291 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			291 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:48 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include dft/simd/t3f.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 57 FP additions, 52 FP multiplications, | ||
|  |  * (or, 39 additions, 34 multiplications, 18 fused multiply/add), | ||
|  |  * 41 stack variables, 4 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t3f.h"
 | ||
|  | 
 | ||
|  | static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { | ||
|  | 	       V T2, T3, T4, Ta, T5, T6, Tt, Td, Th; | ||
|  | 	       T2 = LDW(&(W[0])); | ||
|  | 	       T3 = LDW(&(W[TWVL * 2])); | ||
|  | 	       T4 = VZMUL(T2, T3); | ||
|  | 	       Ta = VZMULJ(T2, T3); | ||
|  | 	       T5 = LDW(&(W[TWVL * 4])); | ||
|  | 	       T6 = VZMULJ(T4, T5); | ||
|  | 	       Tt = VZMULJ(T3, T5); | ||
|  | 	       Td = VZMULJ(Ta, T5); | ||
|  | 	       Th = VZMULJ(T2, T5); | ||
|  | 	       { | ||
|  | 		    V T9, TJ, Ts, Ty, Tz, TN, TO, TP, Tg, Tm, Tn, TK, TL, TM, T1; | ||
|  | 		    V T8, T7; | ||
|  | 		    T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 		    T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    T8 = VZMULJ(T6, T7); | ||
|  | 		    T9 = VSUB(T1, T8); | ||
|  | 		    TJ = VADD(T1, T8); | ||
|  | 		    { | ||
|  | 			 V Tp, Tx, Tr, Tv; | ||
|  | 			 { | ||
|  | 			      V To, Tw, Tq, Tu; | ||
|  | 			      To = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 			      Tp = VZMULJ(T4, To); | ||
|  | 			      Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			      Tx = VZMULJ(T2, Tw); | ||
|  | 			      Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			      Tr = VZMULJ(T5, Tq); | ||
|  | 			      Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 			      Tv = VZMULJ(Tt, Tu); | ||
|  | 			 } | ||
|  | 			 Ts = VSUB(Tp, Tr); | ||
|  | 			 Ty = VSUB(Tv, Tx); | ||
|  | 			 Tz = VADD(Ts, Ty); | ||
|  | 			 TN = VADD(Tp, Tr); | ||
|  | 			 TO = VADD(Tv, Tx); | ||
|  | 			 TP = VADD(TN, TO); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V Tc, Tl, Tf, Tj; | ||
|  | 			 { | ||
|  | 			      V Tb, Tk, Te, Ti; | ||
|  | 			      Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 			      Tc = VZMULJ(Ta, Tb); | ||
|  | 			      Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			      Tl = VZMULJ(T3, Tk); | ||
|  | 			      Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			      Tf = VZMULJ(Td, Te); | ||
|  | 			      Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | ||
|  | 			      Tj = VZMULJ(Th, Ti); | ||
|  | 			 } | ||
|  | 			 Tg = VSUB(Tc, Tf); | ||
|  | 			 Tm = VSUB(Tj, Tl); | ||
|  | 			 Tn = VADD(Tg, Tm); | ||
|  | 			 TK = VADD(Tc, Tf); | ||
|  | 			 TL = VADD(Tj, Tl); | ||
|  | 			 TM = VADD(TK, TL); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V TC, TA, TB, TG, TI, TE, TF, TH, TD; | ||
|  | 			 TC = VSUB(Tn, Tz); | ||
|  | 			 TA = VADD(Tn, Tz); | ||
|  | 			 TB = VFNMS(LDK(KP250000000), TA, T9); | ||
|  | 			 TE = VSUB(Tg, Tm); | ||
|  | 			 TF = VSUB(Ts, Ty); | ||
|  | 			 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE)); | ||
|  | 			 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF)); | ||
|  | 			 ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)])); | ||
|  | 			 TH = VFNMS(LDK(KP559016994), TC, TB); | ||
|  | 			 ST(&(x[WS(rs, 3)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)])); | ||
|  | 			 ST(&(x[WS(rs, 7)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)])); | ||
|  | 			 TD = VFMA(LDK(KP559016994), TC, TB); | ||
|  | 			 ST(&(x[WS(rs, 1)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)])); | ||
|  | 			 ST(&(x[WS(rs, 9)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)])); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V TS, TQ, TR, TW, TY, TU, TV, TX, TT; | ||
|  | 			 TS = VSUB(TM, TP); | ||
|  | 			 TQ = VADD(TM, TP); | ||
|  | 			 TR = VFNMS(LDK(KP250000000), TQ, TJ); | ||
|  | 			 TU = VSUB(TN, TO); | ||
|  | 			 TV = VSUB(TK, TL); | ||
|  | 			 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU)); | ||
|  | 			 TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV)); | ||
|  | 			 ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0])); | ||
|  | 			 TX = VFMA(LDK(KP559016994), TS, TR); | ||
|  | 			 ST(&(x[WS(rs, 4)]), VFMAI(TY, TX), ms, &(x[0])); | ||
|  | 			 ST(&(x[WS(rs, 6)]), VFNMSI(TY, TX), ms, &(x[0])); | ||
|  | 			 TT = VFNMS(LDK(KP559016994), TS, TR); | ||
|  | 			 ST(&(x[WS(rs, 2)]), VFMAI(TW, TT), ms, &(x[0])); | ||
|  | 			 ST(&(x[WS(rs, 8)]), VFNMSI(TW, TT), ms, &(x[0])); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 9), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, { 39, 34, 18, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t3fv_10) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t3fv_10, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include dft/simd/t3f.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 57 FP additions, 42 FP multiplications, | ||
|  |  * (or, 51 additions, 36 multiplications, 6 fused multiply/add), | ||
|  |  * 41 stack variables, 4 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t3f.h"
 | ||
|  | 
 | ||
|  | static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { | ||
|  | 	       V T1, T2, T3, Ti, T6, T7, Tx, Tb, To; | ||
|  | 	       T1 = LDW(&(W[0])); | ||
|  | 	       T2 = LDW(&(W[TWVL * 2])); | ||
|  | 	       T3 = VZMULJ(T1, T2); | ||
|  | 	       Ti = VZMUL(T1, T2); | ||
|  | 	       T6 = LDW(&(W[TWVL * 4])); | ||
|  | 	       T7 = VZMULJ(T3, T6); | ||
|  | 	       Tx = VZMULJ(Ti, T6); | ||
|  | 	       Tb = VZMULJ(T1, T6); | ||
|  | 	       To = VZMULJ(T2, T6); | ||
|  | 	       { | ||
|  | 		    V TA, TQ, Tn, Tt, Tu, TJ, TK, TS, Ta, Tg, Th, TM, TN, TR, Tw; | ||
|  | 		    V Tz, Ty; | ||
|  | 		    Tw = LD(&(x[0]), ms, &(x[0])); | ||
|  | 		    Ty = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tz = VZMULJ(Tx, Ty); | ||
|  | 		    TA = VSUB(Tw, Tz); | ||
|  | 		    TQ = VADD(Tw, Tz); | ||
|  | 		    { | ||
|  | 			 V Tk, Ts, Tm, Tq; | ||
|  | 			 { | ||
|  | 			      V Tj, Tr, Tl, Tp; | ||
|  | 			      Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 			      Tk = VZMULJ(Ti, Tj); | ||
|  | 			      Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			      Ts = VZMULJ(T1, Tr); | ||
|  | 			      Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			      Tm = VZMULJ(T6, Tl); | ||
|  | 			      Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 			      Tq = VZMULJ(To, Tp); | ||
|  | 			 } | ||
|  | 			 Tn = VSUB(Tk, Tm); | ||
|  | 			 Tt = VSUB(Tq, Ts); | ||
|  | 			 Tu = VADD(Tn, Tt); | ||
|  | 			 TJ = VADD(Tk, Tm); | ||
|  | 			 TK = VADD(Tq, Ts); | ||
|  | 			 TS = VADD(TJ, TK); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V T5, Tf, T9, Td; | ||
|  | 			 { | ||
|  | 			      V T4, Te, T8, Tc; | ||
|  | 			      T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 			      T5 = VZMULJ(T3, T4); | ||
|  | 			      Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			      Tf = VZMULJ(T2, Te); | ||
|  | 			      T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			      T9 = VZMULJ(T7, T8); | ||
|  | 			      Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | ||
|  | 			      Td = VZMULJ(Tb, Tc); | ||
|  | 			 } | ||
|  | 			 Ta = VSUB(T5, T9); | ||
|  | 			 Tg = VSUB(Td, Tf); | ||
|  | 			 Th = VADD(Ta, Tg); | ||
|  | 			 TM = VADD(T5, T9); | ||
|  | 			 TN = VADD(Td, Tf); | ||
|  | 			 TR = VADD(TM, TN); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V Tv, TB, TC, TG, TI, TE, TF, TH, TD; | ||
|  | 			 Tv = VMUL(LDK(KP559016994), VSUB(Th, Tu)); | ||
|  | 			 TB = VADD(Th, Tu); | ||
|  | 			 TC = VFNMS(LDK(KP250000000), TB, TA); | ||
|  | 			 TE = VSUB(Ta, Tg); | ||
|  | 			 TF = VSUB(Tn, Tt); | ||
|  | 			 TG = VBYI(VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TF))); | ||
|  | 			 TI = VBYI(VFNMS(LDK(KP587785252), TE, VMUL(LDK(KP951056516), TF))); | ||
|  | 			 ST(&(x[WS(rs, 5)]), VADD(TA, TB), ms, &(x[WS(rs, 1)])); | ||
|  | 			 TH = VSUB(TC, Tv); | ||
|  | 			 ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)])); | ||
|  | 			 ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)])); | ||
|  | 			 TD = VADD(Tv, TC); | ||
|  | 			 ST(&(x[WS(rs, 1)]), VSUB(TD, TG), ms, &(x[WS(rs, 1)])); | ||
|  | 			 ST(&(x[WS(rs, 9)]), VADD(TG, TD), ms, &(x[WS(rs, 1)])); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V TV, TT, TU, TP, TX, TL, TO, TY, TW; | ||
|  | 			 TV = VMUL(LDK(KP559016994), VSUB(TR, TS)); | ||
|  | 			 TT = VADD(TR, TS); | ||
|  | 			 TU = VFNMS(LDK(KP250000000), TT, TQ); | ||
|  | 			 TL = VSUB(TJ, TK); | ||
|  | 			 TO = VSUB(TM, TN); | ||
|  | 			 TP = VBYI(VFNMS(LDK(KP587785252), TO, VMUL(LDK(KP951056516), TL))); | ||
|  | 			 TX = VBYI(VFMA(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL))); | ||
|  | 			 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0])); | ||
|  | 			 TY = VADD(TV, TU); | ||
|  | 			 ST(&(x[WS(rs, 4)]), VADD(TX, TY), ms, &(x[0])); | ||
|  | 			 ST(&(x[WS(rs, 6)]), VSUB(TY, TX), ms, &(x[0])); | ||
|  | 			 TW = VSUB(TU, TV); | ||
|  | 			 ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0])); | ||
|  | 			 ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0])); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 9), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, { 51, 36, 6, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t3fv_10) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t3fv_10, &desc); | ||
|  | } | ||
|  | #endif
 |