647 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			647 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:37 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 142 FP additions, 92 FP multiplications, | ||
|  |  * (or, 96 additions, 46 multiplications, 46 fused multiply/add), | ||
|  |  * 65 stack variables, 2 constants, and 48 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cf.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { | ||
|  | 	       E To, T1E, T1m, T2H, Ta, T1G, Tk, T1I, Tl, T1J, T1s, T2b, T1A, T2d, T1B; | ||
|  | 	       E T2I, T12, T18, T19, T24, T26, T2C, Tz, T1M, T1f, T2B, TJ, T1O, TT, T1Q; | ||
|  | 	       E TU, T1R; | ||
|  | 	       { | ||
|  | 		    E Tm, Tn, T1u, T1x, T1y, T1z, T1v, T2c, Te, Tj, T1i, T1l, Tf, T1H, T4; | ||
|  | 		    E T1o, T9, T1r, T5, T1F, T1p, T2a, T1t, T1, T1n; | ||
|  | 		    Tm = Ip[0]; | ||
|  | 		    Tn = Im[0]; | ||
|  | 		    T1u = Tm + Tn; | ||
|  | 		    T1x = Rp[0]; | ||
|  | 		    T1y = Rm[0]; | ||
|  | 		    T1z = T1x - T1y; | ||
|  | 		    T1t = W[0]; | ||
|  | 		    T1v = T1t * T1u; | ||
|  | 		    T2c = T1t * T1z; | ||
|  | 		    { | ||
|  | 			 E Tc, Td, Th, Ti, Tb; | ||
|  | 			 Tc = Ip[WS(rs, 4)]; | ||
|  | 			 Td = Im[WS(rs, 4)]; | ||
|  | 			 Te = Tc - Td; | ||
|  | 			 Th = Rp[WS(rs, 4)]; | ||
|  | 			 Ti = Rm[WS(rs, 4)]; | ||
|  | 			 Tj = Th + Ti; | ||
|  | 			 T1i = Tc + Td; | ||
|  | 			 T1l = Th - Ti; | ||
|  | 			 Tb = W[14]; | ||
|  | 			 Tf = Tb * Te; | ||
|  | 			 T1H = Tb * Tj; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2, T3, T7, T8; | ||
|  | 			 T2 = Ip[WS(rs, 2)]; | ||
|  | 			 T3 = Im[WS(rs, 2)]; | ||
|  | 			 T4 = T2 - T3; | ||
|  | 			 T1o = T2 + T3; | ||
|  | 			 T7 = Rp[WS(rs, 2)]; | ||
|  | 			 T8 = Rm[WS(rs, 2)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 T1r = T7 - T8; | ||
|  | 		    } | ||
|  | 		    T1 = W[6]; | ||
|  | 		    T5 = T1 * T4; | ||
|  | 		    T1F = T1 * T9; | ||
|  | 		    T1n = W[8]; | ||
|  | 		    T1p = T1n * T1o; | ||
|  | 		    T2a = T1n * T1r; | ||
|  | 		    To = Tm - Tn; | ||
|  | 		    T1E = T1x + T1y; | ||
|  | 		    { | ||
|  | 			 E T1j, T2G, T1h, T1k; | ||
|  | 			 T1h = W[16]; | ||
|  | 			 T1j = T1h * T1i; | ||
|  | 			 T2G = T1h * T1l; | ||
|  | 			 T1k = W[17]; | ||
|  | 			 T1m = FNMS(T1k, T1l, T1j); | ||
|  | 			 T2H = FMA(T1k, T1i, T2G); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6, Tg, T1q, T1w; | ||
|  | 			 T6 = W[7]; | ||
|  | 			 Ta = FNMS(T6, T9, T5); | ||
|  | 			 T1G = FMA(T6, T4, T1F); | ||
|  | 			 Tg = W[15]; | ||
|  | 			 Tk = FNMS(Tg, Tj, Tf); | ||
|  | 			 T1I = FMA(Tg, Te, T1H); | ||
|  | 			 Tl = Ta + Tk; | ||
|  | 			 T1J = T1G + T1I; | ||
|  | 			 T1q = W[9]; | ||
|  | 			 T1s = FNMS(T1q, T1r, T1p); | ||
|  | 			 T2b = FMA(T1q, T1o, T2a); | ||
|  | 			 T1w = W[1]; | ||
|  | 			 T1A = FNMS(T1w, T1z, T1v); | ||
|  | 			 T2d = FMA(T1w, T1u, T2c); | ||
|  | 			 T1B = T1s + T1A; | ||
|  | 			 T2I = T2b + T2d; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, T11, Ty, T10, T23, TX, TZ, TN, TS, T1b, T1e, TO, T1P, TD, TI; | ||
|  | 		    E T17, T16, T25, T13, T15, TE, T1N, TF, TP; | ||
|  | 		    { | ||
|  | 			 E Tr, Ts, Tw, Tx, TY; | ||
|  | 			 Tr = Ip[WS(rs, 3)]; | ||
|  | 			 Ts = Im[WS(rs, 3)]; | ||
|  | 			 Tt = Tr - Ts; | ||
|  | 			 T11 = Tr + Ts; | ||
|  | 			 Tw = Rp[WS(rs, 3)]; | ||
|  | 			 Tx = Rm[WS(rs, 3)]; | ||
|  | 			 TY = Tx - Tw; | ||
|  | 			 Ty = Tw + Tx; | ||
|  | 			 T10 = W[12]; | ||
|  | 			 T23 = T10 * TY; | ||
|  | 			 TX = W[13]; | ||
|  | 			 TZ = TX * TY; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TL, TM, TQ, TR, TK; | ||
|  | 			 TL = Ip[WS(rs, 1)]; | ||
|  | 			 TM = Im[WS(rs, 1)]; | ||
|  | 			 TN = TL - TM; | ||
|  | 			 TQ = Rp[WS(rs, 1)]; | ||
|  | 			 TR = Rm[WS(rs, 1)]; | ||
|  | 			 TS = TQ + TR; | ||
|  | 			 T1b = TL + TM; | ||
|  | 			 T1e = TQ - TR; | ||
|  | 			 TK = W[2]; | ||
|  | 			 TO = TK * TN; | ||
|  | 			 T1P = TK * TS; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TB, TC, T14, TG, TH, TA; | ||
|  | 			 TB = Ip[WS(rs, 5)]; | ||
|  | 			 TC = Im[WS(rs, 5)]; | ||
|  | 			 TD = TB - TC; | ||
|  | 			 TG = Rp[WS(rs, 5)]; | ||
|  | 			 TH = Rm[WS(rs, 5)]; | ||
|  | 			 TI = TG + TH; | ||
|  | 			 T14 = TH - TG; | ||
|  | 			 T17 = TB + TC; | ||
|  | 			 T16 = W[20]; | ||
|  | 			 T25 = T16 * T14; | ||
|  | 			 T13 = W[21]; | ||
|  | 			 T15 = T13 * T14; | ||
|  | 			 TA = W[18]; | ||
|  | 			 TE = TA * TD; | ||
|  | 			 T1N = TA * TI; | ||
|  | 		    } | ||
|  | 		    T12 = FMA(T10, T11, TZ); | ||
|  | 		    T18 = FMA(T16, T17, T15); | ||
|  | 		    T19 = T12 + T18; | ||
|  | 		    T24 = FNMS(TX, T11, T23); | ||
|  | 		    T26 = FNMS(T13, T17, T25); | ||
|  | 		    T2C = T24 + T26; | ||
|  | 		    { | ||
|  | 			 E Tu, T1L, Tq, Tv; | ||
|  | 			 Tq = W[10]; | ||
|  | 			 Tu = Tq * Tt; | ||
|  | 			 T1L = Tq * Ty; | ||
|  | 			 Tv = W[11]; | ||
|  | 			 Tz = FNMS(Tv, Ty, Tu); | ||
|  | 			 T1M = FMA(Tv, Tt, T1L); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1c, T2A, T1a, T1d; | ||
|  | 			 T1a = W[4]; | ||
|  | 			 T1c = T1a * T1b; | ||
|  | 			 T2A = T1a * T1e; | ||
|  | 			 T1d = W[5]; | ||
|  | 			 T1f = FNMS(T1d, T1e, T1c); | ||
|  | 			 T2B = FMA(T1d, T1b, T2A); | ||
|  | 		    } | ||
|  | 		    TF = W[19]; | ||
|  | 		    TJ = FNMS(TF, TI, TE); | ||
|  | 		    T1O = FMA(TF, TD, T1N); | ||
|  | 		    TP = W[3]; | ||
|  | 		    TT = FNMS(TP, TS, TO); | ||
|  | 		    T1Q = FMA(TP, TN, T1P); | ||
|  | 		    TU = TJ + TT; | ||
|  | 		    T1R = T1O + T1Q; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TW, T2V, T2Y, T30, T1D, T1U, T1T, T2Z; | ||
|  | 		    { | ||
|  | 			 E Tp, TV, T2W, T2X; | ||
|  | 			 Tp = Tl + To; | ||
|  | 			 TV = Tz + TU; | ||
|  | 			 TW = Tp - TV; | ||
|  | 			 T2V = TV + Tp; | ||
|  | 			 T2W = T2C - T2B; | ||
|  | 			 T2X = T2H + T2I; | ||
|  | 			 T2Y = T2W - T2X; | ||
|  | 			 T30 = T2W + T2X; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1g, T1C, T1K, T1S; | ||
|  | 			 T1g = T19 + T1f; | ||
|  | 			 T1C = T1m + T1B; | ||
|  | 			 T1D = T1g - T1C; | ||
|  | 			 T1U = T1g + T1C; | ||
|  | 			 T1K = T1E + T1J; | ||
|  | 			 T1S = T1M + T1R; | ||
|  | 			 T1T = T1K + T1S; | ||
|  | 			 T2Z = T1K - T1S; | ||
|  | 		    } | ||
|  | 		    Ip[WS(rs, 3)] = KP500000000 * (TW + T1D); | ||
|  | 		    Rp[WS(rs, 3)] = KP500000000 * (T2Z - T30); | ||
|  | 		    Im[WS(rs, 2)] = KP500000000 * (T1D - TW); | ||
|  | 		    Rm[WS(rs, 2)] = KP500000000 * (T2Z + T30); | ||
|  | 		    Rm[WS(rs, 5)] = KP500000000 * (T1T - T1U); | ||
|  | 		    Im[WS(rs, 5)] = KP500000000 * (T2Y - T2V); | ||
|  | 		    Rp[0] = KP500000000 * (T1T + T1U); | ||
|  | 		    Ip[0] = KP500000000 * (T2V + T2Y); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1X, T2v, T2F, T2Q, T2L, T2R, T20, T2w, T28, T2t, T2j, T2p, T2m, T2q, T2f; | ||
|  | 		    E T2s; | ||
|  | 		    { | ||
|  | 			 E T1V, T1W, T2D, T2E; | ||
|  | 			 T1V = FNMS(KP500000000, T1J, T1E); | ||
|  | 			 T1W = Ta - Tk; | ||
|  | 			 T1X = FNMS(KP866025403, T1W, T1V); | ||
|  | 			 T2v = FMA(KP866025403, T1W, T1V); | ||
|  | 			 T2D = FMA(KP500000000, T2C, T2B); | ||
|  | 			 T2E = T18 - T12; | ||
|  | 			 T2F = FNMS(KP866025403, T2E, T2D); | ||
|  | 			 T2Q = FMA(KP866025403, T2E, T2D); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2J, T2K, T1Y, T1Z; | ||
|  | 			 T2J = FNMS(KP500000000, T2I, T2H); | ||
|  | 			 T2K = T1s - T1A; | ||
|  | 			 T2L = FNMS(KP866025403, T2K, T2J); | ||
|  | 			 T2R = FMA(KP866025403, T2K, T2J); | ||
|  | 			 T1Y = FNMS(KP500000000, T1R, T1M); | ||
|  | 			 T1Z = TJ - TT; | ||
|  | 			 T20 = FNMS(KP866025403, T1Z, T1Y); | ||
|  | 			 T2w = FMA(KP866025403, T1Z, T1Y); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T22, T27, T2h, T2i; | ||
|  | 			 T22 = FNMS(KP500000000, T19, T1f); | ||
|  | 			 T27 = T24 - T26; | ||
|  | 			 T28 = FNMS(KP866025403, T27, T22); | ||
|  | 			 T2t = FMA(KP866025403, T27, T22); | ||
|  | 			 T2h = FNMS(KP500000000, Tl, To); | ||
|  | 			 T2i = T1I - T1G; | ||
|  | 			 T2j = FNMS(KP866025403, T2i, T2h); | ||
|  | 			 T2p = FMA(KP866025403, T2i, T2h); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2k, T2l, T29, T2e; | ||
|  | 			 T2k = FNMS(KP500000000, TU, Tz); | ||
|  | 			 T2l = T1Q - T1O; | ||
|  | 			 T2m = FNMS(KP866025403, T2l, T2k); | ||
|  | 			 T2q = FMA(KP866025403, T2l, T2k); | ||
|  | 			 T29 = FNMS(KP500000000, T1B, T1m); | ||
|  | 			 T2e = T2b - T2d; | ||
|  | 			 T2f = FNMS(KP866025403, T2e, T29); | ||
|  | 			 T2s = FMA(KP866025403, T2e, T29); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T21, T2g, T2P, T2S; | ||
|  | 			 T21 = T1X + T20; | ||
|  | 			 T2g = T28 + T2f; | ||
|  | 			 Rp[WS(rs, 2)] = KP500000000 * (T21 - T2g); | ||
|  | 			 Rm[WS(rs, 3)] = KP500000000 * (T21 + T2g); | ||
|  | 			 T2P = T2m + T2j; | ||
|  | 			 T2S = T2Q + T2R; | ||
|  | 			 Ip[WS(rs, 2)] = KP500000000 * (T2P + T2S); | ||
|  | 			 Im[WS(rs, 3)] = KP500000000 * (T2S - T2P); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2n, T2o, T2T, T2U; | ||
|  | 			 T2n = T2j - T2m; | ||
|  | 			 T2o = T2f - T28; | ||
|  | 			 Ip[WS(rs, 5)] = KP500000000 * (T2n + T2o); | ||
|  | 			 Im[0] = KP500000000 * (T2o - T2n); | ||
|  | 			 T2T = T1X - T20; | ||
|  | 			 T2U = T2R - T2Q; | ||
|  | 			 Rm[0] = KP500000000 * (T2T - T2U); | ||
|  | 			 Rp[WS(rs, 5)] = KP500000000 * (T2T + T2U); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2r, T2u, T2N, T2O; | ||
|  | 			 T2r = T2p - T2q; | ||
|  | 			 T2u = T2s - T2t; | ||
|  | 			 Ip[WS(rs, 1)] = KP500000000 * (T2r + T2u); | ||
|  | 			 Im[WS(rs, 4)] = KP500000000 * (T2u - T2r); | ||
|  | 			 T2N = T2v - T2w; | ||
|  | 			 T2O = T2L - T2F; | ||
|  | 			 Rm[WS(rs, 4)] = KP500000000 * (T2N - T2O); | ||
|  | 			 Rp[WS(rs, 1)] = KP500000000 * (T2N + T2O); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2x, T2y, T2z, T2M; | ||
|  | 			 T2x = T2v + T2w; | ||
|  | 			 T2y = T2t + T2s; | ||
|  | 			 Rm[WS(rs, 1)] = KP500000000 * (T2x - T2y); | ||
|  | 			 Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y); | ||
|  | 			 T2z = T2q + T2p; | ||
|  | 			 T2M = T2F + T2L; | ||
|  | 			 Ip[WS(rs, 4)] = KP500000000 * (T2z - T2M); | ||
|  | 			 Im[WS(rs, 1)] = -(KP500000000 * (T2z + T2M)); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 12 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 96, 46, 46, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cfdft_12) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 142 FP additions, 76 FP multiplications, | ||
|  |  * (or, 112 additions, 46 multiplications, 30 fused multiply/add), | ||
|  |  * 52 stack variables, 3 constants, and 48 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cf.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP433012701, +0.433012701892219323381861585376468091735701313); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { | ||
|  | 	       E Tm, T1t, T1d, T2j, Tj, T1Y, T1w, T1G, T1q, T2q, T1U, T2k, Tw, T1y, T17; | ||
|  | 	       E T2g, TP, T21, T1B, T1J, T12, T2u, T1P, T2h; | ||
|  | 	       { | ||
|  | 		    E Tk, Tl, T1k, T1m, T1n, T1o, T4, T1f, T8, T1h, Th, T1c, Td, T1a, T19; | ||
|  | 		    E T1b; | ||
|  | 		    { | ||
|  | 			 E T2, T3, T6, T7; | ||
|  | 			 Tk = Ip[0]; | ||
|  | 			 Tl = Im[0]; | ||
|  | 			 T1k = Tk + Tl; | ||
|  | 			 T1m = Rp[0]; | ||
|  | 			 T1n = Rm[0]; | ||
|  | 			 T1o = T1m - T1n; | ||
|  | 			 T2 = Ip[WS(rs, 2)]; | ||
|  | 			 T3 = Im[WS(rs, 2)]; | ||
|  | 			 T4 = T2 - T3; | ||
|  | 			 T1f = T2 + T3; | ||
|  | 			 T6 = Rp[WS(rs, 2)]; | ||
|  | 			 T7 = Rm[WS(rs, 2)]; | ||
|  | 			 T8 = T6 + T7; | ||
|  | 			 T1h = T6 - T7; | ||
|  | 			 { | ||
|  | 			      E Tf, Tg, Tb, Tc; | ||
|  | 			      Tf = Rp[WS(rs, 4)]; | ||
|  | 			      Tg = Rm[WS(rs, 4)]; | ||
|  | 			      Th = Tf + Tg; | ||
|  | 			      T1c = Tf - Tg; | ||
|  | 			      Tb = Ip[WS(rs, 4)]; | ||
|  | 			      Tc = Im[WS(rs, 4)]; | ||
|  | 			      Td = Tb - Tc; | ||
|  | 			      T1a = Tb + Tc; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    Tm = Tk - Tl; | ||
|  | 		    T1t = T1m + T1n; | ||
|  | 		    T19 = W[16]; | ||
|  | 		    T1b = W[17]; | ||
|  | 		    T1d = FNMS(T1b, T1c, T19 * T1a); | ||
|  | 		    T2j = FMA(T19, T1c, T1b * T1a); | ||
|  | 		    { | ||
|  | 			 E T9, T1u, Ti, T1v; | ||
|  | 			 { | ||
|  | 			      E T1, T5, Ta, Te; | ||
|  | 			      T1 = W[6]; | ||
|  | 			      T5 = W[7]; | ||
|  | 			      T9 = FNMS(T5, T8, T1 * T4); | ||
|  | 			      T1u = FMA(T1, T8, T5 * T4); | ||
|  | 			      Ta = W[14]; | ||
|  | 			      Te = W[15]; | ||
|  | 			      Ti = FNMS(Te, Th, Ta * Td); | ||
|  | 			      T1v = FMA(Ta, Th, Te * Td); | ||
|  | 			 } | ||
|  | 			 Tj = T9 + Ti; | ||
|  | 			 T1Y = KP433012701 * (T1v - T1u); | ||
|  | 			 T1w = T1u + T1v; | ||
|  | 			 T1G = KP433012701 * (T9 - Ti); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1i, T1S, T1p, T1T; | ||
|  | 			 { | ||
|  | 			      E T1e, T1g, T1j, T1l; | ||
|  | 			      T1e = W[8]; | ||
|  | 			      T1g = W[9]; | ||
|  | 			      T1i = FNMS(T1g, T1h, T1e * T1f); | ||
|  | 			      T1S = FMA(T1e, T1h, T1g * T1f); | ||
|  | 			      T1j = W[0]; | ||
|  | 			      T1l = W[1]; | ||
|  | 			      T1p = FNMS(T1l, T1o, T1j * T1k); | ||
|  | 			      T1T = FMA(T1j, T1o, T1l * T1k); | ||
|  | 			 } | ||
|  | 			 T1q = T1i + T1p; | ||
|  | 			 T2q = KP433012701 * (T1i - T1p); | ||
|  | 			 T1U = KP433012701 * (T1S - T1T); | ||
|  | 			 T2k = T1S + T1T; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tr, TT, Tv, TV, TA, TY, TE, T10, TN, T14, TJ, T16; | ||
|  | 		    { | ||
|  | 			 E Tp, Tq, TC, TD; | ||
|  | 			 Tp = Ip[WS(rs, 3)]; | ||
|  | 			 Tq = Im[WS(rs, 3)]; | ||
|  | 			 Tr = Tp - Tq; | ||
|  | 			 TT = Tp + Tq; | ||
|  | 			 { | ||
|  | 			      E Tt, Tu, Ty, Tz; | ||
|  | 			      Tt = Rp[WS(rs, 3)]; | ||
|  | 			      Tu = Rm[WS(rs, 3)]; | ||
|  | 			      Tv = Tt + Tu; | ||
|  | 			      TV = Tt - Tu; | ||
|  | 			      Ty = Ip[WS(rs, 5)]; | ||
|  | 			      Tz = Im[WS(rs, 5)]; | ||
|  | 			      TA = Ty - Tz; | ||
|  | 			      TY = Ty + Tz; | ||
|  | 			 } | ||
|  | 			 TC = Rp[WS(rs, 5)]; | ||
|  | 			 TD = Rm[WS(rs, 5)]; | ||
|  | 			 TE = TC + TD; | ||
|  | 			 T10 = TC - TD; | ||
|  | 			 { | ||
|  | 			      E TL, TM, TH, TI; | ||
|  | 			      TL = Rp[WS(rs, 1)]; | ||
|  | 			      TM = Rm[WS(rs, 1)]; | ||
|  | 			      TN = TL + TM; | ||
|  | 			      T14 = TM - TL; | ||
|  | 			      TH = Ip[WS(rs, 1)]; | ||
|  | 			      TI = Im[WS(rs, 1)]; | ||
|  | 			      TJ = TH - TI; | ||
|  | 			      T16 = TH + TI; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E To, Ts, T13, T15; | ||
|  | 			 To = W[10]; | ||
|  | 			 Ts = W[11]; | ||
|  | 			 Tw = FNMS(Ts, Tv, To * Tr); | ||
|  | 			 T1y = FMA(To, Tv, Ts * Tr); | ||
|  | 			 T13 = W[5]; | ||
|  | 			 T15 = W[4]; | ||
|  | 			 T17 = FMA(T13, T14, T15 * T16); | ||
|  | 			 T2g = FNMS(T13, T16, T15 * T14); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TF, T1z, TO, T1A; | ||
|  | 			 { | ||
|  | 			      E Tx, TB, TG, TK; | ||
|  | 			      Tx = W[18]; | ||
|  | 			      TB = W[19]; | ||
|  | 			      TF = FNMS(TB, TE, Tx * TA); | ||
|  | 			      T1z = FMA(Tx, TE, TB * TA); | ||
|  | 			      TG = W[2]; | ||
|  | 			      TK = W[3]; | ||
|  | 			      TO = FNMS(TK, TN, TG * TJ); | ||
|  | 			      T1A = FMA(TG, TN, TK * TJ); | ||
|  | 			 } | ||
|  | 			 TP = TF + TO; | ||
|  | 			 T21 = KP433012701 * (T1A - T1z); | ||
|  | 			 T1B = T1z + T1A; | ||
|  | 			 T1J = KP433012701 * (TF - TO); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TW, T1O, T11, T1N; | ||
|  | 			 { | ||
|  | 			      E TS, TU, TX, TZ; | ||
|  | 			      TS = W[12]; | ||
|  | 			      TU = W[13]; | ||
|  | 			      TW = FNMS(TU, TV, TS * TT); | ||
|  | 			      T1O = FMA(TS, TV, TU * TT); | ||
|  | 			      TX = W[20]; | ||
|  | 			      TZ = W[21]; | ||
|  | 			      T11 = FNMS(TZ, T10, TX * TY); | ||
|  | 			      T1N = FMA(TX, T10, TZ * TY); | ||
|  | 			 } | ||
|  | 			 T12 = TW + T11; | ||
|  | 			 T2u = KP433012701 * (T11 - TW); | ||
|  | 			 T1P = KP433012701 * (T1N - T1O); | ||
|  | 			 T2h = T1O + T1N; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TR, T2f, T2m, T2o, T1s, T1E, T1D, T2n; | ||
|  | 		    { | ||
|  | 			 E Tn, TQ, T2i, T2l; | ||
|  | 			 Tn = Tj + Tm; | ||
|  | 			 TQ = Tw + TP; | ||
|  | 			 TR = Tn - TQ; | ||
|  | 			 T2f = TQ + Tn; | ||
|  | 			 T2i = T2g - T2h; | ||
|  | 			 T2l = T2j + T2k; | ||
|  | 			 T2m = T2i - T2l; | ||
|  | 			 T2o = T2i + T2l; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T18, T1r, T1x, T1C; | ||
|  | 			 T18 = T12 + T17; | ||
|  | 			 T1r = T1d + T1q; | ||
|  | 			 T1s = T18 - T1r; | ||
|  | 			 T1E = T18 + T1r; | ||
|  | 			 T1x = T1t + T1w; | ||
|  | 			 T1C = T1y + T1B; | ||
|  | 			 T1D = T1x + T1C; | ||
|  | 			 T2n = T1x - T1C; | ||
|  | 		    } | ||
|  | 		    Ip[WS(rs, 3)] = KP500000000 * (TR + T1s); | ||
|  | 		    Rp[WS(rs, 3)] = KP500000000 * (T2n - T2o); | ||
|  | 		    Im[WS(rs, 2)] = KP500000000 * (T1s - TR); | ||
|  | 		    Rm[WS(rs, 2)] = KP500000000 * (T2n + T2o); | ||
|  | 		    Rm[WS(rs, 5)] = KP500000000 * (T1D - T1E); | ||
|  | 		    Im[WS(rs, 5)] = KP500000000 * (T2m - T2f); | ||
|  | 		    Rp[0] = KP500000000 * (T1D + T1E); | ||
|  | 		    Ip[0] = KP500000000 * (T2f + T2m); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1H, T2b, T2s, T2B, T2v, T2A, T1K, T2c, T1Q, T29, T1Z, T25, T22, T26, T1V; | ||
|  | 		    E T28; | ||
|  | 		    { | ||
|  | 			 E T1F, T2r, T2t, T1I; | ||
|  | 			 T1F = FNMS(KP250000000, T1w, KP500000000 * T1t); | ||
|  | 			 T1H = T1F - T1G; | ||
|  | 			 T2b = T1F + T1G; | ||
|  | 			 T2r = FNMS(KP500000000, T2j, KP250000000 * T2k); | ||
|  | 			 T2s = T2q - T2r; | ||
|  | 			 T2B = T2q + T2r; | ||
|  | 			 T2t = FMA(KP250000000, T2h, KP500000000 * T2g); | ||
|  | 			 T2v = T2t - T2u; | ||
|  | 			 T2A = T2u + T2t; | ||
|  | 			 T1I = FNMS(KP250000000, T1B, KP500000000 * T1y); | ||
|  | 			 T1K = T1I - T1J; | ||
|  | 			 T2c = T1I + T1J; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1M, T1X, T20, T1R; | ||
|  | 			 T1M = FNMS(KP250000000, T12, KP500000000 * T17); | ||
|  | 			 T1Q = T1M - T1P; | ||
|  | 			 T29 = T1P + T1M; | ||
|  | 			 T1X = FNMS(KP250000000, Tj, KP500000000 * Tm); | ||
|  | 			 T1Z = T1X - T1Y; | ||
|  | 			 T25 = T1Y + T1X; | ||
|  | 			 T20 = FNMS(KP250000000, TP, KP500000000 * Tw); | ||
|  | 			 T22 = T20 - T21; | ||
|  | 			 T26 = T21 + T20; | ||
|  | 			 T1R = FNMS(KP250000000, T1q, KP500000000 * T1d); | ||
|  | 			 T1V = T1R - T1U; | ||
|  | 			 T28 = T1R + T1U; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1L, T1W, T2p, T2w; | ||
|  | 			 T1L = T1H + T1K; | ||
|  | 			 T1W = T1Q + T1V; | ||
|  | 			 Rp[WS(rs, 2)] = T1L - T1W; | ||
|  | 			 Rm[WS(rs, 3)] = T1L + T1W; | ||
|  | 			 T2p = T22 + T1Z; | ||
|  | 			 T2w = T2s - T2v; | ||
|  | 			 Ip[WS(rs, 2)] = T2p + T2w; | ||
|  | 			 Im[WS(rs, 3)] = T2w - T2p; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T23, T24, T2x, T2y; | ||
|  | 			 T23 = T1Z - T22; | ||
|  | 			 T24 = T1V - T1Q; | ||
|  | 			 Ip[WS(rs, 5)] = T23 + T24; | ||
|  | 			 Im[0] = T24 - T23; | ||
|  | 			 T2x = T1H - T1K; | ||
|  | 			 T2y = T2v + T2s; | ||
|  | 			 Rm[0] = T2x - T2y; | ||
|  | 			 Rp[WS(rs, 5)] = T2x + T2y; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T27, T2a, T2z, T2C; | ||
|  | 			 T27 = T25 - T26; | ||
|  | 			 T2a = T28 - T29; | ||
|  | 			 Ip[WS(rs, 1)] = T27 + T2a; | ||
|  | 			 Im[WS(rs, 4)] = T2a - T27; | ||
|  | 			 T2z = T2b - T2c; | ||
|  | 			 T2C = T2A - T2B; | ||
|  | 			 Rm[WS(rs, 4)] = T2z - T2C; | ||
|  | 			 Rp[WS(rs, 1)] = T2z + T2C; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2d, T2e, T2D, T2E; | ||
|  | 			 T2d = T2b + T2c; | ||
|  | 			 T2e = T29 + T28; | ||
|  | 			 Rm[WS(rs, 1)] = T2d - T2e; | ||
|  | 			 Rp[WS(rs, 4)] = T2d + T2e; | ||
|  | 			 T2D = T26 + T25; | ||
|  | 			 T2E = T2A + T2B; | ||
|  | 			 Ip[WS(rs, 4)] = T2D + T2E; | ||
|  | 			 Im[WS(rs, 1)] = T2E - T2D; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 12 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 112, 46, 30, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cfdft_12) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |