355 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			355 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:27 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 72 FP additions, 66 FP multiplications, | ||
|  |  * (or, 18 additions, 12 multiplications, 54 fused multiply/add), | ||
|  |  * 37 stack variables, 6 constants, and 28 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/t.h"
 | ||
|  | 
 | ||
|  | static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP801937735, +0.801937735804838252472204639014890102331838324); | ||
|  |      DK(KP554958132, +0.554958132087371191422194871006410481067288862); | ||
|  |      DK(KP692021471, +0.692021471630095869627814897002069140197260599); | ||
|  |      DK(KP356895867, +0.356895867892209443894399510021300583399127187); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | ||
|  | 	       E T1, T1c, Te, T1h, TR, T19, Tr, T1g, TM, T1a, TE, T1i, TW, T1b; | ||
|  | 	       T1 = ri[0]; | ||
|  | 	       T1c = ii[0]; | ||
|  | 	       { | ||
|  | 		    E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8; | ||
|  | 		    T3 = ri[WS(rs, 1)]; | ||
|  | 		    T6 = ii[WS(rs, 1)]; | ||
|  | 		    T2 = W[0]; | ||
|  | 		    T4 = T2 * T3; | ||
|  | 		    TN = T2 * T6; | ||
|  | 		    T9 = ri[WS(rs, 6)]; | ||
|  | 		    Tc = ii[WS(rs, 6)]; | ||
|  | 		    T8 = W[10]; | ||
|  | 		    Ta = T8 * T9; | ||
|  | 		    TP = T8 * Tc; | ||
|  | 		    { | ||
|  | 			 E T7, TO, Td, TQ, T5, Tb; | ||
|  | 			 T5 = W[1]; | ||
|  | 			 T7 = FMA(T5, T6, T4); | ||
|  | 			 TO = FNMS(T5, T3, TN); | ||
|  | 			 Tb = W[11]; | ||
|  | 			 Td = FMA(Tb, Tc, Ta); | ||
|  | 			 TQ = FNMS(Tb, T9, TP); | ||
|  | 			 Te = T7 + Td; | ||
|  | 			 T1h = Td - T7; | ||
|  | 			 TR = TO - TQ; | ||
|  | 			 T19 = TO + TQ; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl; | ||
|  | 		    Tg = ri[WS(rs, 2)]; | ||
|  | 		    Tj = ii[WS(rs, 2)]; | ||
|  | 		    Tf = W[2]; | ||
|  | 		    Th = Tf * Tg; | ||
|  | 		    TI = Tf * Tj; | ||
|  | 		    Tm = ri[WS(rs, 5)]; | ||
|  | 		    Tp = ii[WS(rs, 5)]; | ||
|  | 		    Tl = W[8]; | ||
|  | 		    Tn = Tl * Tm; | ||
|  | 		    TK = Tl * Tp; | ||
|  | 		    { | ||
|  | 			 E Tk, TJ, Tq, TL, Ti, To; | ||
|  | 			 Ti = W[3]; | ||
|  | 			 Tk = FMA(Ti, Tj, Th); | ||
|  | 			 TJ = FNMS(Ti, Tg, TI); | ||
|  | 			 To = W[9]; | ||
|  | 			 Tq = FMA(To, Tp, Tn); | ||
|  | 			 TL = FNMS(To, Tm, TK); | ||
|  | 			 Tr = Tk + Tq; | ||
|  | 			 T1g = Tq - Tk; | ||
|  | 			 TM = TJ - TL; | ||
|  | 			 T1a = TJ + TL; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty; | ||
|  | 		    Tt = ri[WS(rs, 3)]; | ||
|  | 		    Tw = ii[WS(rs, 3)]; | ||
|  | 		    Ts = W[4]; | ||
|  | 		    Tu = Ts * Tt; | ||
|  | 		    TS = Ts * Tw; | ||
|  | 		    Tz = ri[WS(rs, 4)]; | ||
|  | 		    TC = ii[WS(rs, 4)]; | ||
|  | 		    Ty = W[6]; | ||
|  | 		    TA = Ty * Tz; | ||
|  | 		    TU = Ty * TC; | ||
|  | 		    { | ||
|  | 			 E Tx, TT, TD, TV, Tv, TB; | ||
|  | 			 Tv = W[5]; | ||
|  | 			 Tx = FMA(Tv, Tw, Tu); | ||
|  | 			 TT = FNMS(Tv, Tt, TS); | ||
|  | 			 TB = W[7]; | ||
|  | 			 TD = FMA(TB, TC, TA); | ||
|  | 			 TV = FNMS(TB, Tz, TU); | ||
|  | 			 TE = Tx + TD; | ||
|  | 			 T1i = TD - Tx; | ||
|  | 			 TW = TT - TV; | ||
|  | 			 T1b = TT + TV; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       ri[0] = T1 + Te + Tr + TE; | ||
|  | 	       ii[0] = T19 + T1a + T1b + T1c; | ||
|  | 	       { | ||
|  | 		    E TG, TY, TF, TX, TH; | ||
|  | 		    TF = FNMS(KP356895867, Tr, Te); | ||
|  | 		    TG = FNMS(KP692021471, TF, TE); | ||
|  | 		    TX = FMA(KP554958132, TW, TR); | ||
|  | 		    TY = FMA(KP801937735, TX, TM); | ||
|  | 		    TH = FNMS(KP900968867, TG, T1); | ||
|  | 		    ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH); | ||
|  | 		    ri[WS(rs, 1)] = FMA(KP974927912, TY, TH); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1e, T1k, T1d, T1j, T1f; | ||
|  | 		    T1d = FNMS(KP356895867, T1a, T19); | ||
|  | 		    T1e = FNMS(KP692021471, T1d, T1b); | ||
|  | 		    T1j = FMA(KP554958132, T1i, T1h); | ||
|  | 		    T1k = FMA(KP801937735, T1j, T1g); | ||
|  | 		    T1f = FNMS(KP900968867, T1e, T1c); | ||
|  | 		    ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f); | ||
|  | 		    ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T10, T13, TZ, T12, T11; | ||
|  | 		    TZ = FNMS(KP356895867, Te, TE); | ||
|  | 		    T10 = FNMS(KP692021471, TZ, Tr); | ||
|  | 		    T12 = FMA(KP554958132, TM, TW); | ||
|  | 		    T13 = FNMS(KP801937735, T12, TR); | ||
|  | 		    T11 = FNMS(KP900968867, T10, T1); | ||
|  | 		    ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11); | ||
|  | 		    ri[WS(rs, 2)] = FMA(KP974927912, T13, T11); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1m, T1p, T1l, T1o, T1n; | ||
|  | 		    T1l = FNMS(KP356895867, T19, T1b); | ||
|  | 		    T1m = FNMS(KP692021471, T1l, T1a); | ||
|  | 		    T1o = FMA(KP554958132, T1g, T1i); | ||
|  | 		    T1p = FNMS(KP801937735, T1o, T1h); | ||
|  | 		    T1n = FNMS(KP900968867, T1m, T1c); | ||
|  | 		    ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n); | ||
|  | 		    ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T15, T18, T14, T17, T16; | ||
|  | 		    T14 = FNMS(KP356895867, TE, Tr); | ||
|  | 		    T15 = FNMS(KP692021471, T14, Te); | ||
|  | 		    T17 = FNMS(KP554958132, TR, TM); | ||
|  | 		    T18 = FNMS(KP801937735, T17, TW); | ||
|  | 		    T16 = FNMS(KP900968867, T15, T1); | ||
|  | 		    ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16); | ||
|  | 		    ri[WS(rs, 3)] = FMA(KP974927912, T18, T16); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1r, T1u, T1q, T1t, T1s; | ||
|  | 		    T1q = FNMS(KP356895867, T1b, T1a); | ||
|  | 		    T1r = FNMS(KP692021471, T1q, T19); | ||
|  | 		    T1t = FNMS(KP554958132, T1h, T1g); | ||
|  | 		    T1u = FNMS(KP801937735, T1t, T1i); | ||
|  | 		    T1s = FNMS(KP900968867, T1r, T1c); | ||
|  | 		    ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s); | ||
|  | 		    ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 7 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 18, 12, 54, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_t1_7) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1_7, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 72 FP additions, 60 FP multiplications, | ||
|  |  * (or, 36 additions, 24 multiplications, 36 fused multiply/add), | ||
|  |  * 29 stack variables, 6 constants, and 28 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/t.h"
 | ||
|  | 
 | ||
|  | static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP222520933, +0.222520933956314404288902564496794759466355569); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP623489801, +0.623489801858733530525004884004239810632274731); | ||
|  |      DK(KP433883739, +0.433883739117558120475768332848358754609990728); | ||
|  |      DK(KP781831482, +0.781831482468029808708444526674057750232334519); | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | ||
|  | 	       E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ; | ||
|  | 	       T1 = ri[0]; | ||
|  | 	       TR = ii[0]; | ||
|  | 	       { | ||
|  | 		    E T6, TA, Tb, TB; | ||
|  | 		    { | ||
|  | 			 E T3, T5, T2, T4; | ||
|  | 			 T3 = ri[WS(rs, 1)]; | ||
|  | 			 T5 = ii[WS(rs, 1)]; | ||
|  | 			 T2 = W[0]; | ||
|  | 			 T4 = W[1]; | ||
|  | 			 T6 = FMA(T2, T3, T4 * T5); | ||
|  | 			 TA = FNMS(T4, T3, T2 * T5); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8, Ta, T7, T9; | ||
|  | 			 T8 = ri[WS(rs, 6)]; | ||
|  | 			 Ta = ii[WS(rs, 6)]; | ||
|  | 			 T7 = W[10]; | ||
|  | 			 T9 = W[11]; | ||
|  | 			 Tb = FMA(T7, T8, T9 * Ta); | ||
|  | 			 TB = FNMS(T9, T8, T7 * Ta); | ||
|  | 		    } | ||
|  | 		    Tc = T6 + Tb; | ||
|  | 		    TS = Tb - T6; | ||
|  | 		    TC = TA - TB; | ||
|  | 		    TO = TA + TB; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Th, TG, Tm, TH; | ||
|  | 		    { | ||
|  | 			 E Te, Tg, Td, Tf; | ||
|  | 			 Te = ri[WS(rs, 2)]; | ||
|  | 			 Tg = ii[WS(rs, 2)]; | ||
|  | 			 Td = W[2]; | ||
|  | 			 Tf = W[3]; | ||
|  | 			 Th = FMA(Td, Te, Tf * Tg); | ||
|  | 			 TG = FNMS(Tf, Te, Td * Tg); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj, Tl, Ti, Tk; | ||
|  | 			 Tj = ri[WS(rs, 5)]; | ||
|  | 			 Tl = ii[WS(rs, 5)]; | ||
|  | 			 Ti = W[8]; | ||
|  | 			 Tk = W[9]; | ||
|  | 			 Tm = FMA(Ti, Tj, Tk * Tl); | ||
|  | 			 TH = FNMS(Tk, Tj, Ti * Tl); | ||
|  | 		    } | ||
|  | 		    Tn = Th + Tm; | ||
|  | 		    TT = Tm - Th; | ||
|  | 		    TI = TG - TH; | ||
|  | 		    TP = TG + TH; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ts, TD, Tx, TE; | ||
|  | 		    { | ||
|  | 			 E Tp, Tr, To, Tq; | ||
|  | 			 Tp = ri[WS(rs, 3)]; | ||
|  | 			 Tr = ii[WS(rs, 3)]; | ||
|  | 			 To = W[4]; | ||
|  | 			 Tq = W[5]; | ||
|  | 			 Ts = FMA(To, Tp, Tq * Tr); | ||
|  | 			 TD = FNMS(Tq, Tp, To * Tr); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tu, Tw, Tt, Tv; | ||
|  | 			 Tu = ri[WS(rs, 4)]; | ||
|  | 			 Tw = ii[WS(rs, 4)]; | ||
|  | 			 Tt = W[6]; | ||
|  | 			 Tv = W[7]; | ||
|  | 			 Tx = FMA(Tt, Tu, Tv * Tw); | ||
|  | 			 TE = FNMS(Tv, Tu, Tt * Tw); | ||
|  | 		    } | ||
|  | 		    Ty = Ts + Tx; | ||
|  | 		    TU = Tx - Ts; | ||
|  | 		    TF = TD - TE; | ||
|  | 		    TQ = TD + TE; | ||
|  | 	       } | ||
|  | 	       ri[0] = T1 + Tc + Tn + Ty; | ||
|  | 	       ii[0] = TO + TP + TQ + TR; | ||
|  | 	       { | ||
|  | 		    E TJ, Tz, TX, TY; | ||
|  | 		    TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI); | ||
|  | 		    Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc); | ||
|  | 		    ri[WS(rs, 5)] = Tz - TJ; | ||
|  | 		    ri[WS(rs, 2)] = Tz + TJ; | ||
|  | 		    TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT); | ||
|  | 		    TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO); | ||
|  | 		    ii[WS(rs, 2)] = TX + TY; | ||
|  | 		    ii[WS(rs, 5)] = TY - TX; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TL, TK, TV, TW; | ||
|  | 		    TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF); | ||
|  | 		    TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn); | ||
|  | 		    ri[WS(rs, 6)] = TK - TL; | ||
|  | 		    ri[WS(rs, 1)] = TK + TL; | ||
|  | 		    TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU); | ||
|  | 		    TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP); | ||
|  | 		    ii[WS(rs, 1)] = TV + TW; | ||
|  | 		    ii[WS(rs, 6)] = TW - TV; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TN, TM, TZ, T10; | ||
|  | 		    TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI); | ||
|  | 		    TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc); | ||
|  | 		    ri[WS(rs, 4)] = TM - TN; | ||
|  | 		    ri[WS(rs, 3)] = TM + TN; | ||
|  | 		    TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT); | ||
|  | 		    T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO); | ||
|  | 		    ii[WS(rs, 3)] = TZ + T10; | ||
|  | 		    ii[WS(rs, 4)] = T10 - TZ; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 7 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 36, 24, 36, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_t1_7) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1_7, &desc); | ||
|  | } | ||
|  | #endif
 |