427 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			427 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:43 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include dft/simd/t2f.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 87 FP additions, 64 FP multiplications, | ||
|  |  * (or, 53 additions, 30 multiplications, 34 fused multiply/add), | ||
|  |  * 36 stack variables, 3 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t2f.h"
 | ||
|  | 
 | ||
|  | static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) { | ||
|  | 	       V T4, TW, T9, T19, TD, TI, TZ, T1a, Tf, Tk, Tl, T13, T1c, Tq, Tv; | ||
|  | 	       V Tw, T16, T1d, T1, T3, T2; | ||
|  | 	       T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 	       T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | ||
|  | 	       T3 = BYTWJ(&(W[TWVL * 14]), T2); | ||
|  | 	       T4 = VADD(T1, T3); | ||
|  | 	       TW = VSUB(T1, T3); | ||
|  | 	       { | ||
|  | 		    V T6, T8, T5, T7; | ||
|  | 		    T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 		    T6 = BYTWJ(&(W[TWVL * 6]), T5); | ||
|  | 		    T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | ||
|  | 		    T8 = BYTWJ(&(W[TWVL * 22]), T7); | ||
|  | 		    T9 = VADD(T6, T8); | ||
|  | 		    T19 = VSUB(T6, T8); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TA, TH, TC, TF, TX, TY; | ||
|  | 		    { | ||
|  | 			 V Tz, TG, TB, TE; | ||
|  | 			 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | ||
|  | 			 TA = BYTWJ(&(W[TWVL * 26]), Tz); | ||
|  | 			 TG = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | ||
|  | 			 TH = BYTWJ(&(W[TWVL * 18]), TG); | ||
|  | 			 TB = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 			 TC = BYTWJ(&(W[TWVL * 10]), TB); | ||
|  | 			 TE = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 			 TF = BYTWJ(&(W[TWVL * 2]), TE); | ||
|  | 		    } | ||
|  | 		    TD = VADD(TA, TC); | ||
|  | 		    TI = VADD(TF, TH); | ||
|  | 		    TX = VSUB(TF, TH); | ||
|  | 		    TY = VSUB(TA, TC); | ||
|  | 		    TZ = VADD(TX, TY); | ||
|  | 		    T1a = VSUB(TY, TX); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tc, Tj, Te, Th, T11, T12; | ||
|  | 		    { | ||
|  | 			 V Tb, Ti, Td, Tg; | ||
|  | 			 Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tc = BYTWJ(&(W[0]), Tb); | ||
|  | 			 Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tj = BYTWJ(&(W[TWVL * 24]), Ti); | ||
|  | 			 Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Te = BYTWJ(&(W[TWVL * 16]), Td); | ||
|  | 			 Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Th = BYTWJ(&(W[TWVL * 8]), Tg); | ||
|  | 		    } | ||
|  | 		    Tf = VADD(Tc, Te); | ||
|  | 		    Tk = VADD(Th, Tj); | ||
|  | 		    Tl = VSUB(Tf, Tk); | ||
|  | 		    T11 = VSUB(Tc, Te); | ||
|  | 		    T12 = VSUB(Th, Tj); | ||
|  | 		    T13 = VFNMS(LDK(KP414213562), T12, T11); | ||
|  | 		    T1c = VFMA(LDK(KP414213562), T11, T12); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tn, Tu, Tp, Ts, T14, T15; | ||
|  | 		    { | ||
|  | 			 V Tm, Tt, To, Tr; | ||
|  | 			 Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tn = BYTWJ(&(W[TWVL * 28]), Tm); | ||
|  | 			 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tu = BYTWJ(&(W[TWVL * 20]), Tt); | ||
|  | 			 To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tp = BYTWJ(&(W[TWVL * 12]), To); | ||
|  | 			 Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Ts = BYTWJ(&(W[TWVL * 4]), Tr); | ||
|  | 		    } | ||
|  | 		    Tq = VADD(Tn, Tp); | ||
|  | 		    Tv = VADD(Ts, Tu); | ||
|  | 		    Tw = VSUB(Tq, Tv); | ||
|  | 		    T14 = VSUB(Tn, Tp); | ||
|  | 		    T15 = VSUB(Tu, Ts); | ||
|  | 		    T16 = VFNMS(LDK(KP414213562), T15, T14); | ||
|  | 		    T1d = VFMA(LDK(KP414213562), T14, T15); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Ty, TM, TL, TN; | ||
|  | 		    { | ||
|  | 			 V Ta, Tx, TJ, TK; | ||
|  | 			 Ta = VSUB(T4, T9); | ||
|  | 			 Tx = VADD(Tl, Tw); | ||
|  | 			 Ty = VFNMS(LDK(KP707106781), Tx, Ta); | ||
|  | 			 TM = VFMA(LDK(KP707106781), Tx, Ta); | ||
|  | 			 TJ = VSUB(TD, TI); | ||
|  | 			 TK = VSUB(Tw, Tl); | ||
|  | 			 TL = VFNMS(LDK(KP707106781), TK, TJ); | ||
|  | 			 TN = VFMA(LDK(KP707106781), TK, TJ); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 6)]), VFNMSI(TL, Ty), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 2)]), VFMAI(TN, TM), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 10)]), VFMAI(TL, Ty), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 14)]), VFNMSI(TN, TM), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T1k, T1o, T1n, T1p; | ||
|  | 		    { | ||
|  | 			 V T1i, T1j, T1l, T1m; | ||
|  | 			 T1i = VFNMS(LDK(KP707106781), TZ, TW); | ||
|  | 			 T1j = VADD(T1c, T1d); | ||
|  | 			 T1k = VFNMS(LDK(KP923879532), T1j, T1i); | ||
|  | 			 T1o = VFMA(LDK(KP923879532), T1j, T1i); | ||
|  | 			 T1l = VFMA(LDK(KP707106781), T1a, T19); | ||
|  | 			 T1m = VSUB(T16, T13); | ||
|  | 			 T1n = VFNMS(LDK(KP923879532), T1m, T1l); | ||
|  | 			 T1p = VFMA(LDK(KP923879532), T1m, T1l); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 5)]), VFNMSI(T1n, T1k), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 13)]), VFNMSI(T1p, T1o), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 11)]), VFMAI(T1n, T1k), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 3)]), VFMAI(T1p, T1o), ms, &(x[WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TQ, TU, TT, TV; | ||
|  | 		    { | ||
|  | 			 V TO, TP, TR, TS; | ||
|  | 			 TO = VADD(T4, T9); | ||
|  | 			 TP = VADD(TI, TD); | ||
|  | 			 TQ = VADD(TO, TP); | ||
|  | 			 TU = VSUB(TO, TP); | ||
|  | 			 TR = VADD(Tf, Tk); | ||
|  | 			 TS = VADD(Tq, Tv); | ||
|  | 			 TT = VADD(TR, TS); | ||
|  | 			 TV = VSUB(TS, TR); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 8)]), VSUB(TQ, TT), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 4)]), VFMAI(TV, TU), ms, &(x[0])); | ||
|  | 		    ST(&(x[0]), VADD(TQ, TT), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 12)]), VFNMSI(TV, TU), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T18, T1g, T1f, T1h; | ||
|  | 		    { | ||
|  | 			 V T10, T17, T1b, T1e; | ||
|  | 			 T10 = VFMA(LDK(KP707106781), TZ, TW); | ||
|  | 			 T17 = VADD(T13, T16); | ||
|  | 			 T18 = VFNMS(LDK(KP923879532), T17, T10); | ||
|  | 			 T1g = VFMA(LDK(KP923879532), T17, T10); | ||
|  | 			 T1b = VFNMS(LDK(KP707106781), T1a, T19); | ||
|  | 			 T1e = VSUB(T1c, T1d); | ||
|  | 			 T1f = VFNMS(LDK(KP923879532), T1e, T1b); | ||
|  | 			 T1h = VFMA(LDK(KP923879532), T1e, T1b); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 9)]), VFNMSI(T1f, T18), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 15)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 7)]), VFMAI(T1f, T18), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 1)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 4), | ||
|  |      VTW(0, 5), | ||
|  |      VTW(0, 6), | ||
|  |      VTW(0, 7), | ||
|  |      VTW(0, 8), | ||
|  |      VTW(0, 9), | ||
|  |      VTW(0, 10), | ||
|  |      VTW(0, 11), | ||
|  |      VTW(0, 12), | ||
|  |      VTW(0, 13), | ||
|  |      VTW(0, 14), | ||
|  |      VTW(0, 15), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, { 53, 30, 34, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t2fv_16) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t2fv_16, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include dft/simd/t2f.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 87 FP additions, 42 FP multiplications, | ||
|  |  * (or, 83 additions, 38 multiplications, 4 fused multiply/add), | ||
|  |  * 36 stack variables, 3 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t2f.h"
 | ||
|  | 
 | ||
|  | static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) { | ||
|  | 	       V TJ, T10, TD, T11, T1b, T1c, Ty, TK, T16, T17, T18, Tb, TN, T13, T14; | ||
|  | 	       V T15, Tm, TM, TG, TI, TH; | ||
|  | 	       TG = LD(&(x[0]), ms, &(x[0])); | ||
|  | 	       TH = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | ||
|  | 	       TI = BYTWJ(&(W[TWVL * 14]), TH); | ||
|  | 	       TJ = VSUB(TG, TI); | ||
|  | 	       T10 = VADD(TG, TI); | ||
|  | 	       { | ||
|  | 		    V TA, TC, Tz, TB; | ||
|  | 		    Tz = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 		    TA = BYTWJ(&(W[TWVL * 6]), Tz); | ||
|  | 		    TB = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | ||
|  | 		    TC = BYTWJ(&(W[TWVL * 22]), TB); | ||
|  | 		    TD = VSUB(TA, TC); | ||
|  | 		    T11 = VADD(TA, TC); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tp, Tw, Tr, Tu, Ts, Tx; | ||
|  | 		    { | ||
|  | 			 V To, Tv, Tq, Tt; | ||
|  | 			 To = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | ||
|  | 			 Tp = BYTWJ(&(W[TWVL * 26]), To); | ||
|  | 			 Tv = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | ||
|  | 			 Tw = BYTWJ(&(W[TWVL * 18]), Tv); | ||
|  | 			 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 			 Tr = BYTWJ(&(W[TWVL * 10]), Tq); | ||
|  | 			 Tt = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 			 Tu = BYTWJ(&(W[TWVL * 2]), Tt); | ||
|  | 		    } | ||
|  | 		    T1b = VADD(Tp, Tr); | ||
|  | 		    T1c = VADD(Tu, Tw); | ||
|  | 		    Ts = VSUB(Tp, Tr); | ||
|  | 		    Tx = VSUB(Tu, Tw); | ||
|  | 		    Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx)); | ||
|  | 		    TK = VMUL(LDK(KP707106781), VADD(Tx, Ts)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T2, T9, T4, T7, T5, Ta; | ||
|  | 		    { | ||
|  | 			 V T1, T8, T3, T6; | ||
|  | 			 T1 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T2 = BYTWJ(&(W[TWVL * 28]), T1); | ||
|  | 			 T8 = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T9 = BYTWJ(&(W[TWVL * 20]), T8); | ||
|  | 			 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T4 = BYTWJ(&(W[TWVL * 12]), T3); | ||
|  | 			 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T7 = BYTWJ(&(W[TWVL * 4]), T6); | ||
|  | 		    } | ||
|  | 		    T16 = VADD(T2, T4); | ||
|  | 		    T17 = VADD(T7, T9); | ||
|  | 		    T18 = VSUB(T16, T17); | ||
|  | 		    T5 = VSUB(T2, T4); | ||
|  | 		    Ta = VSUB(T7, T9); | ||
|  | 		    Tb = VFNMS(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), T5)); | ||
|  | 		    TN = VFMA(LDK(KP923879532), T5, VMUL(LDK(KP382683432), Ta)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Td, Tk, Tf, Ti, Tg, Tl; | ||
|  | 		    { | ||
|  | 			 V Tc, Tj, Te, Th; | ||
|  | 			 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Td = BYTWJ(&(W[0]), Tc); | ||
|  | 			 Tj = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tk = BYTWJ(&(W[TWVL * 24]), Tj); | ||
|  | 			 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tf = BYTWJ(&(W[TWVL * 16]), Te); | ||
|  | 			 Th = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Ti = BYTWJ(&(W[TWVL * 8]), Th); | ||
|  | 		    } | ||
|  | 		    T13 = VADD(Td, Tf); | ||
|  | 		    T14 = VADD(Ti, Tk); | ||
|  | 		    T15 = VSUB(T13, T14); | ||
|  | 		    Tg = VSUB(Td, Tf); | ||
|  | 		    Tl = VSUB(Ti, Tk); | ||
|  | 		    Tm = VFMA(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl)); | ||
|  | 		    TM = VFNMS(LDK(KP382683432), Tl, VMUL(LDK(KP923879532), Tg)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T1a, T1g, T1f, T1h; | ||
|  | 		    { | ||
|  | 			 V T12, T19, T1d, T1e; | ||
|  | 			 T12 = VSUB(T10, T11); | ||
|  | 			 T19 = VMUL(LDK(KP707106781), VADD(T15, T18)); | ||
|  | 			 T1a = VADD(T12, T19); | ||
|  | 			 T1g = VSUB(T12, T19); | ||
|  | 			 T1d = VSUB(T1b, T1c); | ||
|  | 			 T1e = VMUL(LDK(KP707106781), VSUB(T18, T15)); | ||
|  | 			 T1f = VBYI(VADD(T1d, T1e)); | ||
|  | 			 T1h = VBYI(VSUB(T1e, T1d)); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 14)]), VSUB(T1a, T1f), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 6)]), VADD(T1g, T1h), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 2)]), VADD(T1a, T1f), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 10)]), VSUB(T1g, T1h), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T1k, T1o, T1n, T1p; | ||
|  | 		    { | ||
|  | 			 V T1i, T1j, T1l, T1m; | ||
|  | 			 T1i = VADD(T10, T11); | ||
|  | 			 T1j = VADD(T1c, T1b); | ||
|  | 			 T1k = VADD(T1i, T1j); | ||
|  | 			 T1o = VSUB(T1i, T1j); | ||
|  | 			 T1l = VADD(T13, T14); | ||
|  | 			 T1m = VADD(T16, T17); | ||
|  | 			 T1n = VADD(T1l, T1m); | ||
|  | 			 T1p = VBYI(VSUB(T1m, T1l)); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 8)]), VSUB(T1k, T1n), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 4)]), VADD(T1o, T1p), ms, &(x[0])); | ||
|  | 		    ST(&(x[0]), VADD(T1k, T1n), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 12)]), VSUB(T1o, T1p), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TF, TQ, TP, TR; | ||
|  | 		    { | ||
|  | 			 V Tn, TE, TL, TO; | ||
|  | 			 Tn = VSUB(Tb, Tm); | ||
|  | 			 TE = VSUB(Ty, TD); | ||
|  | 			 TF = VBYI(VSUB(Tn, TE)); | ||
|  | 			 TQ = VBYI(VADD(TE, Tn)); | ||
|  | 			 TL = VADD(TJ, TK); | ||
|  | 			 TO = VADD(TM, TN); | ||
|  | 			 TP = VSUB(TL, TO); | ||
|  | 			 TR = VADD(TL, TO); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 7)]), VADD(TF, TP), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 15)]), VSUB(TR, TQ), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 9)]), VSUB(TP, TF), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 1)]), VADD(TQ, TR), ms, &(x[WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TU, TY, TX, TZ; | ||
|  | 		    { | ||
|  | 			 V TS, TT, TV, TW; | ||
|  | 			 TS = VSUB(TJ, TK); | ||
|  | 			 TT = VADD(Tm, Tb); | ||
|  | 			 TU = VADD(TS, TT); | ||
|  | 			 TY = VSUB(TS, TT); | ||
|  | 			 TV = VADD(TD, Ty); | ||
|  | 			 TW = VSUB(TN, TM); | ||
|  | 			 TX = VBYI(VADD(TV, TW)); | ||
|  | 			 TZ = VBYI(VSUB(TW, TV)); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 13)]), VSUB(TU, TX), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 5)]), VADD(TY, TZ), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 3)]), VADD(TU, TX), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 11)]), VSUB(TY, TZ), ms, &(x[WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 4), | ||
|  |      VTW(0, 5), | ||
|  |      VTW(0, 6), | ||
|  |      VTW(0, 7), | ||
|  |      VTW(0, 8), | ||
|  |      VTW(0, 9), | ||
|  |      VTW(0, 10), | ||
|  |      VTW(0, 11), | ||
|  |      VTW(0, 12), | ||
|  |      VTW(0, 13), | ||
|  |      VTW(0, 14), | ||
|  |      VTW(0, 15), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, { 83, 38, 4, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t2fv_16) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t2fv_16, &desc); | ||
|  | } | ||
|  | #endif
 |