263 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			263 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* This file was automatically generated --- DO NOT EDIT */
							 | 
						||
| 
								 | 
							
								/* Generated on Tue Sep 14 10:46:00 EDT 2021 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "dft/codelet-dft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 44 FP additions, 32 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 36 additions, 24 multiplications, 8 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 22 stack variables, 0 constants, and 32 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "dft/simd/q1f.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT m;
							 | 
						||
| 
								 | 
							
									  R *x;
							 | 
						||
| 
								 | 
							
									  x = ri;
							 | 
						||
| 
								 | 
							
									  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
							 | 
						||
| 
								 | 
							
									       V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
							 | 
						||
| 
								 | 
							
									       V Tl;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V T1, T2, Ty, Tz;
							 | 
						||
| 
								 | 
							
										    T1 = LD(&(x[0]), ms, &(x[0]));
							 | 
						||
| 
								 | 
							
										    T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
							 | 
						||
| 
								 | 
							
										    T3 = VSUB(T1, T2);
							 | 
						||
| 
								 | 
							
										    T9 = VADD(T1, T2);
							 | 
						||
| 
								 | 
							
										    Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
							 | 
						||
| 
								 | 
							
										    Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
							 | 
						||
| 
								 | 
							
										    TA = VSUB(Ty, Tz);
							 | 
						||
| 
								 | 
							
										    TG = VADD(Ty, Tz);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V TB, TC, T4, T5;
							 | 
						||
| 
								 | 
							
										    TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    TD = VSUB(TB, TC);
							 | 
						||
| 
								 | 
							
										    TH = VADD(TB, TC);
							 | 
						||
| 
								 | 
							
										    T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    T6 = VSUB(T4, T5);
							 | 
						||
| 
								 | 
							
										    Ta = VADD(T4, T5);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V Tc, Td, Tn, To;
							 | 
						||
| 
								 | 
							
										    Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
							 | 
						||
| 
								 | 
							
										    Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
							 | 
						||
| 
								 | 
							
										    Te = VSUB(Tc, Td);
							 | 
						||
| 
								 | 
							
										    Tk = VADD(Tc, Td);
							 | 
						||
| 
								 | 
							
										    Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
							 | 
						||
| 
								 | 
							
										    To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
							 | 
						||
| 
								 | 
							
										    Tp = VSUB(Tn, To);
							 | 
						||
| 
								 | 
							
										    Tv = VADD(Tn, To);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V Tq, Tr, Tf, Tg;
							 | 
						||
| 
								 | 
							
										    Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Ts = VSUB(Tq, Tr);
							 | 
						||
| 
								 | 
							
										    Tw = VADD(Tq, Tr);
							 | 
						||
| 
								 | 
							
										    Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Th = VSUB(Tf, Tg);
							 | 
						||
| 
								 | 
							
										    Tl = VADD(Tf, Tg);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
							 | 
						||
| 
								 | 
							
									       ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
							 | 
						||
| 
								 | 
							
									       ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V T7, Ti, Tt, TE;
							 | 
						||
| 
								 | 
							
										    T7 = BYTWJ(&(W[0]), VFNMSI(T6, T3));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)]));
							 | 
						||
| 
								 | 
							
										    Ti = BYTWJ(&(W[0]), VFNMSI(Th, Te));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tt = BYTWJ(&(W[0]), VFNMSI(Ts, Tp));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)]));
							 | 
						||
| 
								 | 
							
										    TE = BYTWJ(&(W[0]), VFNMSI(TD, TA));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V T8, Tj, Tu, TF;
							 | 
						||
| 
								 | 
							
										    T8 = BYTWJ(&(W[TWVL * 4]), VFMAI(T6, T3));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)]));
							 | 
						||
| 
								 | 
							
										    Tj = BYTWJ(&(W[TWVL * 4]), VFMAI(Th, Te));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tu = BYTWJ(&(W[TWVL * 4]), VFMAI(Ts, Tp));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)]));
							 | 
						||
| 
								 | 
							
										    TF = BYTWJ(&(W[TWVL * 4]), VFMAI(TD, TA));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V Tb, Tm, Tx, TI;
							 | 
						||
| 
								 | 
							
										    Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
							 | 
						||
| 
								 | 
							
										    Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
							 | 
						||
| 
								 | 
							
										    TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     VLEAVE();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const tw_instr twinstr[] = {
							 | 
						||
| 
								 | 
							
								     VTW(0, 1),
							 | 
						||
| 
								 | 
							
								     VTW(0, 2),
							 | 
						||
| 
								 | 
							
								     VTW(0, 3),
							 | 
						||
| 
								 | 
							
								     { TW_NEXT, VL, 0 }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, { 36, 24, 8, 0 }, 0, 0, 0 };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void XSIMD(codelet_q1fv_4) (planner *p) {
							 | 
						||
| 
								 | 
							
								     X(kdft_difsq_register) (p, q1fv_4, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 44 FP additions, 24 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 44 additions, 24 multiplications, 0 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 22 stack variables, 0 constants, and 32 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "dft/simd/q1f.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT m;
							 | 
						||
| 
								 | 
							
									  R *x;
							 | 
						||
| 
								 | 
							
									  x = ri;
							 | 
						||
| 
								 | 
							
									  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
							 | 
						||
| 
								 | 
							
									       V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
							 | 
						||
| 
								 | 
							
									       V Tl;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V T1, T2, Ty, Tz;
							 | 
						||
| 
								 | 
							
										    T1 = LD(&(x[0]), ms, &(x[0]));
							 | 
						||
| 
								 | 
							
										    T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
							 | 
						||
| 
								 | 
							
										    T3 = VSUB(T1, T2);
							 | 
						||
| 
								 | 
							
										    T9 = VADD(T1, T2);
							 | 
						||
| 
								 | 
							
										    Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
							 | 
						||
| 
								 | 
							
										    Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
							 | 
						||
| 
								 | 
							
										    TA = VSUB(Ty, Tz);
							 | 
						||
| 
								 | 
							
										    TG = VADD(Ty, Tz);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V TB, TC, T4, T5;
							 | 
						||
| 
								 | 
							
										    TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    TD = VBYI(VSUB(TB, TC));
							 | 
						||
| 
								 | 
							
										    TH = VADD(TB, TC);
							 | 
						||
| 
								 | 
							
										    T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    T6 = VBYI(VSUB(T4, T5));
							 | 
						||
| 
								 | 
							
										    Ta = VADD(T4, T5);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V Tc, Td, Tn, To;
							 | 
						||
| 
								 | 
							
										    Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
							 | 
						||
| 
								 | 
							
										    Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
							 | 
						||
| 
								 | 
							
										    Te = VSUB(Tc, Td);
							 | 
						||
| 
								 | 
							
										    Tk = VADD(Tc, Td);
							 | 
						||
| 
								 | 
							
										    Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
							 | 
						||
| 
								 | 
							
										    To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
							 | 
						||
| 
								 | 
							
										    Tp = VSUB(Tn, To);
							 | 
						||
| 
								 | 
							
										    Tv = VADD(Tn, To);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V Tq, Tr, Tf, Tg;
							 | 
						||
| 
								 | 
							
										    Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Ts = VBYI(VSUB(Tq, Tr));
							 | 
						||
| 
								 | 
							
										    Tw = VADD(Tq, Tr);
							 | 
						||
| 
								 | 
							
										    Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Th = VBYI(VSUB(Tf, Tg));
							 | 
						||
| 
								 | 
							
										    Tl = VADD(Tf, Tg);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
							 | 
						||
| 
								 | 
							
									       ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
							 | 
						||
| 
								 | 
							
									       ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V T7, Ti, Tt, TE;
							 | 
						||
| 
								 | 
							
										    T7 = BYTWJ(&(W[0]), VSUB(T3, T6));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)]));
							 | 
						||
| 
								 | 
							
										    Ti = BYTWJ(&(W[0]), VSUB(Te, Th));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tt = BYTWJ(&(W[0]), VSUB(Tp, Ts));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)]));
							 | 
						||
| 
								 | 
							
										    TE = BYTWJ(&(W[0]), VSUB(TA, TD));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V T8, Tj, Tu, TF;
							 | 
						||
| 
								 | 
							
										    T8 = BYTWJ(&(W[TWVL * 4]), VADD(T3, T6));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)]));
							 | 
						||
| 
								 | 
							
										    Tj = BYTWJ(&(W[TWVL * 4]), VADD(Te, Th));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tu = BYTWJ(&(W[TWVL * 4]), VADD(Tp, Ts));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)]));
							 | 
						||
| 
								 | 
							
										    TF = BYTWJ(&(W[TWVL * 4]), VADD(TA, TD));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    V Tb, Tm, Tx, TI;
							 | 
						||
| 
								 | 
							
										    Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
							 | 
						||
| 
								 | 
							
										    Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
										    Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
							 | 
						||
| 
								 | 
							
										    TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH));
							 | 
						||
| 
								 | 
							
										    ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     VLEAVE();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const tw_instr twinstr[] = {
							 | 
						||
| 
								 | 
							
								     VTW(0, 1),
							 | 
						||
| 
								 | 
							
								     VTW(0, 2),
							 | 
						||
| 
								 | 
							
								     VTW(0, 3),
							 | 
						||
| 
								 | 
							
								     { TW_NEXT, VL, 0 }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, { 44, 24, 0, 0 }, 0, 0, 0 };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void XSIMD(codelet_q1fv_4) (planner *p) {
							 | 
						||
| 
								 | 
							
								     X(kdft_difsq_register) (p, q1fv_4, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif
							 |