363 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			363 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:11 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 86 FP additions, 32 FP multiplications, | ||
|  |  * (or, 58 additions, 4 multiplications, 28 fused multiply/add), | ||
|  |  * 51 stack variables, 4 constants, and 40 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cf.h"
 | ||
|  | 
 | ||
|  | static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { | ||
|  | 	       E T3, T1d, TJ, TV, T16, T1k, T1l, T19, Ta, Th, Ti, T1e, T1f, T1g, TP; | ||
|  | 	       E TQ, TX, Tn, Ts, TK, TS, TT, TW, Ty, TD, TL; | ||
|  | 	       { | ||
|  | 		    E T1, T2, TF, TG, TH, TI; | ||
|  | 		    T1 = R0[0]; | ||
|  | 		    T2 = R0[WS(rs, 5)]; | ||
|  | 		    TF = T1 + T2; | ||
|  | 		    TG = R1[WS(rs, 2)]; | ||
|  | 		    TH = R1[WS(rs, 7)]; | ||
|  | 		    TI = TG + TH; | ||
|  | 		    T3 = T1 - T2; | ||
|  | 		    T1d = TG - TH; | ||
|  | 		    TJ = TF - TI; | ||
|  | 		    TV = TF + TI; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, To, Tx, T17, TC, T18, T9, Tj, Td, Tu, Tm, T15, Tr, T14, Tg; | ||
|  | 		    E Tz; | ||
|  | 		    { | ||
|  | 			 E T4, T5, Tv, Tw; | ||
|  | 			 T4 = R0[WS(rs, 2)]; | ||
|  | 			 T5 = R0[WS(rs, 7)]; | ||
|  | 			 T6 = T4 - T5; | ||
|  | 			 To = T4 + T5; | ||
|  | 			 Tv = R1[WS(rs, 6)]; | ||
|  | 			 Tw = R1[WS(rs, 1)]; | ||
|  | 			 Tx = Tv + Tw; | ||
|  | 			 T17 = Tw - Tv; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TA, TB, T7, T8; | ||
|  | 			 TA = R1[WS(rs, 8)]; | ||
|  | 			 TB = R1[WS(rs, 3)]; | ||
|  | 			 TC = TA + TB; | ||
|  | 			 T18 = TB - TA; | ||
|  | 			 T7 = R0[WS(rs, 8)]; | ||
|  | 			 T8 = R0[WS(rs, 3)]; | ||
|  | 			 T9 = T7 - T8; | ||
|  | 			 Tj = T7 + T8; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Tk, Tl; | ||
|  | 			 Tb = R0[WS(rs, 4)]; | ||
|  | 			 Tc = R0[WS(rs, 9)]; | ||
|  | 			 Td = Tb - Tc; | ||
|  | 			 Tu = Tb + Tc; | ||
|  | 			 Tk = R1[0]; | ||
|  | 			 Tl = R1[WS(rs, 5)]; | ||
|  | 			 Tm = Tk + Tl; | ||
|  | 			 T15 = Tl - Tk; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tp, Tq, Te, Tf; | ||
|  | 			 Tp = R1[WS(rs, 4)]; | ||
|  | 			 Tq = R1[WS(rs, 9)]; | ||
|  | 			 Tr = Tp + Tq; | ||
|  | 			 T14 = Tq - Tp; | ||
|  | 			 Te = R0[WS(rs, 6)]; | ||
|  | 			 Tf = R0[WS(rs, 1)]; | ||
|  | 			 Tg = Te - Tf; | ||
|  | 			 Tz = Te + Tf; | ||
|  | 		    } | ||
|  | 		    T16 = T14 - T15; | ||
|  | 		    T1k = T6 - T9; | ||
|  | 		    T1l = Td - Tg; | ||
|  | 		    T19 = T17 - T18; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Th = Td + Tg; | ||
|  | 		    Ti = Ta + Th; | ||
|  | 		    T1e = T14 + T15; | ||
|  | 		    T1f = T17 + T18; | ||
|  | 		    T1g = T1e + T1f; | ||
|  | 		    TP = Tu + Tx; | ||
|  | 		    TQ = Tz + TC; | ||
|  | 		    TX = TP + TQ; | ||
|  | 		    Tn = Tj - Tm; | ||
|  | 		    Ts = To - Tr; | ||
|  | 		    TK = Ts + Tn; | ||
|  | 		    TS = To + Tr; | ||
|  | 		    TT = Tj + Tm; | ||
|  | 		    TW = TS + TT; | ||
|  | 		    Ty = Tu - Tx; | ||
|  | 		    TD = Tz - TC; | ||
|  | 		    TL = Ty + TD; | ||
|  | 	       } | ||
|  | 	       Cr[WS(csr, 5)] = T3 + Ti; | ||
|  | 	       Ci[WS(csi, 5)] = T1g - T1d; | ||
|  | 	       { | ||
|  | 		    E Tt, TE, TR, TU; | ||
|  | 		    Tt = Tn - Ts; | ||
|  | 		    TE = Ty - TD; | ||
|  | 		    Ci[WS(csi, 6)] = KP951056516 * (FNMS(KP618033988, TE, Tt)); | ||
|  | 		    Ci[WS(csi, 2)] = KP951056516 * (FMA(KP618033988, Tt, TE)); | ||
|  | 		    TR = TP - TQ; | ||
|  | 		    TU = TS - TT; | ||
|  | 		    Ci[WS(csi, 8)] = -(KP951056516 * (FNMS(KP618033988, TU, TR))); | ||
|  | 		    Ci[WS(csi, 4)] = KP951056516 * (FMA(KP618033988, TR, TU)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T10, TY, TZ, TO, TM, TN; | ||
|  | 		    T10 = TW - TX; | ||
|  | 		    TY = TW + TX; | ||
|  | 		    TZ = FNMS(KP250000000, TY, TV); | ||
|  | 		    Cr[WS(csr, 4)] = FMA(KP559016994, T10, TZ); | ||
|  | 		    Cr[0] = TV + TY; | ||
|  | 		    Cr[WS(csr, 8)] = FNMS(KP559016994, T10, TZ); | ||
|  | 		    TO = TK - TL; | ||
|  | 		    TM = TK + TL; | ||
|  | 		    TN = FNMS(KP250000000, TM, TJ); | ||
|  | 		    Cr[WS(csr, 2)] = FNMS(KP559016994, TO, TN); | ||
|  | 		    Cr[WS(csr, 10)] = TJ + TM; | ||
|  | 		    Cr[WS(csr, 6)] = FMA(KP559016994, TO, TN); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1a, T1c, T13, T1b, T11, T12; | ||
|  | 		    T1a = FMA(KP618033988, T19, T16); | ||
|  | 		    T1c = FNMS(KP618033988, T16, T19); | ||
|  | 		    T11 = FNMS(KP250000000, Ti, T3); | ||
|  | 		    T12 = Ta - Th; | ||
|  | 		    T13 = FMA(KP559016994, T12, T11); | ||
|  | 		    T1b = FNMS(KP559016994, T12, T11); | ||
|  | 		    Cr[WS(csr, 9)] = FNMS(KP951056516, T1a, T13); | ||
|  | 		    Cr[WS(csr, 7)] = FMA(KP951056516, T1c, T1b); | ||
|  | 		    Cr[WS(csr, 1)] = FMA(KP951056516, T1a, T13); | ||
|  | 		    Cr[WS(csr, 3)] = FNMS(KP951056516, T1c, T1b); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1m, T1o, T1j, T1n, T1h, T1i; | ||
|  | 		    T1m = FMA(KP618033988, T1l, T1k); | ||
|  | 		    T1o = FNMS(KP618033988, T1k, T1l); | ||
|  | 		    T1h = FMA(KP250000000, T1g, T1d); | ||
|  | 		    T1i = T1e - T1f; | ||
|  | 		    T1j = FNMS(KP559016994, T1i, T1h); | ||
|  | 		    T1n = FMA(KP559016994, T1i, T1h); | ||
|  | 		    Ci[WS(csi, 1)] = -(FMA(KP951056516, T1m, T1j)); | ||
|  | 		    Ci[WS(csi, 7)] = FMA(KP951056516, T1o, T1n); | ||
|  | 		    Ci[WS(csi, 9)] = FMS(KP951056516, T1m, T1j); | ||
|  | 		    Ci[WS(csi, 3)] = FNMS(KP951056516, T1o, T1n); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 20, "r2cf_20", { 58, 4, 28, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 86 FP additions, 24 FP multiplications, | ||
|  |  * (or, 74 additions, 12 multiplications, 12 fused multiply/add), | ||
|  |  * 51 stack variables, 4 constants, and 40 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cf.h"
 | ||
|  | 
 | ||
|  | static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { | ||
|  | 	       E T3, T1m, TF, T17, Ts, TM, TN, Tz, Ta, Th, Ti, T1g, T1h, T1k, T10; | ||
|  | 	       E T13, T19, TG, TH, TI, T1d, T1e, T1j, TT, TW, T18; | ||
|  | 	       { | ||
|  | 		    E T1, T2, T15, TD, TE, T16; | ||
|  | 		    T1 = R0[0]; | ||
|  | 		    T2 = R0[WS(rs, 5)]; | ||
|  | 		    T15 = T1 + T2; | ||
|  | 		    TD = R1[WS(rs, 7)]; | ||
|  | 		    TE = R1[WS(rs, 2)]; | ||
|  | 		    T16 = TE + TD; | ||
|  | 		    T3 = T1 - T2; | ||
|  | 		    T1m = T15 + T16; | ||
|  | 		    TF = TD - TE; | ||
|  | 		    T17 = T15 - T16; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, TU, Tv, T12, Ty, TZ, T9, TR, Td, TY, To, TS, Tr, TV, Tg; | ||
|  | 		    E T11; | ||
|  | 		    { | ||
|  | 			 E T4, T5, Tt, Tu; | ||
|  | 			 T4 = R0[WS(rs, 2)]; | ||
|  | 			 T5 = R0[WS(rs, 7)]; | ||
|  | 			 T6 = T4 - T5; | ||
|  | 			 TU = T4 + T5; | ||
|  | 			 Tt = R1[WS(rs, 8)]; | ||
|  | 			 Tu = R1[WS(rs, 3)]; | ||
|  | 			 Tv = Tt - Tu; | ||
|  | 			 T12 = Tt + Tu; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tw, Tx, T7, T8; | ||
|  | 			 Tw = R1[WS(rs, 6)]; | ||
|  | 			 Tx = R1[WS(rs, 1)]; | ||
|  | 			 Ty = Tw - Tx; | ||
|  | 			 TZ = Tw + Tx; | ||
|  | 			 T7 = R0[WS(rs, 8)]; | ||
|  | 			 T8 = R0[WS(rs, 3)]; | ||
|  | 			 T9 = T7 - T8; | ||
|  | 			 TR = T7 + T8; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Tm, Tn; | ||
|  | 			 Tb = R0[WS(rs, 4)]; | ||
|  | 			 Tc = R0[WS(rs, 9)]; | ||
|  | 			 Td = Tb - Tc; | ||
|  | 			 TY = Tb + Tc; | ||
|  | 			 Tm = R1[0]; | ||
|  | 			 Tn = R1[WS(rs, 5)]; | ||
|  | 			 To = Tm - Tn; | ||
|  | 			 TS = Tm + Tn; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tp, Tq, Te, Tf; | ||
|  | 			 Tp = R1[WS(rs, 4)]; | ||
|  | 			 Tq = R1[WS(rs, 9)]; | ||
|  | 			 Tr = Tp - Tq; | ||
|  | 			 TV = Tp + Tq; | ||
|  | 			 Te = R0[WS(rs, 6)]; | ||
|  | 			 Tf = R0[WS(rs, 1)]; | ||
|  | 			 Tg = Te - Tf; | ||
|  | 			 T11 = Te + Tf; | ||
|  | 		    } | ||
|  | 		    Ts = To - Tr; | ||
|  | 		    TM = T6 - T9; | ||
|  | 		    TN = Td - Tg; | ||
|  | 		    Tz = Tv - Ty; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Th = Td + Tg; | ||
|  | 		    Ti = Ta + Th; | ||
|  | 		    T1g = TY + TZ; | ||
|  | 		    T1h = T11 + T12; | ||
|  | 		    T1k = T1g + T1h; | ||
|  | 		    T10 = TY - TZ; | ||
|  | 		    T13 = T11 - T12; | ||
|  | 		    T19 = T10 + T13; | ||
|  | 		    TG = Tr + To; | ||
|  | 		    TH = Ty + Tv; | ||
|  | 		    TI = TG + TH; | ||
|  | 		    T1d = TU + TV; | ||
|  | 		    T1e = TR + TS; | ||
|  | 		    T1j = T1d + T1e; | ||
|  | 		    TT = TR - TS; | ||
|  | 		    TW = TU - TV; | ||
|  | 		    T18 = TW + TT; | ||
|  | 	       } | ||
|  | 	       Cr[WS(csr, 5)] = T3 + Ti; | ||
|  | 	       Ci[WS(csi, 5)] = TF - TI; | ||
|  | 	       { | ||
|  | 		    E TX, T14, T1f, T1i; | ||
|  | 		    TX = TT - TW; | ||
|  | 		    T14 = T10 - T13; | ||
|  | 		    Ci[WS(csi, 6)] = FNMS(KP587785252, T14, KP951056516 * TX); | ||
|  | 		    Ci[WS(csi, 2)] = FMA(KP587785252, TX, KP951056516 * T14); | ||
|  | 		    T1f = T1d - T1e; | ||
|  | 		    T1i = T1g - T1h; | ||
|  | 		    Ci[WS(csi, 8)] = FNMS(KP951056516, T1i, KP587785252 * T1f); | ||
|  | 		    Ci[WS(csi, 4)] = FMA(KP951056516, T1f, KP587785252 * T1i); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1l, T1n, T1o, T1c, T1a, T1b; | ||
|  | 		    T1l = KP559016994 * (T1j - T1k); | ||
|  | 		    T1n = T1j + T1k; | ||
|  | 		    T1o = FNMS(KP250000000, T1n, T1m); | ||
|  | 		    Cr[WS(csr, 4)] = T1l + T1o; | ||
|  | 		    Cr[0] = T1m + T1n; | ||
|  | 		    Cr[WS(csr, 8)] = T1o - T1l; | ||
|  | 		    T1c = KP559016994 * (T18 - T19); | ||
|  | 		    T1a = T18 + T19; | ||
|  | 		    T1b = FNMS(KP250000000, T1a, T17); | ||
|  | 		    Cr[WS(csr, 2)] = T1b - T1c; | ||
|  | 		    Cr[WS(csr, 10)] = T17 + T1a; | ||
|  | 		    Cr[WS(csr, 6)] = T1c + T1b; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TA, TC, Tl, TB, Tj, Tk; | ||
|  | 		    TA = FMA(KP951056516, Ts, KP587785252 * Tz); | ||
|  | 		    TC = FNMS(KP587785252, Ts, KP951056516 * Tz); | ||
|  | 		    Tj = KP559016994 * (Ta - Th); | ||
|  | 		    Tk = FNMS(KP250000000, Ti, T3); | ||
|  | 		    Tl = Tj + Tk; | ||
|  | 		    TB = Tk - Tj; | ||
|  | 		    Cr[WS(csr, 9)] = Tl - TA; | ||
|  | 		    Cr[WS(csr, 7)] = TB + TC; | ||
|  | 		    Cr[WS(csr, 1)] = Tl + TA; | ||
|  | 		    Cr[WS(csr, 3)] = TB - TC; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TO, TQ, TL, TP, TJ, TK; | ||
|  | 		    TO = FMA(KP951056516, TM, KP587785252 * TN); | ||
|  | 		    TQ = FNMS(KP587785252, TM, KP951056516 * TN); | ||
|  | 		    TJ = FMA(KP250000000, TI, TF); | ||
|  | 		    TK = KP559016994 * (TH - TG); | ||
|  | 		    TL = TJ + TK; | ||
|  | 		    TP = TK - TJ; | ||
|  | 		    Ci[WS(csi, 1)] = TL - TO; | ||
|  | 		    Ci[WS(csi, 7)] = TQ + TP; | ||
|  | 		    Ci[WS(csi, 9)] = TO + TL; | ||
|  | 		    Ci[WS(csi, 3)] = TP - TQ; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 20, "r2cf_20", { 74, 12, 12, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |