 * (FNMS(KP951056516, T4G, T4z)); | ||
|  | 		    Ip[WS(rs, 7)] = KP500000000 * (FMA(KP951056516, T4G, T4z)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4S, T4U, T4J, T4M, T4N, T4O, T4T, T4P; | ||
|  | 		    { | ||
|  | 			 E T4Q, T4R, T4K, T4L; | ||
|  | 			 T4Q = T2p - T1Y; | ||
|  | 			 T4R = T1o - TH; | ||
|  | 			 T4S = FNMS(KP618033988, T4R, T4Q); | ||
|  | 			 T4U = FMA(KP618033988, T4Q, T4R); | ||
|  | 			 T4J = T4j - T4k; | ||
|  | 			 T4K = T4D + T4E; | ||
|  | 			 T4L = T4A + T4B; | ||
|  | 			 T4M = T4K + T4L; | ||
|  | 			 T4N = FNMS(KP250000000, T4M, T4J); | ||
|  | 			 T4O = T4K - T4L; | ||
|  | 		    } | ||
|  | 		    Rm[WS(rs, 4)] = KP500000000 * (T4J + T4M); | ||
|  | 		    T4T = FMA(KP559016994, T4O, T4N); | ||
|  | 		    Rm[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T4U, T4T)); | ||
|  | 		    Rm[0] = KP500000000 * (FNMS(KP951056516, T4U, T4T)); | ||
|  | 		    T4P = FNMS(KP559016994, T4O, T4N); | ||
|  | 		    Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T4S, T4P)); | ||
|  | 		    Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T4S, T4P)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4d, T4f, T2O, T2V, T3G, T3H, T4e, T3I; | ||
|  | 		    { | ||
|  | 			 E T3X, T4c, T2R, T2U; | ||
|  | 			 T3X = T3P - T3W; | ||
|  | 			 T4c = T44 - T4b; | ||
|  | 			 T4d = FMA(KP618033988, T4c, T3X); | ||
|  | 			 T4f = FNMS(KP618033988, T3X, T4c); | ||
|  | 			 T2O = T2M - T2E; | ||
|  | 			 T2R = T2P + T2Q; | ||
|  | 			 T2U = T2S + T2T; | ||
|  | 			 T2V = T2R + T2U; | ||
|  | 			 T3G = FNMS(KP250000000, T2V, T2O); | ||
|  | 			 T3H = T2R - T2U; | ||
|  | 		    } | ||
|  | 		    Ip[WS(rs, 5)] = KP500000000 * (T2O + T2V); | ||
|  | 		    T4e = FNMS(KP559016994, T3H, T3G); | ||
|  | 		    Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP951056516, T4f, T4e))); | ||
|  | 		    Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP951056516, T4f, T4e))); | ||
|  | 		    T3I = FMA(KP559016994, T3H, T3G); | ||
|  | 		    Ip[WS(rs, 1)] = KP500000000 * (FNMS(KP951056516, T4d, T3I)); | ||
|  | 		    Ip[WS(rs, 9)] = KP500000000 * (FMA(KP951056516, T4d, T3I)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4u, T4w, T4l, T4o, T4p, T4q, T4v, T4r; | ||
|  | 		    { | ||
|  | 			 E T4s, T4t, T4m, T4n; | ||
|  | 			 T4s = T2P - T2Q; | ||
|  | 			 T4t = T2S - T2T; | ||
|  | 			 T4u = FMA(KP618033988, T4t, T4s); | ||
|  | 			 T4w = FNMS(KP618033988, T4s, T4t); | ||
|  | 			 T4l = T4j + T4k; | ||
|  | 			 T4m = T3P + T3W; | ||
|  | 			 T4n = T44 + T4b; | ||
|  | 			 T4o = T4m + T4n; | ||
|  | 			 T4p = FNMS(KP250000000, T4o, T4l); | ||
|  | 			 T4q = T4m - T4n; | ||
|  | 		    } | ||
|  | 		    Rp[WS(rs, 5)] = KP500000000 * (T4l + T4o); | ||
|  | 		    T4v = FNMS(KP559016994, T4q, T4p); | ||
|  | 		    Rm[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T4w, T4v)); | ||
|  | 		    Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T4w, T4v)); | ||
|  | 		    T4r = FMA(KP559016994, T4q, T4p); | ||
|  | 		    Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T4u, T4r)); | ||
|  | 		    Rp[WS(rs, 9)] = KP500000000 * (FNMS(KP951056516, T4u, T4r)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5C, T5E, T3x, T3q, T5t, T5u, T5D, T5v; | ||
|  | 		    { | ||
|  | 			 E T5y, T5B, T3a, T3p; | ||
|  | 			 T5y = T5w - T5x; | ||
|  | 			 T5B = T5z - T5A; | ||
|  | 			 T5C = FNMS(KP618033988, T5B, T5y); | ||
|  | 			 T5E = FMA(KP618033988, T5y, T5B); | ||
|  | 			 T3x = T3v + T3w; | ||
|  | 			 T3a = T32 + T39; | ||
|  | 			 T3p = T3h + T3o; | ||
|  | 			 T3q = T3a + T3p; | ||
|  | 			 T5t = FMA(KP250000000, T3q, T3x); | ||
|  | 			 T5u = T3p - T3a; | ||
|  | 		    } | ||
|  | 		    Im[WS(rs, 9)] = KP500000000 * (T3q - T3x); | ||
|  | 		    T5D = FNMS(KP559016994, T5u, T5t); | ||
|  | 		    Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T5E, T5D)); | ||
|  | 		    Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T5E, T5D))); | ||
|  | 		    T5v = FMA(KP559016994, T5u, T5t); | ||
|  | 		    Ip[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5C, T5v)); | ||
|  | 		    Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP951056516, T5C, T5v))); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5O, T5Q, T5F, T5I, T5J, T5K, T5P, T5L; | ||
|  | 		    { | ||
|  | 			 E T5M, T5N, T5G, T5H; | ||
|  | 			 T5M = T3o - T3h; | ||
|  | 			 T5N = T39 - T32; | ||
|  | 			 T5O = FNMS(KP618033988, T5N, T5M); | ||
|  | 			 T5Q = FMA(KP618033988, T5M, T5N); | ||
|  | 			 T5F = T4V - T4W; | ||
|  | 			 T5G = T5x + T5w; | ||
|  | 			 T5H = T5z + T5A; | ||
|  | 			 T5I = T5G + T5H; | ||
|  | 			 T5J = FNMS(KP250000000, T5I, T5F); | ||
|  | 			 T5K = T5G - T5H; | ||
|  | 		    } | ||
|  | 		    Rm[WS(rs, 9)] = KP500000000 * (T5F + T5I); | ||
|  | 		    T5P = FMA(KP559016994, T5K, T5J); | ||
|  | 		    Rp[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5Q, T5P)); | ||
|  | 		    Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP951056516, T5Q, T5P)); | ||
|  | 		    T5L = FNMS(KP559016994, T5K, T5J); | ||
|  | 		    Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T5O, T5L)); | ||
|  | 		    Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T5O, T5L)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5q, T5s, T3y, T3F, T5l, T5m, T5r, T5n; | ||
|  | 		    { | ||
|  | 			 E T5o, T5p, T3B, T3E; | ||
|  | 			 T5o = T50 - T53; | ||
|  | 			 T5p = T5a - T57; | ||
|  | 			 T5q = FNMS(KP618033988, T5p, T5o); | ||
|  | 			 T5s = FMA(KP618033988, T5o, T5p); | ||
|  | 			 T3y = T3w - T3v; | ||
|  | 			 T3B = T3z + T3A; | ||
|  | 			 T3E = T3C + T3D; | ||
|  | 			 T3F = T3B + T3E; | ||
|  | 			 T5l = FNMS(KP250000000, T3F, T3y); | ||
|  | 			 T5m = T3B - T3E; | ||
|  | 		    } | ||
|  | 		    Ip[0] = KP500000000 * (T3y + T3F); | ||
|  | 		    T5r = FNMS(KP559016994, T5m, T5l); | ||
|  | 		    Ip[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5s, T5r)); | ||
|  | 		    Im[WS(rs, 7)] = -(KP500000000 * (FNMS(KP951056516, T5s, T5r))); | ||
|  | 		    T5n = FMA(KP559016994, T5m, T5l); | ||
|  | 		    Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T5q, T5n)); | ||
|  | 		    Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T5q, T5n))); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5i, T5k, T4X, T5c, T5d, T5e, T5j, T5f; | ||
|  | 		    { | ||
|  | 			 E T5g, T5h, T54, T5b; | ||
|  | 			 T5g = T3z - T3A; | ||
|  | 			 T5h = T3C - T3D; | ||
|  | 			 T5i = FMA(KP618033988, T5h, T5g); | ||
|  | 			 T5k = FNMS(KP618033988, T5g, T5h); | ||
|  | 			 T4X = T4V + T4W; | ||
|  | 			 T54 = T50 + T53; | ||
|  | 			 T5b = T57 + T5a; | ||
|  | 			 T5c = T54 + T5b; | ||
|  | 			 T5d = FNMS(KP250000000, T5c, T4X); | ||
|  | 			 T5e = T54 - T5b; | ||
|  | 		    } | ||
|  | 		    Rp[0] = KP500000000 * (T4X + T5c); | ||
|  | 		    T5j = FNMS(KP559016994, T5e, T5d); | ||
|  | 		    Rp[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5k, T5j)); | ||
|  | 		    Rm[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T5k, T5j)); | ||
|  | 		    T5f = FMA(KP559016994, T5e, T5d); | ||
|  | 		    Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T5i, T5f)); | ||
|  | 		    Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T5i, T5f)); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 20 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 20, "hc2cfdft_20", twinstr, &GENUS, { 176, 78, 110, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cfdft_20) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdft_20, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include rdft/scalar/hc2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 286 FP additions, 140 FP multiplications, | ||
|  |  * (or, 224 additions, 78 multiplications, 62 fused multiply/add), | ||
|  |  * 98 stack variables, 5 constants, and 80 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cf.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP125000000, +0.125000000000000000000000000000000000000000000); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP279508497, +0.279508497187473712051146708591409529430077295); | ||
|  |      DK(KP293892626, +0.293892626146236564584352977319536384298826219); | ||
|  |      DK(KP475528258, +0.475528258147576786058219666689691071702849317); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { | ||
|  | 	       E T12, T2w, T4o, T4V, T2H, T3a, T4y, T4Y, T1z, T2v, T25, T2y, T2s, T2z, T4v; | ||
|  | 	       E T4X, T4r, T4U, T3A, T3Z, T2X, T37, T3k, T41, T2M, T39, T3v, T3Y, T2S, T36; | ||
|  | 	       E T3p, T42, Td, T4G, T33, T3N, Tw, T4H, T32, T3O; | ||
|  | 	       { | ||
|  | 		    E T3, T3L, T1x, T2V, Th, Tl, TC, T3g, Tq, Tu, TH, T3h, T7, Tb, T1q; | ||
|  | 		    E T2U, TR, T2P, T1F, T3r, T23, T2K, T2f, T3y, T1k, T3m, T2q, T2E, T10, T2Q; | ||
|  | 		    E T1K, T3s, T1U, T2J, T2a, T3x, T1b, T3l, T2l, T2D; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T1s, T1u, T1v, T1w, T1r, T1t; | ||
|  | 			 T1 = Ip[0]; | ||
|  | 			 T2 = Im[0]; | ||
|  | 			 T1s = T1 + T2; | ||
|  | 			 T1u = Rp[0]; | ||
|  | 			 T1v = Rm[0]; | ||
|  | 			 T1w = T1u - T1v; | ||
|  | 			 T3 = T1 - T2; | ||
|  | 			 T3L = T1u + T1v; | ||
|  | 			 T1r = W[0]; | ||
|  | 			 T1t = W[1]; | ||
|  | 			 T1x = FNMS(T1t, T1w, T1r * T1s); | ||
|  | 			 T2V = FMA(T1r, T1w, T1t * T1s); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tf, Tg, Tz, Tj, Tk, TB, Ty, TA; | ||
|  | 			 Tf = Ip[WS(rs, 2)]; | ||
|  | 			 Tg = Im[WS(rs, 2)]; | ||
|  | 			 Tz = Tf - Tg; | ||
|  | 			 Tj = Rp[WS(rs, 2)]; | ||
|  | 			 Tk = Rm[WS(rs, 2)]; | ||
|  | 			 TB = Tj + Tk; | ||
|  | 			 Th = Tf + Tg; | ||
|  | 			 Tl = Tj - Tk; | ||
|  | 			 Ty = W[6]; | ||
|  | 			 TA = W[7]; | ||
|  | 			 TC = FNMS(TA, TB, Ty * Tz); | ||
|  | 			 T3g = FMA(TA, Tz, Ty * TB); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E To, Tp, TE, Ts, Tt, TG, TD, TF; | ||
|  | 			 To = Ip[WS(rs, 7)]; | ||
|  | 			 Tp = Im[WS(rs, 7)]; | ||
|  | 			 TE = To - Tp; | ||
|  | 			 Ts = Rp[WS(rs, 7)]; | ||
|  | 			 Tt = Rm[WS(rs, 7)]; | ||
|  | 			 TG = Ts + Tt; | ||
|  | 			 Tq = To + Tp; | ||
|  | 			 Tu = Ts - Tt; | ||
|  | 			 TD = W[26]; | ||
|  | 			 TF = W[27]; | ||
|  | 			 TH = FNMS(TF, TG, TD * TE); | ||
|  | 			 T3h = FMA(TF, TE, TD * TG); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5, T6, T1n, T9, Ta, T1p, T1m, T1o; | ||
|  | 			 T5 = Ip[WS(rs, 5)]; | ||
|  | 			 T6 = Im[WS(rs, 5)]; | ||
|  | 			 T1n = T5 + T6; | ||
|  | 			 T9 = Rp[WS(rs, 5)]; | ||
|  | 			 Ta = Rm[WS(rs, 5)]; | ||
|  | 			 T1p = T9 - Ta; | ||
|  | 			 T7 = T5 - T6; | ||
|  | 			 Tb = T9 + Ta; | ||
|  | 			 T1m = W[20]; | ||
|  | 			 T1o = W[21]; | ||
|  | 			 T1q = FNMS(T1o, T1p, T1m * T1n); | ||
|  | 			 T2U = FMA(T1m, T1p, T1o * T1n); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TM, T1C, TQ, T1E; | ||
|  | 			 { | ||
|  | 			      E TK, TL, TO, TP; | ||
|  | 			      TK = Ip[WS(rs, 4)]; | ||
|  | 			      TL = Im[WS(rs, 4)]; | ||
|  | 			      TM = TK + TL; | ||
|  | 			      T1C = TK - TL; | ||
|  | 			      TO = Rp[WS(rs, 4)]; | ||
|  | 			      TP = Rm[WS(rs, 4)]; | ||
|  | 			      TQ = TO - TP; | ||
|  | 			      T1E = TO + TP; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TJ, TN, T1B, T1D; | ||
|  | 			      TJ = W[16]; | ||
|  | 			      TN = W[17]; | ||
|  | 			      TR = FNMS(TN, TQ, TJ * TM); | ||
|  | 			      T2P = FMA(TN, TM, TJ * TQ); | ||
|  | 			      T1B = W[14]; | ||
|  | 			      T1D = W[15]; | ||
|  | 			      T1F = FNMS(T1D, T1E, T1B * T1C); | ||
|  | 			      T3r = FMA(T1D, T1C, T1B * T1E); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1Y, T2c, T22, T2e; | ||
|  | 			 { | ||
|  | 			      E T1W, T1X, T20, T21; | ||
|  | 			      T1W = Ip[WS(rs, 1)]; | ||
|  | 			      T1X = Im[WS(rs, 1)]; | ||
|  | 			      T1Y = T1W + T1X; | ||
|  | 			      T2c = T1W - T1X; | ||
|  | 			      T20 = Rp[WS(rs, 1)]; | ||
|  | 			      T21 = Rm[WS(rs, 1)]; | ||
|  | 			      T22 = T20 - T21; | ||
|  | 			      T2e = T20 + T21; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1V, T1Z, T2b, T2d; | ||
|  | 			      T1V = W[4]; | ||
|  | 			      T1Z = W[5]; | ||
|  | 			      T23 = FNMS(T1Z, T22, T1V * T1Y); | ||
|  | 			      T2K = FMA(T1Z, T1Y, T1V * T22); | ||
|  | 			      T2b = W[2]; | ||
|  | 			      T2d = W[3]; | ||
|  | 			      T2f = FNMS(T2d, T2e, T2b * T2c); | ||
|  | 			      T3y = FMA(T2d, T2c, T2b * T2e); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1f, T2n, T1j, T2p; | ||
|  | 			 { | ||
|  | 			      E T1d, T1e, T1h, T1i; | ||
|  | 			      T1d = Ip[WS(rs, 3)]; | ||
|  | 			      T1e = Im[WS(rs, 3)]; | ||
|  | 			      T1f = T1d - T1e; | ||
|  | 			      T2n = T1d + T1e; | ||
|  | 			      T1h = Rp[WS(rs, 3)]; | ||
|  | 			      T1i = Rm[WS(rs, 3)]; | ||
|  | 			      T1j = T1h + T1i; | ||
|  | 			      T2p = T1h - T1i; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1c, T1g, T2m, T2o; | ||
|  | 			      T1c = W[10]; | ||
|  | 			      T1g = W[11]; | ||
|  | 			      T1k = FNMS(T1g, T1j, T1c * T1f); | ||
|  | 			      T3m = FMA(T1c, T1j, T1g * T1f); | ||
|  | 			      T2m = W[12]; | ||
|  | 			      T2o = W[13]; | ||
|  | 			      T2q = FNMS(T2o, T2p, T2m * T2n); | ||
|  | 			      T2E = FMA(T2m, T2p, T2o * T2n); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TV, T1H, TZ, T1J; | ||
|  | 			 { | ||
|  | 			      E TT, TU, TX, TY; | ||
|  | 			      TT = Ip[WS(rs, 9)]; | ||
|  | 			      TU = Im[WS(rs, 9)]; | ||
|  | 			      TV = TT + TU; | ||
|  | 			      T1H = TT - TU; | ||
|  | 			      TX = Rp[WS(rs, 9)]; | ||
|  | 			      TY = Rm[WS(rs, 9)]; | ||
|  | 			      TZ = TX - TY; | ||
|  | 			      T1J = TX + TY; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TS, TW, T1G, T1I; | ||
|  | 			      TS = W[36]; | ||
|  | 			      TW = W[37]; | ||
|  | 			      T10 = FNMS(TW, TZ, TS * TV); | ||
|  | 			      T2Q = FMA(TW, TV, TS * TZ); | ||
|  | 			      T1G = W[34]; | ||
|  | 			      T1I = W[35]; | ||
|  | 			      T1K = FNMS(T1I, T1J, T1G * T1H); | ||
|  | 			      T3s = FMA(T1I, T1H, T1G * T1J); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1P, T27, T1T, T29; | ||
|  | 			 { | ||
|  | 			      E T1N, T1O, T1R, T1S; | ||
|  | 			      T1N = Ip[WS(rs, 6)]; | ||
|  | 			      T1O = Im[WS(rs, 6)]; | ||
|  | 			      T1P = T1N + T1O; | ||
|  | 			      T27 = T1N - T1O; | ||
|  | 			      T1R = Rp[WS(rs, 6)]; | ||
|  | 			      T1S = Rm[WS(rs, 6)]; | ||
|  | 			      T1T = T1R - T1S; | ||
|  | 			      T29 = T1R + T1S; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1M, T1Q, T26, T28; | ||
|  | 			      T1M = W[24]; | ||
|  | 			      T1Q = W[25]; | ||
|  | 			      T1U = FNMS(T1Q, T1T, T1M * T1P); | ||
|  | 			      T2J = FMA(T1Q, T1P, T1M * T1T); | ||
|  | 			      T26 = W[22]; | ||
|  | 			      T28 = W[23]; | ||
|  | 			      T2a = FNMS(T28, T29, T26 * T27); | ||
|  | 			      T3x = FMA(T28, T27, T26 * T29); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T16, T2k, T1a, T2i; | ||
|  | 			 { | ||
|  | 			      E T14, T15, T18, T19; | ||
|  | 			      T14 = Ip[WS(rs, 8)]; | ||
|  | 			      T15 = Im[WS(rs, 8)]; | ||
|  | 			      T16 = T14 - T15; | ||
|  | 			      T2k = T14 + T15; | ||
|  | 			      T18 = Rp[WS(rs, 8)]; | ||
|  | 			      T19 = Rm[WS(rs, 8)]; | ||
|  | 			      T1a = T18 + T19; | ||
|  | 			      T2i = T19 - T18; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T13, T17, T2h, T2j; | ||
|  | 			      T13 = W[30]; | ||
|  | 			      T17 = W[31]; | ||
|  | 			      T1b = FNMS(T17, T1a, T13 * T16); | ||
|  | 			      T3l = FMA(T13, T1a, T17 * T16); | ||
|  | 			      T2h = W[33]; | ||
|  | 			      T2j = W[32]; | ||
|  | 			      T2l = FMA(T2h, T2i, T2j * T2k); | ||
|  | 			      T2D = FNMS(T2h, T2k, T2j * T2i); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2g, T2r, T3n, T3o; | ||
|  | 			 { | ||
|  | 			      E TI, T11, T4m, T4n; | ||
|  | 			      TI = TC - TH; | ||
|  | 			      T11 = TR - T10; | ||
|  | 			      T12 = TI - T11; | ||
|  | 			      T2w = TI + T11; | ||
|  | 			      T4m = T3g + T3h; | ||
|  | 			      T4n = TR + T10; | ||
|  | 			      T4o = T4m + T4n; | ||
|  | 			      T4V = T4m - T4n; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2F, T2G, T4w, T4x; | ||
|  | 			      T2F = T2D - T2E; | ||
|  | 			      T2G = T2a + T2f; | ||
|  | 			      T2H = T2F - T2G; | ||
|  | 			      T3a = T2F + T2G; | ||
|  | 			      T4w = T2l + T2q; | ||
|  | 			      T4x = T3x + T3y; | ||
|  | 			      T4y = T4w + T4x; | ||
|  | 			      T4Y = T4x - T4w; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1l, T1y, T1L, T24; | ||
|  | 			      T1l = T1b - T1k; | ||
|  | 			      T1y = T1q - T1x; | ||
|  | 			      T1z = T1l + T1y; | ||
|  | 			      T2v = T1y - T1l; | ||
|  | 			      T1L = T1F - T1K; | ||
|  | 			      T24 = T1U - T23; | ||
|  | 			      T25 = T1L - T24; | ||
|  | 			      T2y = T1L + T24; | ||
|  | 			 } | ||
|  | 			 T2g = T2a - T2f; | ||
|  | 			 T2r = T2l - T2q; | ||
|  | 			 T2s = T2g - T2r; | ||
|  | 			 T2z = T2r + T2g; | ||
|  | 			 { | ||
|  | 			      E T4t, T4u, T4p, T4q; | ||
|  | 			      T4t = T3r + T3s; | ||
|  | 			      T4u = T1U + T23; | ||
|  | 			      T4v = T4t + T4u; | ||
|  | 			      T4X = T4t - T4u; | ||
|  | 			      T4p = T3l + T3m; | ||
|  | 			      T4q = T1q + T1x; | ||
|  | 			      T4r = T4p + T4q; | ||
|  | 			      T4U = T4p - T4q; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3w, T3z, T2T, T2W; | ||
|  | 			      T3w = T2D + T2E; | ||
|  | 			      T3z = T3x - T3y; | ||
|  | 			      T3A = T3w + T3z; | ||
|  | 			      T3Z = T3z - T3w; | ||
|  | 			      T2T = T1b + T1k; | ||
|  | 			      T2W = T2U + T2V; | ||
|  | 			      T2X = T2T + T2W; | ||
|  | 			      T37 = T2T - T2W; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3i, T3j, T2I, T2L; | ||
|  | 			      T3i = T3g - T3h; | ||
|  | 			      T3j = T2Q - T2P; | ||
|  | 			      T3k = T3i + T3j; | ||
|  | 			      T41 = T3i - T3j; | ||
|  | 			      T2I = T1F + T1K; | ||
|  | 			      T2L = T2J + T2K; | ||
|  | 			      T2M = T2I + T2L; | ||
|  | 			      T39 = T2I - T2L; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3t, T3u, T2O, T2R; | ||
|  | 			      T3t = T3r - T3s; | ||
|  | 			      T3u = T2K - T2J; | ||
|  | 			      T3v = T3t + T3u; | ||
|  | 			      T3Y = T3t - T3u; | ||
|  | 			      T2O = TC + TH; | ||
|  | 			      T2R = T2P + T2Q; | ||
|  | 			      T2S = T2O + T2R; | ||
|  | 			      T36 = T2O - T2R; | ||
|  | 			 } | ||
|  | 			 T3n = T3l - T3m; | ||
|  | 			 T3o = T2U - T2V; | ||
|  | 			 T3p = T3n + T3o; | ||
|  | 			 T42 = T3n - T3o; | ||
|  | 			 { | ||
|  | 			      E Tc, T3M, T4, T8; | ||
|  | 			      T4 = W[18]; | ||
|  | 			      T8 = W[19]; | ||
|  | 			      Tc = FNMS(T8, Tb, T4 * T7); | ||
|  | 			      T3M = FMA(T4, Tb, T8 * T7); | ||
|  | 			      Td = T3 - Tc; | ||
|  | 			      T4G = T3L + T3M; | ||
|  | 			      T33 = Tc + T3; | ||
|  | 			      T3N = T3L - T3M; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tm, T30, Tv, T31; | ||
|  | 			      { | ||
|  | 				   E Te, Ti, Tn, Tr; | ||
|  | 				   Te = W[8]; | ||
|  | 				   Ti = W[9]; | ||
|  | 				   Tm = FNMS(Ti, Tl, Te * Th); | ||
|  | 				   T30 = FMA(Ti, Th, Te * Tl); | ||
|  | 				   Tn = W[28]; | ||
|  | 				   Tr = W[29]; | ||
|  | 				   Tv = FNMS(Tr, Tu, Tn * Tq); | ||
|  | 				   T31 = FMA(Tr, Tq, Tn * Tu); | ||
|  | 			      } | ||
|  | 			      Tw = Tm - Tv; | ||
|  | 			      T4H = Tm + Tv; | ||
|  | 			      T32 = T30 + T31; | ||
|  | 			      T3O = T31 - T30; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3C, T3E, Tx, T2u, T3d, T3e, T3D, T3f; | ||
|  | 		    { | ||
|  | 			 E T3q, T3B, T1A, T2t; | ||
|  | 			 T3q = T3k - T3p; | ||
|  | 			 T3B = T3v - T3A; | ||
|  | 			 T3C = FMA(KP475528258, T3q, KP293892626 * T3B); | ||
|  | 			 T3E = FNMS(KP293892626, T3q, KP475528258 * T3B); | ||
|  | 			 Tx = Td - Tw; | ||
|  | 			 T1A = T12 + T1z; | ||
|  | 			 T2t = T25 + T2s; | ||
|  | 			 T2u = T1A + T2t; | ||
|  | 			 T3d = KP279508497 * (T1A - T2t); | ||
|  | 			 T3e = FNMS(KP125000000, T2u, KP500000000 * Tx); | ||
|  | 		    } | ||
|  | 		    Ip[WS(rs, 5)] = KP500000000 * (Tx + T2u); | ||
|  | 		    T3D = T3d - T3e; | ||
|  | 		    Im[WS(rs, 2)] = T3D - T3E; | ||
|  | 		    Im[WS(rs, 6)] = T3D + T3E; | ||
|  | 		    T3f = T3d + T3e; | ||
|  | 		    Ip[WS(rs, 1)] = T3f - T3C; | ||
|  | 		    Ip[WS(rs, 9)] = T3f + T3C; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3H, T3T, T3P, T3Q, T3K, T3R, T3U, T3S; | ||
|  | 		    { | ||
|  | 			 E T3F, T3G, T3I, T3J; | ||
|  | 			 T3F = T12 - T1z; | ||
|  | 			 T3G = T25 - T2s; | ||
|  | 			 T3H = FMA(KP475528258, T3F, KP293892626 * T3G); | ||
|  | 			 T3T = FNMS(KP293892626, T3F, KP475528258 * T3G); | ||
|  | 			 T3P = T3N + T3O; | ||
|  | 			 T3I = T3k + T3p; | ||
|  | 			 T3J = T3v + T3A; | ||
|  | 			 T3Q = T3I + T3J; | ||
|  | 			 T3K = KP279508497 * (T3I - T3J); | ||
|  | 			 T3R = FNMS(KP125000000, T3Q, KP500000000 * T3P); | ||
|  | 		    } | ||
|  | 		    Rp[WS(rs, 5)] = KP500000000 * (T3P + T3Q); | ||
|  | 		    T3U = T3R - T3K; | ||
|  | 		    Rm[WS(rs, 6)] = T3T + T3U; | ||
|  | 		    Rm[WS(rs, 2)] = T3U - T3T; | ||
|  | 		    T3S = T3K + T3R; | ||
|  | 		    Rp[WS(rs, 1)] = T3H + T3S; | ||
|  | 		    Rp[WS(rs, 9)] = T3S - T3H; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T44, T46, T2C, T2B, T3V, T3W, T45, T3X; | ||
|  | 		    { | ||
|  | 			 E T40, T43, T2x, T2A; | ||
|  | 			 T40 = T3Y - T3Z; | ||
|  | 			 T43 = T41 - T42; | ||
|  | 			 T44 = FNMS(KP293892626, T43, KP475528258 * T40); | ||
|  | 			 T46 = FMA(KP475528258, T43, KP293892626 * T40); | ||
|  | 			 T2C = Tw + Td; | ||
|  | 			 T2x = T2v - T2w; | ||
|  | 			 T2A = T2y + T2z; | ||
|  | 			 T2B = T2x - T2A; | ||
|  | 			 T3V = FMA(KP500000000, T2C, KP125000000 * T2B); | ||
|  | 			 T3W = KP279508497 * (T2x + T2A); | ||
|  | 		    } | ||
|  | 		    Im[WS(rs, 4)] = KP500000000 * (T2B - T2C); | ||
|  | 		    T45 = T3W - T3V; | ||
|  | 		    Im[0] = T45 - T46; | ||
|  | 		    Im[WS(rs, 8)] = T45 + T46; | ||
|  | 		    T3X = T3V + T3W; | ||
|  | 		    Ip[WS(rs, 3)] = T3X - T44; | ||
|  | 		    Ip[WS(rs, 7)] = T3X + T44; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T49, T4h, T4a, T4d, T4e, T4f, T4i, T4g; | ||
|  | 		    { | ||
|  | 			 E T47, T48, T4b, T4c; | ||
|  | 			 T47 = T2y - T2z; | ||
|  | 			 T48 = T2w + T2v; | ||
|  | 			 T49 = FNMS(KP293892626, T48, KP475528258 * T47); | ||
|  | 			 T4h = FMA(KP475528258, T48, KP293892626 * T47); | ||
|  | 			 T4a = T3N - T3O; | ||
|  | 			 T4b = T41 + T42; | ||
|  | 			 T4c = T3Y + T3Z; | ||
|  | 			 T4d = T4b + T4c; | ||
|  | 			 T4e = FNMS(KP125000000, T4d, KP500000000 * T4a); | ||
|  | 			 T4f = KP279508497 * (T4b - T4c); | ||
|  | 		    } | ||
|  | 		    Rm[WS(rs, 4)] = KP500000000 * (T4a + T4d); | ||
|  | 		    T4i = T4f + T4e; | ||
|  | 		    Rm[WS(rs, 8)] = T4h + T4i; | ||
|  | 		    Rm[0] = T4i - T4h; | ||
|  | 		    T4g = T4e - T4f; | ||
|  | 		    Rp[WS(rs, 3)] = T49 + T4g; | ||
|  | 		    Rp[WS(rs, 7)] = T4g - T49; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T50, T52, T34, T2Z, T4R, T4S, T51, T4T; | ||
|  | 		    { | ||
|  | 			 E T4W, T4Z, T2N, T2Y; | ||
|  | 			 T4W = T4U - T4V; | ||
|  | 			 T4Z = T4X - T4Y; | ||
|  | 			 T50 = FNMS(KP293892626, T4Z, KP475528258 * T4W); | ||
|  | 			 T52 = FMA(KP293892626, T4W, KP475528258 * T4Z); | ||
|  | 			 T34 = T32 + T33; | ||
|  | 			 T2N = T2H - T2M; | ||
|  | 			 T2Y = T2S + T2X; | ||
|  | 			 T2Z = T2N - T2Y; | ||
|  | 			 T4R = FMA(KP500000000, T34, KP125000000 * T2Z); | ||
|  | 			 T4S = KP279508497 * (T2Y + T2N); | ||
|  | 		    } | ||
|  | 		    Im[WS(rs, 9)] = KP500000000 * (T2Z - T34); | ||
|  | 		    T51 = T4R - T4S; | ||
|  | 		    Ip[WS(rs, 2)] = T51 + T52; | ||
|  | 		    Im[WS(rs, 1)] = T52 - T51; | ||
|  | 		    T4T = T4R + T4S; | ||
|  | 		    Ip[WS(rs, 6)] = T4T + T50; | ||
|  | 		    Im[WS(rs, 5)] = T50 - T4T; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5c, T5d, T53, T56, T57, T58, T5e, T59; | ||
|  | 		    { | ||
|  | 			 E T5a, T5b, T54, T55; | ||
|  | 			 T5a = T2M + T2H; | ||
|  | 			 T5b = T2S - T2X; | ||
|  | 			 T5c = FNMS(KP293892626, T5b, KP475528258 * T5a); | ||
|  | 			 T5d = FMA(KP475528258, T5b, KP293892626 * T5a); | ||
|  | 			 T53 = T4G - T4H; | ||
|  | 			 T54 = T4V + T4U; | ||
|  | 			 T55 = T4X + T4Y; | ||
|  | 			 T56 = T54 + T55; | ||
|  | 			 T57 = FNMS(KP125000000, T56, KP500000000 * T53); | ||
|  | 			 T58 = KP279508497 * (T54 - T55); | ||
|  | 		    } | ||
|  | 		    Rm[WS(rs, 9)] = KP500000000 * (T53 + T56); | ||
|  | 		    T5e = T58 + T57; | ||
|  | 		    Rp[WS(rs, 6)] = T5d + T5e; | ||
|  | 		    Rm[WS(rs, 5)] = T5e - T5d; | ||
|  | 		    T59 = T57 - T58; | ||
|  | 		    Rp[WS(rs, 2)] = T59 - T5c; | ||
|  | 		    Rm[WS(rs, 1)] = T5c + T59; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4A, T4C, T35, T3c, T4j, T4k, T4B, T4l; | ||
|  | 		    { | ||
|  | 			 E T4s, T4z, T38, T3b; | ||
|  | 			 T4s = T4o - T4r; | ||
|  | 			 T4z = T4v - T4y; | ||
|  | 			 T4A = FNMS(KP475528258, T4z, KP293892626 * T4s); | ||
|  | 			 T4C = FMA(KP475528258, T4s, KP293892626 * T4z); | ||
|  | 			 T35 = T33 - T32; | ||
|  | 			 T38 = T36 + T37; | ||
|  | 			 T3b = T39 + T3a; | ||
|  | 			 T3c = T38 + T3b; | ||
|  | 			 T4j = FNMS(KP125000000, T3c, KP500000000 * T35); | ||
|  | 			 T4k = KP279508497 * (T38 - T3b); | ||
|  | 		    } | ||
|  | 		    Ip[0] = KP500000000 * (T35 + T3c); | ||
|  | 		    T4B = T4k + T4j; | ||
|  | 		    Ip[WS(rs, 4)] = T4B + T4C; | ||
|  | 		    Im[WS(rs, 3)] = T4C - T4B; | ||
|  | 		    T4l = T4j - T4k; | ||
|  | 		    Ip[WS(rs, 8)] = T4l + T4A; | ||
|  | 		    Im[WS(rs, 7)] = T4A - T4l; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4O, T4P, T4I, T4J, T4F, T4K, T4Q, T4L; | ||
|  | 		    { | ||
|  | 			 E T4M, T4N, T4D, T4E; | ||
|  | 			 T4M = T36 - T37; | ||
|  | 			 T4N = T39 - T3a; | ||
|  | 			 T4O = FMA(KP475528258, T4M, KP293892626 * T4N); | ||
|  | 			 T4P = FNMS(KP293892626, T4M, KP475528258 * T4N); | ||
|  | 			 T4I = T4G + T4H; | ||
|  | 			 T4D = T4o + T4r; | ||
|  | 			 T4E = T4v + T4y; | ||
|  | 			 T4J = T4D + T4E; | ||
|  | 			 T4F = KP279508497 * (T4D - T4E); | ||
|  | 			 T4K = FNMS(KP125000000, T4J, KP500000000 * T4I); | ||
|  | 		    } | ||
|  | 		    Rp[0] = KP500000000 * (T4I + T4J); | ||
|  | 		    T4Q = T4K - T4F; | ||
|  | 		    Rp[WS(rs, 8)] = T4P + T4Q; | ||
|  | 		    Rm[WS(rs, 7)] = T4Q - T4P; | ||
|  | 		    T4L = T4F + T4K; | ||
|  | 		    Rp[WS(rs, 4)] = T4L - T4O; | ||
|  | 		    Rm[WS(rs, 3)] = T4O + T4L; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 20 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 20, "hc2cfdft_20", twinstr, &GENUS, { 224, 78, 62, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cfdft_20) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdft_20, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |