280 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			280 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:57 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 44 FP additions, 40 FP multiplications, | ||
|  |  * (or, 14 additions, 10 multiplications, 30 fused multiply/add), | ||
|  |  * 37 stack variables, 4 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { | ||
|  | 	       E T9, TB, Tz, Tm, TC, TO, TG, TJ, TA, TF; | ||
|  | 	       T9 = W[0]; | ||
|  | 	       TB = W[3]; | ||
|  | 	       Tz = W[2]; | ||
|  | 	       TA = T9 * Tz; | ||
|  | 	       TF = T9 * TB; | ||
|  | 	       Tm = W[1]; | ||
|  | 	       TC = FNMS(Tm, TB, TA); | ||
|  | 	       TO = FNMS(Tm, Tz, TF); | ||
|  | 	       TG = FMA(Tm, Tz, TF); | ||
|  | 	       TJ = FMA(Tm, TB, TA); | ||
|  | 	       { | ||
|  | 		    E T1, Tb, TQ, Tw, T8, Ta, Tn, Tj, TL, Ts, Tq, Tr; | ||
|  | 		    { | ||
|  | 			 E T4, Tu, T7, Tv; | ||
|  | 			 T1 = cr[0]; | ||
|  | 			 { | ||
|  | 			      E T2, T3, T5, T6; | ||
|  | 			      T2 = cr[WS(rs, 1)]; | ||
|  | 			      T3 = ci[0]; | ||
|  | 			      T4 = T2 + T3; | ||
|  | 			      Tu = T2 - T3; | ||
|  | 			      T5 = cr[WS(rs, 2)]; | ||
|  | 			      T6 = ci[WS(rs, 1)]; | ||
|  | 			      T7 = T5 + T6; | ||
|  | 			      Tv = T5 - T6; | ||
|  | 			 } | ||
|  | 			 Tb = T4 - T7; | ||
|  | 			 TQ = FNMS(KP618033988, Tu, Tv); | ||
|  | 			 Tw = FMA(KP618033988, Tv, Tu); | ||
|  | 			 T8 = T4 + T7; | ||
|  | 			 Ta = FNMS(KP250000000, T8, T1); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tf, To, Ti, Tp; | ||
|  | 			 Tn = ci[WS(rs, 4)]; | ||
|  | 			 { | ||
|  | 			      E Td, Te, Tg, Th; | ||
|  | 			      Td = ci[WS(rs, 3)]; | ||
|  | 			      Te = cr[WS(rs, 4)]; | ||
|  | 			      Tf = Td + Te; | ||
|  | 			      To = Td - Te; | ||
|  | 			      Tg = ci[WS(rs, 2)]; | ||
|  | 			      Th = cr[WS(rs, 3)]; | ||
|  | 			      Ti = Tg + Th; | ||
|  | 			      Tp = Tg - Th; | ||
|  | 			 } | ||
|  | 			 Tj = FMA(KP618033988, Ti, Tf); | ||
|  | 			 TL = FNMS(KP618033988, Tf, Ti); | ||
|  | 			 Ts = To - Tp; | ||
|  | 			 Tq = To + Tp; | ||
|  | 			 Tr = FNMS(KP250000000, Tq, Tn); | ||
|  | 		    } | ||
|  | 		    cr[0] = T1 + T8; | ||
|  | 		    ci[0] = Tn + Tq; | ||
|  | 		    { | ||
|  | 			 E Tk, TD, Tx, TH, Tc, Tt; | ||
|  | 			 Tc = FMA(KP559016994, Tb, Ta); | ||
|  | 			 Tk = FNMS(KP951056516, Tj, Tc); | ||
|  | 			 TD = FMA(KP951056516, Tj, Tc); | ||
|  | 			 Tt = FMA(KP559016994, Ts, Tr); | ||
|  | 			 Tx = FMA(KP951056516, Tw, Tt); | ||
|  | 			 TH = FNMS(KP951056516, Tw, Tt); | ||
|  | 			 { | ||
|  | 			      E Tl, Ty, TE, TI; | ||
|  | 			      Tl = T9 * Tk; | ||
|  | 			      cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl); | ||
|  | 			      Ty = Tm * Tk; | ||
|  | 			      ci[WS(rs, 1)] = FMA(T9, Tx, Ty); | ||
|  | 			      TE = TC * TD; | ||
|  | 			      cr[WS(rs, 4)] = FNMS(TG, TH, TE); | ||
|  | 			      TI = TG * TD; | ||
|  | 			      ci[WS(rs, 4)] = FMA(TC, TH, TI); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TM, TT, TR, TV, TK, TP; | ||
|  | 			 TK = FNMS(KP559016994, Tb, Ta); | ||
|  | 			 TM = FMA(KP951056516, TL, TK); | ||
|  | 			 TT = FNMS(KP951056516, TL, TK); | ||
|  | 			 TP = FNMS(KP559016994, Ts, Tr); | ||
|  | 			 TR = FNMS(KP951056516, TQ, TP); | ||
|  | 			 TV = FMA(KP951056516, TQ, TP); | ||
|  | 			 { | ||
|  | 			      E TN, TS, TU, TW; | ||
|  | 			      TN = TJ * TM; | ||
|  | 			      cr[WS(rs, 2)] = FNMS(TO, TR, TN); | ||
|  | 			      TS = TO * TM; | ||
|  | 			      ci[WS(rs, 2)] = FMA(TJ, TR, TS); | ||
|  | 			      TU = Tz * TT; | ||
|  | 			      cr[WS(rs, 3)] = FNMS(TB, TV, TU); | ||
|  | 			      TW = TB * TT; | ||
|  | 			      ci[WS(rs, 3)] = FMA(Tz, TV, TW); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_CEXP, 1, 1 }, | ||
|  |      { TW_CEXP, 1, 3 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 14, 10, 30, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb2_5) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb2_5, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 44 FP additions, 32 FP multiplications, | ||
|  |  * (or, 30 additions, 18 multiplications, 14 fused multiply/add), | ||
|  |  * 33 stack variables, 4 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { | ||
|  | 	       E Th, Tk, Ti, Tl, Tn, TP, Tx, TN; | ||
|  | 	       { | ||
|  | 		    E Tj, Tw, Tm, Tv; | ||
|  | 		    Th = W[0]; | ||
|  | 		    Tk = W[1]; | ||
|  | 		    Ti = W[2]; | ||
|  | 		    Tl = W[3]; | ||
|  | 		    Tj = Th * Ti; | ||
|  | 		    Tw = Tk * Ti; | ||
|  | 		    Tm = Tk * Tl; | ||
|  | 		    Tv = Th * Tl; | ||
|  | 		    Tn = Tj + Tm; | ||
|  | 		    TP = Tv + Tw; | ||
|  | 		    Tx = Tv - Tw; | ||
|  | 		    TN = Tj - Tm; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1, Tp, TK, TA, T8, To, T9, Tt, TI, TC, Tg, TB; | ||
|  | 		    { | ||
|  | 			 E T4, Ty, T7, Tz; | ||
|  | 			 T1 = cr[0]; | ||
|  | 			 { | ||
|  | 			      E T2, T3, T5, T6; | ||
|  | 			      T2 = cr[WS(rs, 1)]; | ||
|  | 			      T3 = ci[0]; | ||
|  | 			      T4 = T2 + T3; | ||
|  | 			      Ty = T2 - T3; | ||
|  | 			      T5 = cr[WS(rs, 2)]; | ||
|  | 			      T6 = ci[WS(rs, 1)]; | ||
|  | 			      T7 = T5 + T6; | ||
|  | 			      Tz = T5 - T6; | ||
|  | 			 } | ||
|  | 			 Tp = KP559016994 * (T4 - T7); | ||
|  | 			 TK = FMA(KP951056516, Ty, KP587785252 * Tz); | ||
|  | 			 TA = FNMS(KP951056516, Tz, KP587785252 * Ty); | ||
|  | 			 T8 = T4 + T7; | ||
|  | 			 To = FNMS(KP250000000, T8, T1); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tc, Tr, Tf, Ts; | ||
|  | 			 T9 = ci[WS(rs, 4)]; | ||
|  | 			 { | ||
|  | 			      E Ta, Tb, Td, Te; | ||
|  | 			      Ta = ci[WS(rs, 3)]; | ||
|  | 			      Tb = cr[WS(rs, 4)]; | ||
|  | 			      Tc = Ta - Tb; | ||
|  | 			      Tr = Ta + Tb; | ||
|  | 			      Td = ci[WS(rs, 2)]; | ||
|  | 			      Te = cr[WS(rs, 3)]; | ||
|  | 			      Tf = Td - Te; | ||
|  | 			      Ts = Td + Te; | ||
|  | 			 } | ||
|  | 			 Tt = FNMS(KP951056516, Ts, KP587785252 * Tr); | ||
|  | 			 TI = FMA(KP951056516, Tr, KP587785252 * Ts); | ||
|  | 			 TC = KP559016994 * (Tc - Tf); | ||
|  | 			 Tg = Tc + Tf; | ||
|  | 			 TB = FNMS(KP250000000, Tg, T9); | ||
|  | 		    } | ||
|  | 		    cr[0] = T1 + T8; | ||
|  | 		    ci[0] = T9 + Tg; | ||
|  | 		    { | ||
|  | 			 E Tu, TF, TE, TG, Tq, TD; | ||
|  | 			 Tq = To - Tp; | ||
|  | 			 Tu = Tq - Tt; | ||
|  | 			 TF = Tq + Tt; | ||
|  | 			 TD = TB - TC; | ||
|  | 			 TE = TA + TD; | ||
|  | 			 TG = TD - TA; | ||
|  | 			 cr[WS(rs, 2)] = FNMS(Tx, TE, Tn * Tu); | ||
|  | 			 ci[WS(rs, 2)] = FMA(Tn, TE, Tx * Tu); | ||
|  | 			 cr[WS(rs, 3)] = FNMS(Tl, TG, Ti * TF); | ||
|  | 			 ci[WS(rs, 3)] = FMA(Ti, TG, Tl * TF); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TJ, TO, TM, TQ, TH, TL; | ||
|  | 			 TH = Tp + To; | ||
|  | 			 TJ = TH - TI; | ||
|  | 			 TO = TH + TI; | ||
|  | 			 TL = TC + TB; | ||
|  | 			 TM = TK + TL; | ||
|  | 			 TQ = TL - TK; | ||
|  | 			 cr[WS(rs, 1)] = FNMS(Tk, TM, Th * TJ); | ||
|  | 			 ci[WS(rs, 1)] = FMA(Th, TM, Tk * TJ); | ||
|  | 			 cr[WS(rs, 4)] = FNMS(TP, TQ, TN * TO); | ||
|  | 			 ci[WS(rs, 4)] = FMA(TN, TQ, TP * TO); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_CEXP, 1, 1 }, | ||
|  |      { TW_CEXP, 1, 3 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 30, 18, 14, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb2_5) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb2_5, &desc); | ||
|  | } | ||
|  | #endif
 |