893 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			893 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:14 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft2_16 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 206 FP additions, 100 FP multiplications, | ||
|  |  * (or, 136 additions, 30 multiplications, 70 fused multiply/add), | ||
|  |  * 66 stack variables, 3 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       E Tf, T20, T32, T3Q, T3f, T3V, TN, T2a, T1m, T2f, T2G, T3G, T2T, T3L, T1F; | ||
|  | 	       E T26, T2J, T2M, T2N, T2U, T2V, T3H, Tu, T25, T3i, T3R, T1a, T2g, T1y, T21; | ||
|  | 	       E T39, T3W, T1p, T2b; | ||
|  | 	       { | ||
|  | 		    E T3, T1e, TA, T1C, T6, Tx, T1h, T1D, Td, T1A, TL, T1k, Ta, T1z, TG; | ||
|  | 		    E T1j; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T1f, T1g; | ||
|  | 			 T1 = Rp[0]; | ||
|  | 			 T2 = Rm[WS(rs, 7)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T1e = T1 - T2; | ||
|  | 			 { | ||
|  | 			      E Ty, Tz, T4, T5; | ||
|  | 			      Ty = Ip[0]; | ||
|  | 			      Tz = Im[WS(rs, 7)]; | ||
|  | 			      TA = Ty + Tz; | ||
|  | 			      T1C = Ty - Tz; | ||
|  | 			      T4 = Rp[WS(rs, 4)]; | ||
|  | 			      T5 = Rm[WS(rs, 3)]; | ||
|  | 			      T6 = T4 + T5; | ||
|  | 			      Tx = T4 - T5; | ||
|  | 			 } | ||
|  | 			 T1f = Ip[WS(rs, 4)]; | ||
|  | 			 T1g = Im[WS(rs, 3)]; | ||
|  | 			 T1h = T1f + T1g; | ||
|  | 			 T1D = T1f - T1g; | ||
|  | 			 { | ||
|  | 			      E Tb, Tc, TH, TI, TJ, TK; | ||
|  | 			      Tb = Rm[WS(rs, 1)]; | ||
|  | 			      Tc = Rp[WS(rs, 6)]; | ||
|  | 			      TH = Tb - Tc; | ||
|  | 			      TI = Im[WS(rs, 1)]; | ||
|  | 			      TJ = Ip[WS(rs, 6)]; | ||
|  | 			      TK = TI + TJ; | ||
|  | 			      Td = Tb + Tc; | ||
|  | 			      T1A = TJ - TI; | ||
|  | 			      TL = TH + TK; | ||
|  | 			      T1k = TH - TK; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T8, T9, TC, TD, TE, TF; | ||
|  | 			      T8 = Rp[WS(rs, 2)]; | ||
|  | 			      T9 = Rm[WS(rs, 5)]; | ||
|  | 			      TC = T8 - T9; | ||
|  | 			      TD = Ip[WS(rs, 2)]; | ||
|  | 			      TE = Im[WS(rs, 5)]; | ||
|  | 			      TF = TD + TE; | ||
|  | 			      Ta = T8 + T9; | ||
|  | 			      T1z = TD - TE; | ||
|  | 			      TG = TC + TF; | ||
|  | 			      T1j = TC - TF; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, Te, T30, T31; | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 Te = Ta + Td; | ||
|  | 			 Tf = T7 + Te; | ||
|  | 			 T20 = T7 - Te; | ||
|  | 			 T30 = TA - Tx; | ||
|  | 			 T31 = T1j - T1k; | ||
|  | 			 T32 = FMA(KP707106781, T31, T30); | ||
|  | 			 T3Q = FNMS(KP707106781, T31, T30); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3d, T3e, TB, TM; | ||
|  | 			 T3d = T1e + T1h; | ||
|  | 			 T3e = TG + TL; | ||
|  | 			 T3f = FNMS(KP707106781, T3e, T3d); | ||
|  | 			 T3V = FMA(KP707106781, T3e, T3d); | ||
|  | 			 TB = Tx + TA; | ||
|  | 			 TM = TG - TL; | ||
|  | 			 TN = FMA(KP707106781, TM, TB); | ||
|  | 			 T2a = FNMS(KP707106781, TM, TB); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1i, T1l, T2E, T2F; | ||
|  | 			 T1i = T1e - T1h; | ||
|  | 			 T1l = T1j + T1k; | ||
|  | 			 T1m = FMA(KP707106781, T1l, T1i); | ||
|  | 			 T2f = FNMS(KP707106781, T1l, T1i); | ||
|  | 			 T2E = T3 - T6; | ||
|  | 			 T2F = T1A - T1z; | ||
|  | 			 T2G = T2E + T2F; | ||
|  | 			 T3G = T2E - T2F; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2R, T2S, T1B, T1E; | ||
|  | 			 T2R = Ta - Td; | ||
|  | 			 T2S = T1C - T1D; | ||
|  | 			 T2T = T2R + T2S; | ||
|  | 			 T3L = T2S - T2R; | ||
|  | 			 T1B = T1z + T1A; | ||
|  | 			 T1E = T1C + T1D; | ||
|  | 			 T1F = T1B + T1E; | ||
|  | 			 T26 = T1E - T1B; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, T1s, Tl, T1t, TS, TX, T34, T33, T2I, T2H, Tp, T1v, Ts, T1w, T13; | ||
|  | 		    E T18, T37, T36, T2L, T2K; | ||
|  | 		    { | ||
|  | 			 E TT, TR, TO, TW; | ||
|  | 			 { | ||
|  | 			      E Tg, Th, TP, TQ; | ||
|  | 			      Tg = Rp[WS(rs, 1)]; | ||
|  | 			      Th = Rm[WS(rs, 6)]; | ||
|  | 			      Ti = Tg + Th; | ||
|  | 			      TT = Tg - Th; | ||
|  | 			      TP = Ip[WS(rs, 1)]; | ||
|  | 			      TQ = Im[WS(rs, 6)]; | ||
|  | 			      TR = TP + TQ; | ||
|  | 			      T1s = TP - TQ; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tj, Tk, TU, TV; | ||
|  | 			      Tj = Rp[WS(rs, 5)]; | ||
|  | 			      Tk = Rm[WS(rs, 2)]; | ||
|  | 			      Tl = Tj + Tk; | ||
|  | 			      TO = Tj - Tk; | ||
|  | 			      TU = Ip[WS(rs, 5)]; | ||
|  | 			      TV = Im[WS(rs, 2)]; | ||
|  | 			      TW = TU + TV; | ||
|  | 			      T1t = TU - TV; | ||
|  | 			 } | ||
|  | 			 TS = TO + TR; | ||
|  | 			 TX = TT - TW; | ||
|  | 			 T34 = TR - TO; | ||
|  | 			 T33 = TT + TW; | ||
|  | 			 T2I = T1s - T1t; | ||
|  | 			 T2H = Ti - Tl; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T14, T12, TZ, T17; | ||
|  | 			 { | ||
|  | 			      E Tn, To, T10, T11; | ||
|  | 			      Tn = Rm[0]; | ||
|  | 			      To = Rp[WS(rs, 7)]; | ||
|  | 			      Tp = Tn + To; | ||
|  | 			      T14 = Tn - To; | ||
|  | 			      T10 = Im[0]; | ||
|  | 			      T11 = Ip[WS(rs, 7)]; | ||
|  | 			      T12 = T10 + T11; | ||
|  | 			      T1v = T11 - T10; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tq, Tr, T15, T16; | ||
|  | 			      Tq = Rp[WS(rs, 3)]; | ||
|  | 			      Tr = Rm[WS(rs, 4)]; | ||
|  | 			      Ts = Tq + Tr; | ||
|  | 			      TZ = Tq - Tr; | ||
|  | 			      T15 = Ip[WS(rs, 3)]; | ||
|  | 			      T16 = Im[WS(rs, 4)]; | ||
|  | 			      T17 = T15 + T16; | ||
|  | 			      T1w = T15 - T16; | ||
|  | 			 } | ||
|  | 			 T13 = TZ - T12; | ||
|  | 			 T18 = T14 - T17; | ||
|  | 			 T37 = TZ + T12; | ||
|  | 			 T36 = T14 + T17; | ||
|  | 			 T2L = T1v - T1w; | ||
|  | 			 T2K = Tp - Ts; | ||
|  | 		    } | ||
|  | 		    T2J = T2H - T2I; | ||
|  | 		    T2M = T2K + T2L; | ||
|  | 		    T2N = T2J + T2M; | ||
|  | 		    T2U = T2H + T2I; | ||
|  | 		    T2V = T2L - T2K; | ||
|  | 		    T3H = T2V - T2U; | ||
|  | 		    { | ||
|  | 			 E Tm, Tt, T3g, T3h; | ||
|  | 			 Tm = Ti + Tl; | ||
|  | 			 Tt = Tp + Ts; | ||
|  | 			 Tu = Tm + Tt; | ||
|  | 			 T25 = Tm - Tt; | ||
|  | 			 T3g = FNMS(KP414213562, T33, T34); | ||
|  | 			 T3h = FNMS(KP414213562, T36, T37); | ||
|  | 			 T3i = T3g + T3h; | ||
|  | 			 T3R = T3h - T3g; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TY, T19, T1u, T1x; | ||
|  | 			 TY = FMA(KP414213562, TX, TS); | ||
|  | 			 T19 = FNMS(KP414213562, T18, T13); | ||
|  | 			 T1a = TY + T19; | ||
|  | 			 T2g = T19 - TY; | ||
|  | 			 T1u = T1s + T1t; | ||
|  | 			 T1x = T1v + T1w; | ||
|  | 			 T1y = T1u + T1x; | ||
|  | 			 T21 = T1x - T1u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T35, T38, T1n, T1o; | ||
|  | 			 T35 = FMA(KP414213562, T34, T33); | ||
|  | 			 T38 = FMA(KP414213562, T37, T36); | ||
|  | 			 T39 = T35 - T38; | ||
|  | 			 T3W = T35 + T38; | ||
|  | 			 T1n = FNMS(KP414213562, TS, TX); | ||
|  | 			 T1o = FMA(KP414213562, T13, T18); | ||
|  | 			 T1p = T1n + T1o; | ||
|  | 			 T2b = T1n - T1o; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tv, T1G, T1b, T1q, T1c, T1H, Tw, T1r, T1I, T1d; | ||
|  | 		    Tv = Tf + Tu; | ||
|  | 		    T1G = T1y + T1F; | ||
|  | 		    T1b = FMA(KP923879532, T1a, TN); | ||
|  | 		    T1q = FMA(KP923879532, T1p, T1m); | ||
|  | 		    Tw = W[0]; | ||
|  | 		    T1c = Tw * T1b; | ||
|  | 		    T1H = Tw * T1q; | ||
|  | 		    T1d = W[1]; | ||
|  | 		    T1r = FMA(T1d, T1q, T1c); | ||
|  | 		    T1I = FNMS(T1d, T1b, T1H); | ||
|  | 		    Rp[0] = Tv - T1r; | ||
|  | 		    Ip[0] = T1G + T1I; | ||
|  | 		    Rm[0] = Tv + T1r; | ||
|  | 		    Im[0] = T1I - T1G; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1N, T1J, T1L, T1M, T1V, T1Q, T1T, T1R, T1X, T1K, T1P; | ||
|  | 		    T1N = T1F - T1y; | ||
|  | 		    T1K = Tf - Tu; | ||
|  | 		    T1J = W[14]; | ||
|  | 		    T1L = T1J * T1K; | ||
|  | 		    T1M = W[15]; | ||
|  | 		    T1V = T1M * T1K; | ||
|  | 		    T1Q = FNMS(KP923879532, T1a, TN); | ||
|  | 		    T1T = FNMS(KP923879532, T1p, T1m); | ||
|  | 		    T1P = W[16]; | ||
|  | 		    T1R = T1P * T1Q; | ||
|  | 		    T1X = T1P * T1T; | ||
|  | 		    { | ||
|  | 			 E T1O, T1W, T1U, T1Y, T1S; | ||
|  | 			 T1O = FNMS(T1M, T1N, T1L); | ||
|  | 			 T1W = FMA(T1J, T1N, T1V); | ||
|  | 			 T1S = W[17]; | ||
|  | 			 T1U = FMA(T1S, T1T, T1R); | ||
|  | 			 T1Y = FNMS(T1S, T1Q, T1X); | ||
|  | 			 Rp[WS(rs, 4)] = T1O - T1U; | ||
|  | 			 Ip[WS(rs, 4)] = T1W + T1Y; | ||
|  | 			 Rm[WS(rs, 4)] = T1O + T1U; | ||
|  | 			 Im[WS(rs, 4)] = T1Y - T1W; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2r, T2n, T2p, T2q, T2z, T2u, T2x, T2v, T2B, T2o, T2t; | ||
|  | 		    T2r = T26 - T25; | ||
|  | 		    T2o = T20 - T21; | ||
|  | 		    T2n = W[22]; | ||
|  | 		    T2p = T2n * T2o; | ||
|  | 		    T2q = W[23]; | ||
|  | 		    T2z = T2q * T2o; | ||
|  | 		    T2u = FNMS(KP923879532, T2b, T2a); | ||
|  | 		    T2x = FNMS(KP923879532, T2g, T2f); | ||
|  | 		    T2t = W[24]; | ||
|  | 		    T2v = T2t * T2u; | ||
|  | 		    T2B = T2t * T2x; | ||
|  | 		    { | ||
|  | 			 E T2s, T2A, T2y, T2C, T2w; | ||
|  | 			 T2s = FNMS(T2q, T2r, T2p); | ||
|  | 			 T2A = FMA(T2n, T2r, T2z); | ||
|  | 			 T2w = W[25]; | ||
|  | 			 T2y = FMA(T2w, T2x, T2v); | ||
|  | 			 T2C = FNMS(T2w, T2u, T2B); | ||
|  | 			 Rp[WS(rs, 6)] = T2s - T2y; | ||
|  | 			 Ip[WS(rs, 6)] = T2A + T2C; | ||
|  | 			 Rm[WS(rs, 6)] = T2s + T2y; | ||
|  | 			 Im[WS(rs, 6)] = T2C - T2A; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T27, T1Z, T23, T24, T2j, T2c, T2h, T2d, T2l, T22, T29; | ||
|  | 		    T27 = T25 + T26; | ||
|  | 		    T22 = T20 + T21; | ||
|  | 		    T1Z = W[6]; | ||
|  | 		    T23 = T1Z * T22; | ||
|  | 		    T24 = W[7]; | ||
|  | 		    T2j = T24 * T22; | ||
|  | 		    T2c = FMA(KP923879532, T2b, T2a); | ||
|  | 		    T2h = FMA(KP923879532, T2g, T2f); | ||
|  | 		    T29 = W[8]; | ||
|  | 		    T2d = T29 * T2c; | ||
|  | 		    T2l = T29 * T2h; | ||
|  | 		    { | ||
|  | 			 E T28, T2k, T2i, T2m, T2e; | ||
|  | 			 T28 = FNMS(T24, T27, T23); | ||
|  | 			 T2k = FMA(T1Z, T27, T2j); | ||
|  | 			 T2e = W[9]; | ||
|  | 			 T2i = FMA(T2e, T2h, T2d); | ||
|  | 			 T2m = FNMS(T2e, T2c, T2l); | ||
|  | 			 Rp[WS(rs, 2)] = T28 - T2i; | ||
|  | 			 Ip[WS(rs, 2)] = T2k + T2m; | ||
|  | 			 Rm[WS(rs, 2)] = T28 + T2i; | ||
|  | 			 Im[WS(rs, 2)] = T2m - T2k; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3N, T47, T43, T45, T46, T4f, T3F, T3J, T3K, T3Z, T3S, T3X, T3T, T41, T4a; | ||
|  | 		    E T4d, T4b, T4h; | ||
|  | 		    { | ||
|  | 			 E T3M, T44, T3I, T3P, T49; | ||
|  | 			 T3M = T2J - T2M; | ||
|  | 			 T3N = FMA(KP707106781, T3M, T3L); | ||
|  | 			 T47 = FNMS(KP707106781, T3M, T3L); | ||
|  | 			 T44 = FNMS(KP707106781, T3H, T3G); | ||
|  | 			 T43 = W[26]; | ||
|  | 			 T45 = T43 * T44; | ||
|  | 			 T46 = W[27]; | ||
|  | 			 T4f = T46 * T44; | ||
|  | 			 T3I = FMA(KP707106781, T3H, T3G); | ||
|  | 			 T3F = W[10]; | ||
|  | 			 T3J = T3F * T3I; | ||
|  | 			 T3K = W[11]; | ||
|  | 			 T3Z = T3K * T3I; | ||
|  | 			 T3S = FMA(KP923879532, T3R, T3Q); | ||
|  | 			 T3X = FNMS(KP923879532, T3W, T3V); | ||
|  | 			 T3P = W[12]; | ||
|  | 			 T3T = T3P * T3S; | ||
|  | 			 T41 = T3P * T3X; | ||
|  | 			 T4a = FNMS(KP923879532, T3R, T3Q); | ||
|  | 			 T4d = FMA(KP923879532, T3W, T3V); | ||
|  | 			 T49 = W[28]; | ||
|  | 			 T4b = T49 * T4a; | ||
|  | 			 T4h = T49 * T4d; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3O, T40, T3Y, T42, T3U; | ||
|  | 			 T3O = FNMS(T3K, T3N, T3J); | ||
|  | 			 T40 = FMA(T3F, T3N, T3Z); | ||
|  | 			 T3U = W[13]; | ||
|  | 			 T3Y = FMA(T3U, T3X, T3T); | ||
|  | 			 T42 = FNMS(T3U, T3S, T41); | ||
|  | 			 Rp[WS(rs, 3)] = T3O - T3Y; | ||
|  | 			 Ip[WS(rs, 3)] = T40 + T42; | ||
|  | 			 Rm[WS(rs, 3)] = T3O + T3Y; | ||
|  | 			 Im[WS(rs, 3)] = T42 - T40; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T48, T4g, T4e, T4i, T4c; | ||
|  | 			 T48 = FNMS(T46, T47, T45); | ||
|  | 			 T4g = FMA(T43, T47, T4f); | ||
|  | 			 T4c = W[29]; | ||
|  | 			 T4e = FMA(T4c, T4d, T4b); | ||
|  | 			 T4i = FNMS(T4c, T4a, T4h); | ||
|  | 			 Rp[WS(rs, 7)] = T48 - T4e; | ||
|  | 			 Ip[WS(rs, 7)] = T4g + T4i; | ||
|  | 			 Rm[WS(rs, 7)] = T48 + T4e; | ||
|  | 			 Im[WS(rs, 7)] = T4i - T4g; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2X, T3t, T3p, T3r, T3s, T3B, T2D, T2P, T2Q, T3l, T3a, T3j, T3b, T3n, T3w; | ||
|  | 		    E T3z, T3x, T3D; | ||
|  | 		    { | ||
|  | 			 E T2W, T3q, T2O, T2Z, T3v; | ||
|  | 			 T2W = T2U + T2V; | ||
|  | 			 T2X = FMA(KP707106781, T2W, T2T); | ||
|  | 			 T3t = FNMS(KP707106781, T2W, T2T); | ||
|  | 			 T3q = FNMS(KP707106781, T2N, T2G); | ||
|  | 			 T3p = W[18]; | ||
|  | 			 T3r = T3p * T3q; | ||
|  | 			 T3s = W[19]; | ||
|  | 			 T3B = T3s * T3q; | ||
|  | 			 T2O = FMA(KP707106781, T2N, T2G); | ||
|  | 			 T2D = W[2]; | ||
|  | 			 T2P = T2D * T2O; | ||
|  | 			 T2Q = W[3]; | ||
|  | 			 T3l = T2Q * T2O; | ||
|  | 			 T3a = FMA(KP923879532, T39, T32); | ||
|  | 			 T3j = FNMS(KP923879532, T3i, T3f); | ||
|  | 			 T2Z = W[4]; | ||
|  | 			 T3b = T2Z * T3a; | ||
|  | 			 T3n = T2Z * T3j; | ||
|  | 			 T3w = FNMS(KP923879532, T39, T32); | ||
|  | 			 T3z = FMA(KP923879532, T3i, T3f); | ||
|  | 			 T3v = W[20]; | ||
|  | 			 T3x = T3v * T3w; | ||
|  | 			 T3D = T3v * T3z; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2Y, T3m, T3k, T3o, T3c; | ||
|  | 			 T2Y = FNMS(T2Q, T2X, T2P); | ||
|  | 			 T3m = FMA(T2D, T2X, T3l); | ||
|  | 			 T3c = W[5]; | ||
|  | 			 T3k = FMA(T3c, T3j, T3b); | ||
|  | 			 T3o = FNMS(T3c, T3a, T3n); | ||
|  | 			 Rp[WS(rs, 1)] = T2Y - T3k; | ||
|  | 			 Ip[WS(rs, 1)] = T3m + T3o; | ||
|  | 			 Rm[WS(rs, 1)] = T2Y + T3k; | ||
|  | 			 Im[WS(rs, 1)] = T3o - T3m; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3u, T3C, T3A, T3E, T3y; | ||
|  | 			 T3u = FNMS(T3s, T3t, T3r); | ||
|  | 			 T3C = FMA(T3p, T3t, T3B); | ||
|  | 			 T3y = W[21]; | ||
|  | 			 T3A = FMA(T3y, T3z, T3x); | ||
|  | 			 T3E = FNMS(T3y, T3w, T3D); | ||
|  | 			 Rp[WS(rs, 5)] = T3u - T3A; | ||
|  | 			 Ip[WS(rs, 5)] = T3C + T3E; | ||
|  | 			 Rm[WS(rs, 5)] = T3u + T3A; | ||
|  | 			 Im[WS(rs, 5)] = T3E - T3C; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 16 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, "hc2cbdft2_16", twinstr, &GENUS, { 136, 30, 70, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cbdft2_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdft2_16, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft2_16 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 206 FP additions, 84 FP multiplications, | ||
|  |  * (or, 168 additions, 46 multiplications, 38 fused multiply/add), | ||
|  |  * 60 stack variables, 3 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       E TB, T2L, T30, T1n, Tf, T1U, T2H, T3p, T1E, T1Z, TM, T31, T2s, T3k, T1i; | ||
|  | 	       E T2M, Tu, T1Y, T2Q, T2X, T2T, T2Y, TY, T1d, T19, T1e, T2v, T2C, T2y, T2D; | ||
|  | 	       E T1x, T1V; | ||
|  | 	       { | ||
|  | 		    E T3, T1j, TA, T1B, T6, Tx, T1m, T1C, Ta, TC, TF, T1y, Td, TH, TK; | ||
|  | 		    E T1z; | ||
|  | 		    { | ||
|  | 			 E T1, T2, Ty, Tz; | ||
|  | 			 T1 = Rp[0]; | ||
|  | 			 T2 = Rm[WS(rs, 7)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T1j = T1 - T2; | ||
|  | 			 Ty = Ip[0]; | ||
|  | 			 Tz = Im[WS(rs, 7)]; | ||
|  | 			 TA = Ty + Tz; | ||
|  | 			 T1B = Ty - Tz; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, T1k, T1l; | ||
|  | 			 T4 = Rp[WS(rs, 4)]; | ||
|  | 			 T5 = Rm[WS(rs, 3)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 Tx = T4 - T5; | ||
|  | 			 T1k = Ip[WS(rs, 4)]; | ||
|  | 			 T1l = Im[WS(rs, 3)]; | ||
|  | 			 T1m = T1k + T1l; | ||
|  | 			 T1C = T1k - T1l; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8, T9, TD, TE; | ||
|  | 			 T8 = Rp[WS(rs, 2)]; | ||
|  | 			 T9 = Rm[WS(rs, 5)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 TC = T8 - T9; | ||
|  | 			 TD = Ip[WS(rs, 2)]; | ||
|  | 			 TE = Im[WS(rs, 5)]; | ||
|  | 			 TF = TD + TE; | ||
|  | 			 T1y = TD - TE; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, TI, TJ; | ||
|  | 			 Tb = Rm[WS(rs, 1)]; | ||
|  | 			 Tc = Rp[WS(rs, 6)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 TH = Tb - Tc; | ||
|  | 			 TI = Im[WS(rs, 1)]; | ||
|  | 			 TJ = Ip[WS(rs, 6)]; | ||
|  | 			 TK = TI + TJ; | ||
|  | 			 T1z = TJ - TI; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, Te, TG, TL; | ||
|  | 			 TB = Tx + TA; | ||
|  | 			 T2L = TA - Tx; | ||
|  | 			 T30 = T1j + T1m; | ||
|  | 			 T1n = T1j - T1m; | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 Te = Ta + Td; | ||
|  | 			 Tf = T7 + Te; | ||
|  | 			 T1U = T7 - Te; | ||
|  | 			 { | ||
|  | 			      E T2F, T2G, T1A, T1D; | ||
|  | 			      T2F = Ta - Td; | ||
|  | 			      T2G = T1B - T1C; | ||
|  | 			      T2H = T2F + T2G; | ||
|  | 			      T3p = T2G - T2F; | ||
|  | 			      T1A = T1y + T1z; | ||
|  | 			      T1D = T1B + T1C; | ||
|  | 			      T1E = T1A + T1D; | ||
|  | 			      T1Z = T1D - T1A; | ||
|  | 			 } | ||
|  | 			 TG = TC + TF; | ||
|  | 			 TL = TH + TK; | ||
|  | 			 TM = KP707106781 * (TG - TL); | ||
|  | 			 T31 = KP707106781 * (TG + TL); | ||
|  | 			 { | ||
|  | 			      E T2q, T2r, T1g, T1h; | ||
|  | 			      T2q = T3 - T6; | ||
|  | 			      T2r = T1z - T1y; | ||
|  | 			      T2s = T2q + T2r; | ||
|  | 			      T3k = T2q - T2r; | ||
|  | 			      T1g = TC - TF; | ||
|  | 			      T1h = TH - TK; | ||
|  | 			      T1i = KP707106781 * (T1g + T1h); | ||
|  | 			      T2M = KP707106781 * (T1g - T1h); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, TT, TR, T1r, Tl, TO, TW, T1s, Tp, T14, T12, T1u, Ts, TZ, T17; | ||
|  | 		    E T1v; | ||
|  | 		    { | ||
|  | 			 E Tg, Th, TP, TQ; | ||
|  | 			 Tg = Rp[WS(rs, 1)]; | ||
|  | 			 Th = Rm[WS(rs, 6)]; | ||
|  | 			 Ti = Tg + Th; | ||
|  | 			 TT = Tg - Th; | ||
|  | 			 TP = Ip[WS(rs, 1)]; | ||
|  | 			 TQ = Im[WS(rs, 6)]; | ||
|  | 			 TR = TP + TQ; | ||
|  | 			 T1r = TP - TQ; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj, Tk, TU, TV; | ||
|  | 			 Tj = Rp[WS(rs, 5)]; | ||
|  | 			 Tk = Rm[WS(rs, 2)]; | ||
|  | 			 Tl = Tj + Tk; | ||
|  | 			 TO = Tj - Tk; | ||
|  | 			 TU = Ip[WS(rs, 5)]; | ||
|  | 			 TV = Im[WS(rs, 2)]; | ||
|  | 			 TW = TU + TV; | ||
|  | 			 T1s = TU - TV; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tn, To, T10, T11; | ||
|  | 			 Tn = Rm[0]; | ||
|  | 			 To = Rp[WS(rs, 7)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 T14 = Tn - To; | ||
|  | 			 T10 = Im[0]; | ||
|  | 			 T11 = Ip[WS(rs, 7)]; | ||
|  | 			 T12 = T10 + T11; | ||
|  | 			 T1u = T11 - T10; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, T15, T16; | ||
|  | 			 Tq = Rp[WS(rs, 3)]; | ||
|  | 			 Tr = Rm[WS(rs, 4)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 TZ = Tq - Tr; | ||
|  | 			 T15 = Ip[WS(rs, 3)]; | ||
|  | 			 T16 = Im[WS(rs, 4)]; | ||
|  | 			 T17 = T15 + T16; | ||
|  | 			 T1v = T15 - T16; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tm, Tt, T2O, T2P; | ||
|  | 			 Tm = Ti + Tl; | ||
|  | 			 Tt = Tp + Ts; | ||
|  | 			 Tu = Tm + Tt; | ||
|  | 			 T1Y = Tm - Tt; | ||
|  | 			 T2O = TR - TO; | ||
|  | 			 T2P = TT + TW; | ||
|  | 			 T2Q = FMA(KP382683432, T2O, KP923879532 * T2P); | ||
|  | 			 T2X = FNMS(KP923879532, T2O, KP382683432 * T2P); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2R, T2S, TS, TX; | ||
|  | 			 T2R = TZ + T12; | ||
|  | 			 T2S = T14 + T17; | ||
|  | 			 T2T = FMA(KP382683432, T2R, KP923879532 * T2S); | ||
|  | 			 T2Y = FNMS(KP923879532, T2R, KP382683432 * T2S); | ||
|  | 			 TS = TO + TR; | ||
|  | 			 TX = TT - TW; | ||
|  | 			 TY = FMA(KP923879532, TS, KP382683432 * TX); | ||
|  | 			 T1d = FNMS(KP382683432, TS, KP923879532 * TX); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T13, T18, T2t, T2u; | ||
|  | 			 T13 = TZ - T12; | ||
|  | 			 T18 = T14 - T17; | ||
|  | 			 T19 = FNMS(KP382683432, T18, KP923879532 * T13); | ||
|  | 			 T1e = FMA(KP382683432, T13, KP923879532 * T18); | ||
|  | 			 T2t = Ti - Tl; | ||
|  | 			 T2u = T1r - T1s; | ||
|  | 			 T2v = T2t - T2u; | ||
|  | 			 T2C = T2t + T2u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2w, T2x, T1t, T1w; | ||
|  | 			 T2w = Tp - Ts; | ||
|  | 			 T2x = T1u - T1v; | ||
|  | 			 T2y = T2w + T2x; | ||
|  | 			 T2D = T2x - T2w; | ||
|  | 			 T1t = T1r + T1s; | ||
|  | 			 T1w = T1u + T1v; | ||
|  | 			 T1x = T1t + T1w; | ||
|  | 			 T1V = T1w - T1t; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tv, T1F, T1b, T1N, T1p, T1P, T1L, T1R; | ||
|  | 		    Tv = Tf + Tu; | ||
|  | 		    T1F = T1x + T1E; | ||
|  | 		    { | ||
|  | 			 E TN, T1a, T1f, T1o; | ||
|  | 			 TN = TB + TM; | ||
|  | 			 T1a = TY + T19; | ||
|  | 			 T1b = TN + T1a; | ||
|  | 			 T1N = TN - T1a; | ||
|  | 			 T1f = T1d + T1e; | ||
|  | 			 T1o = T1i + T1n; | ||
|  | 			 T1p = T1f + T1o; | ||
|  | 			 T1P = T1o - T1f; | ||
|  | 			 { | ||
|  | 			      E T1I, T1K, T1H, T1J; | ||
|  | 			      T1I = Tf - Tu; | ||
|  | 			      T1K = T1E - T1x; | ||
|  | 			      T1H = W[14]; | ||
|  | 			      T1J = W[15]; | ||
|  | 			      T1L = FNMS(T1J, T1K, T1H * T1I); | ||
|  | 			      T1R = FMA(T1J, T1I, T1H * T1K); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1q, T1G, Tw, T1c; | ||
|  | 			 Tw = W[0]; | ||
|  | 			 T1c = W[1]; | ||
|  | 			 T1q = FMA(Tw, T1b, T1c * T1p); | ||
|  | 			 T1G = FNMS(T1c, T1b, Tw * T1p); | ||
|  | 			 Rp[0] = Tv - T1q; | ||
|  | 			 Ip[0] = T1F + T1G; | ||
|  | 			 Rm[0] = Tv + T1q; | ||
|  | 			 Im[0] = T1G - T1F; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1Q, T1S, T1M, T1O; | ||
|  | 			 T1M = W[16]; | ||
|  | 			 T1O = W[17]; | ||
|  | 			 T1Q = FMA(T1M, T1N, T1O * T1P); | ||
|  | 			 T1S = FNMS(T1O, T1N, T1M * T1P); | ||
|  | 			 Rp[WS(rs, 4)] = T1L - T1Q; | ||
|  | 			 Ip[WS(rs, 4)] = T1R + T1S; | ||
|  | 			 Rm[WS(rs, 4)] = T1L + T1Q; | ||
|  | 			 Im[WS(rs, 4)] = T1S - T1R; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T25, T2j, T29, T2l, T21, T2b, T2h, T2n; | ||
|  | 		    { | ||
|  | 			 E T23, T24, T27, T28; | ||
|  | 			 T23 = TB - TM; | ||
|  | 			 T24 = T1d - T1e; | ||
|  | 			 T25 = T23 + T24; | ||
|  | 			 T2j = T23 - T24; | ||
|  | 			 T27 = T19 - TY; | ||
|  | 			 T28 = T1n - T1i; | ||
|  | 			 T29 = T27 + T28; | ||
|  | 			 T2l = T28 - T27; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1W, T20, T1T, T1X; | ||
|  | 			 T1W = T1U + T1V; | ||
|  | 			 T20 = T1Y + T1Z; | ||
|  | 			 T1T = W[6]; | ||
|  | 			 T1X = W[7]; | ||
|  | 			 T21 = FNMS(T1X, T20, T1T * T1W); | ||
|  | 			 T2b = FMA(T1X, T1W, T1T * T20); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2e, T2g, T2d, T2f; | ||
|  | 			 T2e = T1U - T1V; | ||
|  | 			 T2g = T1Z - T1Y; | ||
|  | 			 T2d = W[22]; | ||
|  | 			 T2f = W[23]; | ||
|  | 			 T2h = FNMS(T2f, T2g, T2d * T2e); | ||
|  | 			 T2n = FMA(T2f, T2e, T2d * T2g); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2a, T2c, T22, T26; | ||
|  | 			 T22 = W[8]; | ||
|  | 			 T26 = W[9]; | ||
|  | 			 T2a = FMA(T22, T25, T26 * T29); | ||
|  | 			 T2c = FNMS(T26, T25, T22 * T29); | ||
|  | 			 Rp[WS(rs, 2)] = T21 - T2a; | ||
|  | 			 Ip[WS(rs, 2)] = T2b + T2c; | ||
|  | 			 Rm[WS(rs, 2)] = T21 + T2a; | ||
|  | 			 Im[WS(rs, 2)] = T2c - T2b; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2m, T2o, T2i, T2k; | ||
|  | 			 T2i = W[24]; | ||
|  | 			 T2k = W[25]; | ||
|  | 			 T2m = FMA(T2i, T2j, T2k * T2l); | ||
|  | 			 T2o = FNMS(T2k, T2j, T2i * T2l); | ||
|  | 			 Rp[WS(rs, 6)] = T2h - T2m; | ||
|  | 			 Ip[WS(rs, 6)] = T2n + T2o; | ||
|  | 			 Rm[WS(rs, 6)] = T2h + T2m; | ||
|  | 			 Im[WS(rs, 6)] = T2o - T2n; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2A, T38, T2I, T3a, T2V, T3d, T33, T3f, T2z, T2E; | ||
|  | 		    T2z = KP707106781 * (T2v + T2y); | ||
|  | 		    T2A = T2s + T2z; | ||
|  | 		    T38 = T2s - T2z; | ||
|  | 		    T2E = KP707106781 * (T2C + T2D); | ||
|  | 		    T2I = T2E + T2H; | ||
|  | 		    T3a = T2H - T2E; | ||
|  | 		    { | ||
|  | 			 E T2N, T2U, T2Z, T32; | ||
|  | 			 T2N = T2L + T2M; | ||
|  | 			 T2U = T2Q - T2T; | ||
|  | 			 T2V = T2N + T2U; | ||
|  | 			 T3d = T2N - T2U; | ||
|  | 			 T2Z = T2X + T2Y; | ||
|  | 			 T32 = T30 - T31; | ||
|  | 			 T33 = T2Z + T32; | ||
|  | 			 T3f = T32 - T2Z; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2J, T35, T34, T36; | ||
|  | 			 { | ||
|  | 			      E T2p, T2B, T2K, T2W; | ||
|  | 			      T2p = W[2]; | ||
|  | 			      T2B = W[3]; | ||
|  | 			      T2J = FNMS(T2B, T2I, T2p * T2A); | ||
|  | 			      T35 = FMA(T2B, T2A, T2p * T2I); | ||
|  | 			      T2K = W[4]; | ||
|  | 			      T2W = W[5]; | ||
|  | 			      T34 = FMA(T2K, T2V, T2W * T33); | ||
|  | 			      T36 = FNMS(T2W, T2V, T2K * T33); | ||
|  | 			 } | ||
|  | 			 Rp[WS(rs, 1)] = T2J - T34; | ||
|  | 			 Ip[WS(rs, 1)] = T35 + T36; | ||
|  | 			 Rm[WS(rs, 1)] = T2J + T34; | ||
|  | 			 Im[WS(rs, 1)] = T36 - T35; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3b, T3h, T3g, T3i; | ||
|  | 			 { | ||
|  | 			      E T37, T39, T3c, T3e; | ||
|  | 			      T37 = W[18]; | ||
|  | 			      T39 = W[19]; | ||
|  | 			      T3b = FNMS(T39, T3a, T37 * T38); | ||
|  | 			      T3h = FMA(T39, T38, T37 * T3a); | ||
|  | 			      T3c = W[20]; | ||
|  | 			      T3e = W[21]; | ||
|  | 			      T3g = FMA(T3c, T3d, T3e * T3f); | ||
|  | 			      T3i = FNMS(T3e, T3d, T3c * T3f); | ||
|  | 			 } | ||
|  | 			 Rp[WS(rs, 5)] = T3b - T3g; | ||
|  | 			 Ip[WS(rs, 5)] = T3h + T3i; | ||
|  | 			 Rm[WS(rs, 5)] = T3b + T3g; | ||
|  | 			 Im[WS(rs, 5)] = T3i - T3h; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3m, T3E, T3q, T3G, T3v, T3J, T3z, T3L, T3l, T3o; | ||
|  | 		    T3l = KP707106781 * (T2D - T2C); | ||
|  | 		    T3m = T3k + T3l; | ||
|  | 		    T3E = T3k - T3l; | ||
|  | 		    T3o = KP707106781 * (T2v - T2y); | ||
|  | 		    T3q = T3o + T3p; | ||
|  | 		    T3G = T3p - T3o; | ||
|  | 		    { | ||
|  | 			 E T3t, T3u, T3x, T3y; | ||
|  | 			 T3t = T2L - T2M; | ||
|  | 			 T3u = T2X - T2Y; | ||
|  | 			 T3v = T3t + T3u; | ||
|  | 			 T3J = T3t - T3u; | ||
|  | 			 T3x = T31 + T30; | ||
|  | 			 T3y = T2Q + T2T; | ||
|  | 			 T3z = T3x - T3y; | ||
|  | 			 T3L = T3y + T3x; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3r, T3B, T3A, T3C; | ||
|  | 			 { | ||
|  | 			      E T3j, T3n, T3s, T3w; | ||
|  | 			      T3j = W[10]; | ||
|  | 			      T3n = W[11]; | ||
|  | 			      T3r = FNMS(T3n, T3q, T3j * T3m); | ||
|  | 			      T3B = FMA(T3n, T3m, T3j * T3q); | ||
|  | 			      T3s = W[12]; | ||
|  | 			      T3w = W[13]; | ||
|  | 			      T3A = FMA(T3s, T3v, T3w * T3z); | ||
|  | 			      T3C = FNMS(T3w, T3v, T3s * T3z); | ||
|  | 			 } | ||
|  | 			 Rp[WS(rs, 3)] = T3r - T3A; | ||
|  | 			 Ip[WS(rs, 3)] = T3B + T3C; | ||
|  | 			 Rm[WS(rs, 3)] = T3r + T3A; | ||
|  | 			 Im[WS(rs, 3)] = T3C - T3B; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3H, T3N, T3M, T3O; | ||
|  | 			 { | ||
|  | 			      E T3D, T3F, T3I, T3K; | ||
|  | 			      T3D = W[26]; | ||
|  | 			      T3F = W[27]; | ||
|  | 			      T3H = FNMS(T3F, T3G, T3D * T3E); | ||
|  | 			      T3N = FMA(T3F, T3E, T3D * T3G); | ||
|  | 			      T3I = W[28]; | ||
|  | 			      T3K = W[29]; | ||
|  | 			      T3M = FMA(T3I, T3J, T3K * T3L); | ||
|  | 			      T3O = FNMS(T3K, T3J, T3I * T3L); | ||
|  | 			 } | ||
|  | 			 Rp[WS(rs, 7)] = T3H - T3M; | ||
|  | 			 Ip[WS(rs, 7)] = T3N + T3O; | ||
|  | 			 Rm[WS(rs, 7)] = T3H + T3M; | ||
|  | 			 Im[WS(rs, 7)] = T3O - T3N; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 16 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, "hc2cbdft2_16", twinstr, &GENUS, { 168, 46, 38, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cbdft2_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdft2_16, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |