208 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			208 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* plans for RDFT of rank >= 2 (multidimensional) */ | ||
|  | 
 | ||
|  | /* FIXME: this solver cannot strictly be applied to multidimensional
 | ||
|  |    DHTs, since the latter are not separable...up to rnk-1 additional | ||
|  |    post-processing passes may be required.  See also: | ||
|  | 
 | ||
|  |    R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast | ||
|  |    two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986). | ||
|  | 
 | ||
|  |    H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm | ||
|  |    using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987). | ||
|  | */ | ||
|  | 
 | ||
|  | #include "rdft/rdft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  |      int spltrnk; | ||
|  |      const int *buddies; | ||
|  |      size_t nbuddies; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_rdft super; | ||
|  | 
 | ||
|  |      plan *cld1, *cld2; | ||
|  |      const S *solver; | ||
|  | } P; | ||
|  | 
 | ||
|  | /* Compute multi-dimensional RDFT by applying the two cld plans
 | ||
|  |    (lower-rnk RDFTs). */ | ||
|  | static void apply(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      plan_rdft *cld1, *cld2; | ||
|  | 
 | ||
|  |      cld1 = (plan_rdft *) ego->cld1; | ||
|  |      cld1->apply(ego->cld1, I, O); | ||
|  | 
 | ||
|  |      cld2 = (plan_rdft *) ego->cld2; | ||
|  |      cld2->apply(ego->cld2, O, O); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_awake)(ego->cld1, wakefulness); | ||
|  |      X(plan_awake)(ego->cld2, wakefulness); | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cld2); | ||
|  |      X(plan_destroy_internal)(ego->cld1); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      const S *s = ego->solver; | ||
|  |      p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))", | ||
|  | 	      s->spltrnk, ego->cld1, ego->cld2); | ||
|  | } | ||
|  | 
 | ||
|  | static int picksplit(const S *ego, const tensor *sz, int *rp) | ||
|  | { | ||
|  |      A(sz->rnk > 1); /* cannot split rnk <= 1 */ | ||
|  |      if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) | ||
|  | 	  return 0; | ||
|  |      *rp += 1; /* convert from dim. index to rank */ | ||
|  |      if (*rp >= sz->rnk) /* split must reduce rank */ | ||
|  | 	  return 0; | ||
|  |      return 1; | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable0(const solver *ego_, const problem *p_, int *rp) | ||
|  | { | ||
|  |      const problem_rdft *p = (const problem_rdft *) p_; | ||
|  |      const S *ego = (const S *)ego_; | ||
|  |      return (1 | ||
|  | 	     && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk) | ||
|  | 	     && p->sz->rnk >= 2 | ||
|  | 	     && picksplit(ego, p->sz, rp) | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | /* TODO: revise this. */ | ||
|  | static int applicable(const solver *ego_, const problem *p_,  | ||
|  | 		      const planner *plnr, int *rp) | ||
|  | { | ||
|  |      const S *ego = (const S *)ego_; | ||
|  | 
 | ||
|  |      if (!applicable0(ego_, p_, rp)) return 0; | ||
|  | 
 | ||
|  |      if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) | ||
|  | 	  return 0; | ||
|  | 
 | ||
|  |      if (NO_UGLYP(plnr)) { | ||
|  | 	  /* Heuristic: if the vector stride is greater than the transform
 | ||
|  | 	     sz, don't use (prefer to do the vector loop first with a | ||
|  | 	     vrank-geq1 plan). */ | ||
|  | 	  const problem_rdft *p = (const problem_rdft *) p_; | ||
|  | 
 | ||
|  | 	  if (p->vecsz->rnk > 0 && | ||
|  | 	      X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) | ||
|  | 	       return 0; | ||
|  |      } | ||
|  | 
 | ||
|  |      return 1; | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      const S *ego = (const S *) ego_; | ||
|  |      const problem_rdft *p; | ||
|  |      P *pln; | ||
|  |      plan *cld1 = 0, *cld2 = 0; | ||
|  |      tensor *sz1, *sz2, *vecszi, *sz2i; | ||
|  |      int spltrnk; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(rdft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego_, p_, plnr, &spltrnk)) | ||
|  |           return (plan *) 0; | ||
|  | 
 | ||
|  |      p = (const problem_rdft *) p_; | ||
|  |      X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); | ||
|  |      vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); | ||
|  |      sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); | ||
|  | 
 | ||
|  |      cld1 = X(mkplan_d)(plnr,  | ||
|  | 			X(mkproblem_rdft_d)(X(tensor_copy)(sz2), | ||
|  | 					    X(tensor_append)(p->vecsz, sz1), | ||
|  | 					    p->I, p->O, p->kind + spltrnk)); | ||
|  |      if (!cld1) goto nada; | ||
|  | 
 | ||
|  |      cld2 = X(mkplan_d)(plnr,  | ||
|  | 			X(mkproblem_rdft_d)( | ||
|  | 			     X(tensor_copy_inplace)(sz1, INPLACE_OS), | ||
|  | 			     X(tensor_append)(vecszi, sz2i), | ||
|  | 			     p->O, p->O, p->kind)); | ||
|  |      if (!cld2) goto nada; | ||
|  | 
 | ||
|  |      pln = MKPLAN_RDFT(P, &padt, apply); | ||
|  | 
 | ||
|  |      pln->cld1 = cld1; | ||
|  |      pln->cld2 = cld2; | ||
|  | 
 | ||
|  |      pln->solver = ego; | ||
|  |      X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); | ||
|  | 
 | ||
|  |      X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | 
 | ||
|  |  nada: | ||
|  |      X(plan_destroy_internal)(cld2); | ||
|  |      X(plan_destroy_internal)(cld1); | ||
|  |      X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); | ||
|  |      return (plan *) 0; | ||
|  | } | ||
|  | 
 | ||
|  | static solver *mksolver(int spltrnk, const int *buddies, size_t nbuddies) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      slv->spltrnk = spltrnk; | ||
|  |      slv->buddies = buddies; | ||
|  |      slv->nbuddies = nbuddies; | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(rdft_rank_geq2_register)(planner *p) | ||
|  | { | ||
|  |      static const int buddies[] = { 1, 0, -2 }; | ||
|  |      size_t i; | ||
|  | 
 | ||
|  |      for (i = 0; i < NELEM(buddies); ++i) | ||
|  |           REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies))); | ||
|  | 
 | ||
|  |      /* FIXME: Should we try more buddies?  See also dft/rank-geq2. */ | ||
|  | } |