297 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			297 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:28 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fuv_9 -include dft/simd/t1fu.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 54 FP additions, 54 FP multiplications, | ||
|  |  * (or, 20 additions, 20 multiplications, 34 fused multiply/add), | ||
|  |  * 50 stack variables, 19 constants, and 18 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t1fu.h"
 | ||
|  | 
 | ||
|  | static void t1fuv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | ||
|  |      DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | ||
|  |      DVK(KP666666666, +0.666666666666666666666666666666666666666666667); | ||
|  |      DVK(KP879385241, +0.879385241571816768108218554649462939872416269); | ||
|  |      DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DVK(KP898197570, +0.898197570222573798468955502359086394667167570); | ||
|  |      DVK(KP673648177, +0.673648177666930348851716626769314796000375677); | ||
|  |      DVK(KP826351822, +0.826351822333069651148283373230685203999624323); | ||
|  |      DVK(KP420276625, +0.420276625461206169731530603237061658838781920); | ||
|  |      DVK(KP907603734, +0.907603734547952313649323976213898122064543220); | ||
|  |      DVK(KP347296355, +0.347296355333860697703433253538629592000751354); | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP203604859, +0.203604859554852403062088995281827210665664861); | ||
|  |      DVK(KP726681596, +0.726681596905677465811651808188092531873167623); | ||
|  |      DVK(KP152703644, +0.152703644666139302296566746461370407999248646); | ||
|  |      DVK(KP968908795, +0.968908795874236621082202410917456709164223497); | ||
|  |      DVK(KP439692620, +0.439692620785908384054109277324731469936208134); | ||
|  |      DVK(KP586256827, +0.586256827714544512072145703099641959914944179); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { | ||
|  | 	       V T1, T6, TD, Tf, Tn, Ts, Tv, Tt, Tu, Tw, TA, TK, TJ, TG, TF; | ||
|  | 	       T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 	       { | ||
|  | 		    V T3, T5, T2, T4; | ||
|  | 		    T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    T3 = BYTWJ(&(W[TWVL * 4]), T2); | ||
|  | 		    T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 		    T5 = BYTWJ(&(W[TWVL * 10]), T4); | ||
|  | 		    T6 = VADD(T3, T5); | ||
|  | 		    TD = VSUB(T5, T3); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T9, Th, Tb, Td, Te, Tj, Tl, Tm, T8, Tg; | ||
|  | 		    T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    T9 = BYTWJ(&(W[0]), T8); | ||
|  | 		    Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 		    Th = BYTWJ(&(W[TWVL * 2]), Tg); | ||
|  | 		    { | ||
|  | 			 V Ta, Tc, Ti, Tk; | ||
|  | 			 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 			 Tb = BYTWJ(&(W[TWVL * 6]), Ta); | ||
|  | 			 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Td = BYTWJ(&(W[TWVL * 12]), Tc); | ||
|  | 			 Te = VADD(Tb, Td); | ||
|  | 			 Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tj = BYTWJ(&(W[TWVL * 8]), Ti); | ||
|  | 			 Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | ||
|  | 			 Tl = BYTWJ(&(W[TWVL * 14]), Tk); | ||
|  | 			 Tm = VADD(Tj, Tl); | ||
|  | 		    } | ||
|  | 		    Tf = VADD(T9, Te); | ||
|  | 		    Tn = VADD(Th, Tm); | ||
|  | 		    Ts = VFNMS(LDK(KP500000000), Tm, Th); | ||
|  | 		    Tv = VFNMS(LDK(KP500000000), Te, T9); | ||
|  | 		    Tt = VSUB(Tb, Td); | ||
|  | 		    Tu = VSUB(Tl, Tj); | ||
|  | 		    Tw = VFNMS(LDK(KP586256827), Tv, Tu); | ||
|  | 		    TA = VFNMS(LDK(KP439692620), Tt, Ts); | ||
|  | 		    TK = VFMA(LDK(KP968908795), Tv, Tt); | ||
|  | 		    TJ = VFNMS(LDK(KP152703644), Tu, Ts); | ||
|  | 		    TG = VFNMS(LDK(KP726681596), Tt, Tv); | ||
|  | 		    TF = VFMA(LDK(KP203604859), Ts, Tu); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tq, T7, To, Tp; | ||
|  | 		    Tq = VMUL(LDK(KP866025403), VSUB(Tn, Tf)); | ||
|  | 		    T7 = VADD(T1, T6); | ||
|  | 		    To = VADD(Tf, Tn); | ||
|  | 		    Tp = VFNMS(LDK(KP500000000), To, T7); | ||
|  | 		    ST(&(x[0]), VADD(T7, To), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 3)]), VFMAI(Tq, Tp), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 6)]), VFNMSI(Tq, Tp), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Ty, TC, TM, TR, Tr, TI, TO, Tx, TB; | ||
|  | 		    Tx = VFNMS(LDK(KP347296355), Tw, Tt); | ||
|  | 		    Ty = VFNMS(LDK(KP907603734), Tx, Ts); | ||
|  | 		    TB = VFNMS(LDK(KP420276625), TA, Tu); | ||
|  | 		    TC = VFNMS(LDK(KP826351822), TB, Tv); | ||
|  | 		    { | ||
|  | 			 V TL, TQ, TN, TH; | ||
|  | 			 TL = VFMA(LDK(KP673648177), TK, TJ); | ||
|  | 			 TQ = VFNMS(LDK(KP898197570), TG, TF); | ||
|  | 			 TM = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), TD, TL)); | ||
|  | 			 TR = VFMA(LDK(KP666666666), TL, TQ); | ||
|  | 			 Tr = VFNMS(LDK(KP500000000), T6, T1); | ||
|  | 			 TN = VFNMS(LDK(KP673648177), TK, TJ); | ||
|  | 			 TH = VFMA(LDK(KP898197570), TG, TF); | ||
|  | 			 TI = VFMA(LDK(KP852868531), TH, Tr); | ||
|  | 			 TO = VFNMS(LDK(KP500000000), TH, TN); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 1)]), VFNMSI(TM, TI), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 8)]), VFMAI(TM, TI), ms, &(x[0])); | ||
|  | 		    { | ||
|  | 			 V Tz, TE, TP, TS; | ||
|  | 			 Tz = VFNMS(LDK(KP939692620), Ty, Tr); | ||
|  | 			 TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), TD, TC)); | ||
|  | 			 ST(&(x[WS(rs, 2)]), VFNMSI(TE, Tz), ms, &(x[0])); | ||
|  | 			 ST(&(x[WS(rs, 7)]), VFMAI(TE, Tz), ms, &(x[WS(rs, 1)])); | ||
|  | 			 TP = VFMA(LDK(KP852868531), TO, Tr); | ||
|  | 			 TS = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TR, TD)); | ||
|  | 			 ST(&(x[WS(rs, 5)]), VFNMSI(TS, TP), ms, &(x[WS(rs, 1)])); | ||
|  | 			 ST(&(x[WS(rs, 4)]), VFMAI(TS, TP), ms, &(x[0])); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 4), | ||
|  |      VTW(0, 5), | ||
|  |      VTW(0, 6), | ||
|  |      VTW(0, 7), | ||
|  |      VTW(0, 8), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 9, XSIMD_STRING("t1fuv_9"), twinstr, &GENUS, { 20, 20, 34, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t1fuv_9) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1fuv_9, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fuv_9 -include dft/simd/t1fu.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 54 FP additions, 42 FP multiplications, | ||
|  |  * (or, 38 additions, 26 multiplications, 16 fused multiply/add), | ||
|  |  * 38 stack variables, 14 constants, and 18 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t1fu.h"
 | ||
|  | 
 | ||
|  | static void t1fuv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | ||
|  |      DVK(KP296198132, +0.296198132726023843175338011893050938967728390); | ||
|  |      DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | ||
|  |      DVK(KP173648177, +0.173648177666930348851716626769314796000375677); | ||
|  |      DVK(KP556670399, +0.556670399226419366452912952047023132968291906); | ||
|  |      DVK(KP766044443, +0.766044443118978035202392650555416673935832457); | ||
|  |      DVK(KP642787609, +0.642787609686539326322643409907263432907559884); | ||
|  |      DVK(KP663413948, +0.663413948168938396205421319635891297216863310); | ||
|  |      DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DVK(KP150383733, +0.150383733180435296639271897612501926072238258); | ||
|  |      DVK(KP342020143, +0.342020143325668733044099614682259580763083368); | ||
|  |      DVK(KP813797681, +0.813797681349373692844693217248393223289101568); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { | ||
|  | 	       V T1, T6, TA, Tt, Tf, Ts, Tw, Tn, Tv; | ||
|  | 	       T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 	       { | ||
|  | 		    V T3, T5, T2, T4; | ||
|  | 		    T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    T3 = BYTWJ(&(W[TWVL * 4]), T2); | ||
|  | 		    T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 		    T5 = BYTWJ(&(W[TWVL * 10]), T4); | ||
|  | 		    T6 = VADD(T3, T5); | ||
|  | 		    TA = VMUL(LDK(KP866025403), VSUB(T5, T3)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T9, Td, Tb, T8, Tc, Ta, Te; | ||
|  | 		    T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    T9 = BYTWJ(&(W[0]), T8); | ||
|  | 		    Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Td = BYTWJ(&(W[TWVL * 12]), Tc); | ||
|  | 		    Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 		    Tb = BYTWJ(&(W[TWVL * 6]), Ta); | ||
|  | 		    Tt = VSUB(Td, Tb); | ||
|  | 		    Te = VADD(Tb, Td); | ||
|  | 		    Tf = VADD(T9, Te); | ||
|  | 		    Ts = VFNMS(LDK(KP500000000), Te, T9); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Th, Tl, Tj, Tg, Tk, Ti, Tm; | ||
|  | 		    Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 		    Th = BYTWJ(&(W[TWVL * 2]), Tg); | ||
|  | 		    Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | ||
|  | 		    Tl = BYTWJ(&(W[TWVL * 14]), Tk); | ||
|  | 		    Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tj = BYTWJ(&(W[TWVL * 8]), Ti); | ||
|  | 		    Tw = VSUB(Tl, Tj); | ||
|  | 		    Tm = VADD(Tj, Tl); | ||
|  | 		    Tn = VADD(Th, Tm); | ||
|  | 		    Tv = VFNMS(LDK(KP500000000), Tm, Th); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tq, T7, To, Tp; | ||
|  | 		    Tq = VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Tf))); | ||
|  | 		    T7 = VADD(T1, T6); | ||
|  | 		    To = VADD(Tf, Tn); | ||
|  | 		    Tp = VFNMS(LDK(KP500000000), To, T7); | ||
|  | 		    ST(&(x[0]), VADD(T7, To), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 3)]), VADD(Tp, Tq), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 6)]), VSUB(Tp, Tq), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TI, TB, TC, TD, Tu, Tx, Ty, Tr, TH; | ||
|  | 		    TI = VBYI(VSUB(VFNMS(LDK(KP342020143), Tv, VFNMS(LDK(KP150383733), Tt, VFNMS(LDK(KP984807753), Ts, VMUL(LDK(KP813797681), Tw)))), TA)); | ||
|  | 		    TB = VFNMS(LDK(KP642787609), Ts, VMUL(LDK(KP663413948), Tt)); | ||
|  | 		    TC = VFNMS(LDK(KP984807753), Tv, VMUL(LDK(KP150383733), Tw)); | ||
|  | 		    TD = VADD(TB, TC); | ||
|  | 		    Tu = VFMA(LDK(KP766044443), Ts, VMUL(LDK(KP556670399), Tt)); | ||
|  | 		    Tx = VFMA(LDK(KP173648177), Tv, VMUL(LDK(KP852868531), Tw)); | ||
|  | 		    Ty = VADD(Tu, Tx); | ||
|  | 		    Tr = VFNMS(LDK(KP500000000), T6, T1); | ||
|  | 		    TH = VFMA(LDK(KP173648177), Ts, VFNMS(LDK(KP296198132), Tw, VFNMS(LDK(KP939692620), Tv, VFNMS(LDK(KP852868531), Tt, Tr)))); | ||
|  | 		    ST(&(x[WS(rs, 7)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 2)]), VADD(TH, TI), ms, &(x[0])); | ||
|  | 		    { | ||
|  | 			 V Tz, TE, TF, TG; | ||
|  | 			 Tz = VADD(Tr, Ty); | ||
|  | 			 TE = VBYI(VADD(TA, TD)); | ||
|  | 			 ST(&(x[WS(rs, 8)]), VSUB(Tz, TE), ms, &(x[0])); | ||
|  | 			 ST(&(x[WS(rs, 1)]), VADD(TE, Tz), ms, &(x[WS(rs, 1)])); | ||
|  | 			 TF = VFMA(LDK(KP866025403), VSUB(TB, TC), VFNMS(LDK(KP500000000), Ty, Tr)); | ||
|  | 			 TG = VBYI(VADD(TA, VFNMS(LDK(KP500000000), TD, VMUL(LDK(KP866025403), VSUB(Tx, Tu))))); | ||
|  | 			 ST(&(x[WS(rs, 5)]), VSUB(TF, TG), ms, &(x[WS(rs, 1)])); | ||
|  | 			 ST(&(x[WS(rs, 4)]), VADD(TF, TG), ms, &(x[0])); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 4), | ||
|  |      VTW(0, 5), | ||
|  |      VTW(0, 6), | ||
|  |      VTW(0, 7), | ||
|  |      VTW(0, 8), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 9, XSIMD_STRING("t1fuv_9"), twinstr, &GENUS, { 38, 26, 16, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t1fuv_9) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1fuv_9, &desc); | ||
|  | } | ||
|  | #endif
 |