336 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			336 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * Double-precision support added by Romain Dolbeau. | ||
|  |  * Romain Dolbeau hereby places his modifications in the public domain. | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #if !defined(FFTW_SINGLE) && !defined( __aarch64__)
 | ||
|  | #error "NEON only works in single precision on 32 bits ARM"
 | ||
|  | #endif
 | ||
|  | #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
 | ||
|  | #error "NEON only works in single or double precision"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define DS(d,s) s /* single-precision option */
 | ||
|  | #  define SUFF(name) name ## _f32
 | ||
|  | #else
 | ||
|  | #  define DS(d,s) d /* double-precision option */
 | ||
|  | #  define SUFF(name) name ## _f64
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* define these unconditionally, because they are used by
 | ||
|  |    taint.c which is compiled without neon */ | ||
|  | #define SIMD_SUFFIX _neon	/* for renaming */
 | ||
|  | #define VL DS(1,2)            /* SIMD complex vector length */
 | ||
|  | #define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
 | ||
|  | #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
 | ||
|  | 
 | ||
|  | #if defined(__GNUC__) && !defined(__ARM_NEON__) && !defined(__ARM_NEON)
 | ||
|  | #error "compiling simd-neon.h requires -mfpu=neon or equivalent"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <arm_neon.h>
 | ||
|  | 
 | ||
|  | /* FIXME: I am not sure whether this code assumes little-endian
 | ||
|  |    ordering.  VLIT may or may not be wrong for big-endian systems. */ | ||
|  | typedef DS(float64x2_t, float32x4_t) V; | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define VLIT(x0, x1) {x0, x1, x0, x1}
 | ||
|  | #else
 | ||
|  | #  define VLIT(x0, x1) {x0, x1}
 | ||
|  | #endif
 | ||
|  | #define LDK(x) x
 | ||
|  | #define DVK(var, val) const V var = VLIT(val, val)
 | ||
|  | 
 | ||
|  | /* NEON has FMA, but a three-operand FMA is not too useful
 | ||
|  |    for FFT purposes.  We normally compute | ||
|  | 
 | ||
|  |       t0=a+b*c | ||
|  |       t1=a-b*c | ||
|  | 
 | ||
|  |    In a three-operand instruction set this translates into | ||
|  | 
 | ||
|  |       t0=a | ||
|  |       t0+=b*c | ||
|  |       t1=a | ||
|  |       t1-=b*c | ||
|  | 
 | ||
|  |    At least one move must be implemented, negating the advantage of | ||
|  |    the FMA in the first place.  At least some versions of gcc generate | ||
|  |    both moves.  So we are better off generating t=b*c;t0=a+t;t1=a-t;*/ | ||
|  | #if ARCH_PREFERS_FMA
 | ||
|  | #warning "--enable-fma on NEON is probably a bad idea (see source code)"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define VADD(a, b) SUFF(vaddq)(a, b)
 | ||
|  | #define VSUB(a, b) SUFF(vsubq)(a, b)
 | ||
|  | #define VMUL(a, b) SUFF(vmulq)(a, b)
 | ||
|  | #define VFMA(a, b, c) SUFF(vmlaq)(c, a, b)	        /* a*b+c */
 | ||
|  | #define VFNMS(a, b, c) SUFF(vmlsq)(c, a, b)	/* FNMS=-(a*b-c) in powerpc terminology; MLS=c-a*b
 | ||
|  | 						   in ARM terminology */ | ||
|  | #define VFMS(a, b, c) VSUB(VMUL(a, b), c)	/* FMS=a*b-c in powerpc terminology; no equivalent
 | ||
|  | 						   arm instruction (?) */ | ||
|  | 
 | ||
|  | #define STOREH(a, v) SUFF(vst1)((a), SUFF(vget_high)(v))
 | ||
|  | #define STOREL(a, v) SUFF(vst1)((a), SUFF(vget_low)(v))
 | ||
|  | 
 | ||
|  | static inline V LDA(const R *x, INT ivs, const R *aligned_like) | ||
|  | { | ||
|  |      (void) aligned_like;	/* UNUSED */ | ||
|  |      return SUFF(vld1q)(x); | ||
|  | } | ||
|  | static inline void STA(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  |      (void) aligned_like;	/* UNUSED */ | ||
|  |      SUFF(vst1q)(x, v); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | static inline V LD(const R *x, INT ivs, const R *aligned_like) | ||
|  | { | ||
|  |      (void) aligned_like;	/* UNUSED */ | ||
|  |      return SUFF(vcombine)(SUFF(vld1)(x), SUFF(vld1)((x + ivs))); | ||
|  | } | ||
|  | static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  |      (void) aligned_like;	/* UNUSED */ | ||
|  |      /* WARNING: the extra_iter hack depends upon store-low occurring
 | ||
|  | 	after store-high */ | ||
|  |      STOREH(x + ovs, v); | ||
|  |      STOREL(x,v); | ||
|  | } | ||
|  | #else /* !FFTW_SINGLE */
 | ||
|  | #  define LD LDA
 | ||
|  | #  define ST STA
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* 2x2 complex transpose and store */ | ||
|  | #define STM2 DS(STA,ST)
 | ||
|  | #define STN2(x, v0, v1, ovs) /* nop */
 | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | /* store and 4x4 real transpose */ | ||
|  | static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  |      (void) aligned_like;	/* UNUSED */ | ||
|  |      SUFF(vst1_lane)((x)      , SUFF(vget_low)(v), 0); | ||
|  |      SUFF(vst1_lane)((x + ovs), SUFF(vget_low)(v), 1); | ||
|  |      SUFF(vst1_lane)((x + 2 * ovs), SUFF(vget_high)(v), 0); | ||
|  |      SUFF(vst1_lane)((x + 3 * ovs), SUFF(vget_high)(v), 1); | ||
|  | } | ||
|  | #define STN4(x, v0, v1, v2, v3, ovs)	/* use STM4 */
 | ||
|  | #else /* !FFTW_SINGLE */
 | ||
|  | static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  |      (void)aligned_like; /* UNUSED */ | ||
|  |      STOREL(x, v); | ||
|  |      STOREH(x + ovs, v); | ||
|  | } | ||
|  | #  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #define FLIP_RI(x) SUFF(vrev64q)(x)
 | ||
|  | #else
 | ||
|  | /* FIXME */ | ||
|  | #define FLIP_RI(x) SUFF(vcombine)(SUFF(vget_high)(x), SUFF(vget_low)(x))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static inline V VCONJ(V x) | ||
|  | { | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  |      static const uint32x4_t pm = {0, 0x80000000u, 0, 0x80000000u}; | ||
|  |      return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(x), pm)); | ||
|  | #else
 | ||
|  |     static const uint64x2_t pm = {0, 0x8000000000000000ull}; | ||
|  |     /* Gcc-4.9.2 still does not include vreinterpretq_f64_u64, but simple
 | ||
|  |      * casts generate the correct assembly. | ||
|  |      */ | ||
|  |     return (float64x2_t)(veorq_u64((uint64x2_t)(x), (uint64x2_t)(pm))); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VBYI(V x) | ||
|  | { | ||
|  |      return FLIP_RI(VCONJ(x)); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VFMAI(V b, V c) | ||
|  | { | ||
|  |      const V mp = VLIT(-1.0, 1.0); | ||
|  |      return VFMA(FLIP_RI(b), mp, c); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VFNMSI(V b, V c) | ||
|  | { | ||
|  |      const V mp = VLIT(-1.0, 1.0); | ||
|  |      return VFNMS(FLIP_RI(b), mp, c); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VFMACONJ(V b, V c) | ||
|  | { | ||
|  |      const V pm = VLIT(1.0, -1.0); | ||
|  |      return VFMA(b, pm, c); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VFNMSCONJ(V b, V c) | ||
|  | { | ||
|  |      const V pm = VLIT(1.0, -1.0); | ||
|  |      return VFNMS(b, pm, c); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VFMSCONJ(V b, V c) | ||
|  | { | ||
|  |      return VSUB(VCONJ(b), c); | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #if 1
 | ||
|  | #define VEXTRACT_REIM(tr, ti, tx)                               \
 | ||
|  | {                                                               \ | ||
|  |      tr = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 0),      \ | ||
|  |                        SUFF(vdup_lane)(SUFF(vget_high)(tx), 0));    \ | ||
|  |      ti = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 1),      \ | ||
|  |                        SUFF(vdup_lane)(SUFF(vget_high)(tx), 1));    \ | ||
|  | } | ||
|  | #else
 | ||
|  | /* this alternative might be faster in an ideal world, but gcc likes
 | ||
|  |    to spill VVV onto the stack */ | ||
|  | #define VEXTRACT_REIM(tr, ti, tx)               \
 | ||
|  | {                                               \ | ||
|  |      float32x4x2_t vvv = SUFF(vtrnq)(tx, tx);     \ | ||
|  |      tr = vvv.val[0];                           \ | ||
|  |      ti = vvv.val[1];                           \ | ||
|  | } | ||
|  | #endif
 | ||
|  | #else
 | ||
|  | #define VEXTRACT_REIM(tr, ti, tx)                               \
 | ||
|  | {                                                               \ | ||
|  |   tr = SUFF(vtrn1q)(tx, tx);                                    \ | ||
|  |   ti = SUFF(vtrn2q)(tx, tx);                                    \ | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static inline V VZMUL(V tx, V sr) | ||
|  | { | ||
|  |      V tr, ti; | ||
|  |      VEXTRACT_REIM(tr, ti, tx); | ||
|  |      tr = VMUL(sr, tr); | ||
|  |      sr = VBYI(sr); | ||
|  |      return VFMA(ti, sr, tr); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VZMULJ(V tx, V sr) | ||
|  | { | ||
|  |      V tr, ti; | ||
|  |      VEXTRACT_REIM(tr, ti, tx); | ||
|  |      tr = VMUL(sr, tr); | ||
|  |      sr = VBYI(sr); | ||
|  |      return VFNMS(ti, sr, tr); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VZMULI(V tx, V sr) | ||
|  | { | ||
|  |      V tr, ti; | ||
|  |      VEXTRACT_REIM(tr, ti, tx); | ||
|  |      ti = VMUL(ti, sr); | ||
|  |      sr = VBYI(sr); | ||
|  |      return VFMS(tr, sr, ti); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VZMULIJ(V tx, V sr) | ||
|  | { | ||
|  |      V tr, ti; | ||
|  |      VEXTRACT_REIM(tr, ti, tx); | ||
|  |      ti = VMUL(ti, sr); | ||
|  |      sr = VBYI(sr); | ||
|  |      return VFMA(tr, sr, ti); | ||
|  | } | ||
|  | 
 | ||
|  | /* twiddle storage #1: compact, slower */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
 | ||
|  | #else
 | ||
|  | #define VTW1(v,x) {TW_CEXP, v, x}
 | ||
|  | #endif
 | ||
|  | #define TWVL1 VL
 | ||
|  | static inline V BYTW1(const R *t, V sr) | ||
|  | { | ||
|  |      V tx = LDA(t, 2, 0); | ||
|  |      return VZMUL(tx, sr); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V BYTWJ1(const R *t, V sr) | ||
|  | { | ||
|  |      V tx = LDA(t, 2, 0); | ||
|  |      return VZMULJ(tx, sr); | ||
|  | } | ||
|  | 
 | ||
|  | /* twiddle storage #2: twice the space, faster (when in cache) */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define VTW2(v,x)							\
 | ||
|  |   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\ | ||
|  |   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} | ||
|  | #else
 | ||
|  | #  define VTW2(v,x)							\
 | ||
|  |   {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} | ||
|  | #endif
 | ||
|  | #define TWVL2 (2 * VL)
 | ||
|  | 
 | ||
|  | static inline V BYTW2(const R *t, V sr) | ||
|  | { | ||
|  |      V si = FLIP_RI(sr); | ||
|  |      V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0); | ||
|  |      return VFMA(ti, si, VMUL(tr, sr)); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V BYTWJ2(const R *t, V sr) | ||
|  | { | ||
|  |      V si = FLIP_RI(sr); | ||
|  |      V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0); | ||
|  |      return VFNMS(ti, si, VMUL(tr, sr)); | ||
|  | } | ||
|  | 
 | ||
|  | /* twiddle storage #3 */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
 | ||
|  | #else
 | ||
|  | #  define VTW3(v,x) {TW_CEXP, v, x}
 | ||
|  | #endif
 | ||
|  | #  define TWVL3 (VL)
 | ||
|  | 
 | ||
|  | /* twiddle storage for split arrays */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define VTWS(v,x)							  \
 | ||
|  |     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | ||
|  |     {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} | ||
|  | #else
 | ||
|  | #  define VTWS(v,x)							  \
 | ||
|  |     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} | ||
|  | #endif
 | ||
|  | #define TWVLS (2 * VL)
 | ||
|  | 
 | ||
|  | #define VLEAVE()		/* nothing */
 | ||
|  | 
 | ||
|  | #include "simd-common.h"
 |