415 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			415 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * Modifications by Romain Dolbeau & Erik Lindahl, derived from simd-avx.h | ||
|  |  * Romain Dolbeau hereby places his modifications in the public domain. | ||
|  |  * Erik Lindahl hereby places his modifications in the public domain. | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
 | ||
|  | #error "AVX2 only works in single or double precision"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define DS(d,s) s /* single-precision option */
 | ||
|  | #  define SUFF(name) name ## s
 | ||
|  | #else
 | ||
|  | #  define DS(d,s) d /* double-precision option */
 | ||
|  | #  define SUFF(name) name ## d
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define SIMD_SUFFIX  _avx2  /* for renaming */
 | ||
|  | #define VL DS(2, 4)        /* SIMD complex vector length */
 | ||
|  | #define SIMD_VSTRIDE_OKA(x) ((x) == 2) 
 | ||
|  | #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
 | ||
|  | 
 | ||
|  | #if defined(__GNUC__) && !defined(__AVX2__) /* sanity check */
 | ||
|  | #error "compiling simd-avx2.h without avx2 support"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #ifndef inline
 | ||
|  | #define inline __inline
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <immintrin.h>
 | ||
|  | 
 | ||
|  | typedef DS(__m256d, __m256) V; | ||
|  | #define VADD SUFF(_mm256_add_p)
 | ||
|  | #define VSUB SUFF(_mm256_sub_p)
 | ||
|  | #define VMUL SUFF(_mm256_mul_p)
 | ||
|  | #define VXOR SUFF(_mm256_xor_p)
 | ||
|  | #define VSHUF SUFF(_mm256_shuffle_p)
 | ||
|  | #define VPERM1 SUFF(_mm256_permute_p)
 | ||
|  | 
 | ||
|  | #define SHUFVALD(fp0,fp1) \
 | ||
|  |    (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0))) | ||
|  | #define SHUFVALS(fp0,fp1,fp2,fp3) \
 | ||
|  |    (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) | ||
|  | 
 | ||
|  | #define VDUPL(x) DS(_mm256_movedup_pd(x), _mm256_moveldup_ps(x))
 | ||
|  | #define VDUPH(x) DS(_mm256_permute_pd(x,SHUFVALD(1,1)), _mm256_movehdup_ps(x))
 | ||
|  | 
 | ||
|  | #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1))
 | ||
|  | #define DVK(var, val) V var = VLIT(val, val)
 | ||
|  | #define LDK(x) x
 | ||
|  | 
 | ||
|  | static inline V LDA(const R *x, INT ivs, const R *aligned_like) | ||
|  | { | ||
|  |      (void)aligned_like; /* UNUSED */ | ||
|  |      (void)ivs; /* UNUSED */ | ||
|  |      return SUFF(_mm256_loadu_p)(x); | ||
|  | } | ||
|  | 
 | ||
|  | static inline void STA(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  |      (void)aligned_like; /* UNUSED */ | ||
|  |      (void)ovs; /* UNUSED */ | ||
|  |      SUFF(_mm256_storeu_p)(x, v); | ||
|  | } | ||
|  | 
 | ||
|  | #if FFTW_SINGLE
 | ||
|  | 
 | ||
|  | #  ifdef _MSC_VER
 | ||
|  |      /* Temporarily disable the warning "uninitialized local variable
 | ||
|  | 	'name' used" and runtime checks for using a variable before it is | ||
|  | 	defined which is erroneously triggered by the LOADL0 / LOADH macros | ||
|  | 	as they only modify VAL partly each. */ | ||
|  | #    ifndef __INTEL_COMPILER
 | ||
|  | #      pragma warning(disable : 4700)
 | ||
|  | #      pragma runtime_checks("u", off)
 | ||
|  | #    endif
 | ||
|  | #  endif
 | ||
|  | #  ifdef __INTEL_COMPILER
 | ||
|  | #    pragma warning(disable : 592)
 | ||
|  | #  endif
 | ||
|  | 
 | ||
|  | #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
 | ||
|  | #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
 | ||
|  | #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val)
 | ||
|  | #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val)
 | ||
|  | 
 | ||
|  | static inline V LD(const R *x, INT ivs, const R *aligned_like) | ||
|  | { | ||
|  |      __m128 l0, l1, h0, h1; | ||
|  |      (void)aligned_like; /* UNUSED */ | ||
|  | #if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8)
 | ||
|  |      l0 = LOADL(x, SUFF(_mm_undefined_p)()); | ||
|  |      l1 = LOADL(x + ivs, SUFF(_mm_undefined_p)()); | ||
|  |      h0 = LOADL(x + 2*ivs, SUFF(_mm_undefined_p)()); | ||
|  |      h1 = LOADL(x + 3*ivs, SUFF(_mm_undefined_p)()); | ||
|  | #else
 | ||
|  |      l0 = LOADL(x, l0); | ||
|  |      l1 = LOADL(x + ivs, l1); | ||
|  |      h0 = LOADL(x + 2*ivs, h0); | ||
|  |      h1 = LOADL(x + 3*ivs, h1); | ||
|  | #endif
 | ||
|  |      l0 = SUFF(_mm_movelh_p)(l0,l1); | ||
|  |      h0 = SUFF(_mm_movelh_p)(h0,h1); | ||
|  |      return _mm256_insertf128_ps(_mm256_castps128_ps256(l0), h0, 1); | ||
|  | } | ||
|  | 
 | ||
|  | #  ifdef _MSC_VER
 | ||
|  | #    ifndef __INTEL_COMPILER
 | ||
|  | #      pragma warning(default : 4700)
 | ||
|  | #      pragma runtime_checks("u", restore)
 | ||
|  | #    endif
 | ||
|  | #  endif
 | ||
|  | #  ifdef __INTEL_COMPILER
 | ||
|  | #    pragma warning(default : 592)
 | ||
|  | #  endif
 | ||
|  | 
 | ||
|  | static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  |      __m128 h = _mm256_extractf128_ps(v, 1); | ||
|  |      __m128 l = _mm256_castps256_ps128(v); | ||
|  |      (void)aligned_like; /* UNUSED */ | ||
|  |      /* WARNING: the extra_iter hack depends upon STOREL occurring
 | ||
|  | 	after STOREH */ | ||
|  |      STOREH(x + 3*ovs, h); | ||
|  |      STOREL(x + 2*ovs, h); | ||
|  |      STOREH(x + ovs, l); | ||
|  |      STOREL(x, l); | ||
|  | } | ||
|  | 
 | ||
|  | #define STM2(x, v, ovs, aligned_like) /* no-op */
 | ||
|  | static inline void STN2(R *x, V v0, V v1, INT ovs) | ||
|  | { | ||
|  |     V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1)); | ||
|  |     V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3)); | ||
|  |     __m128 h0 = _mm256_extractf128_ps(x0, 1); | ||
|  |     __m128 l0 = _mm256_castps256_ps128(x0); | ||
|  |     __m128 h1 = _mm256_extractf128_ps(x1, 1); | ||
|  |     __m128 l1 = _mm256_castps256_ps128(x1); | ||
|  |     *(__m128 *)(x + 3*ovs) = h1; | ||
|  |     *(__m128 *)(x + 2*ovs) = h0; | ||
|  |     *(__m128 *)(x + 1*ovs) = l1; | ||
|  |     *(__m128 *)(x + 0*ovs) = l0; | ||
|  | } | ||
|  | 
 | ||
|  | #define STM4(x, v, ovs, aligned_like) /* no-op */
 | ||
|  | #define STN4(x, v0, v1, v2, v3, ovs)				\
 | ||
|  | {								\ | ||
|  |      V xxx0, xxx1, xxx2, xxx3;					\ | ||
|  |      V yyy0, yyy1, yyy2, yyy3;					\ | ||
|  |      xxx0 = _mm256_unpacklo_ps(v0, v2);				\ | ||
|  |      xxx1 = _mm256_unpackhi_ps(v0, v2);				\ | ||
|  |      xxx2 = _mm256_unpacklo_ps(v1, v3);				\ | ||
|  |      xxx3 = _mm256_unpackhi_ps(v1, v3);				\ | ||
|  |      yyy0 = _mm256_unpacklo_ps(xxx0, xxx2);			\ | ||
|  |      yyy1 = _mm256_unpackhi_ps(xxx0, xxx2);			\ | ||
|  |      yyy2 = _mm256_unpacklo_ps(xxx1, xxx3);			\ | ||
|  |      yyy3 = _mm256_unpackhi_ps(xxx1, xxx3);			\ | ||
|  |      *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0);	\ | ||
|  |      *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1);	\ | ||
|  |      *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1);	\ | ||
|  |      *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1);	\ | ||
|  |      *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2);	\ | ||
|  |      *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1);	\ | ||
|  |      *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3);	\ | ||
|  |      *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1);	\ | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | static inline __m128d VMOVAPD_LD(const R *x) | ||
|  | { | ||
|  |      /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x))
 | ||
|  | 	into a 256-bit vmovapd, which requires 32-byte aligment instead of | ||
|  | 	16-byte alignment. | ||
|  | 
 | ||
|  | 	Force the use of vmovapd via asm until compilers stabilize. | ||
|  |      */ | ||
|  | #if defined(__GNUC__)
 | ||
|  |      __m128d var; | ||
|  |      __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0])); | ||
|  |      return var; | ||
|  | #else
 | ||
|  |      return *(const __m128d *)x; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | static inline V LD(const R *x, INT ivs, const R *aligned_like) | ||
|  | { | ||
|  |      V var; | ||
|  |      (void)aligned_like; /* UNUSED */ | ||
|  |      var = _mm256_castpd128_pd256(VMOVAPD_LD(x)); | ||
|  |      var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1); | ||
|  |      return var; | ||
|  | } | ||
|  | 
 | ||
|  | static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  |      (void)aligned_like; /* UNUSED */ | ||
|  |      /* WARNING: the extra_iter hack depends upon the store of the low
 | ||
|  | 	part occurring after the store of the high part */ | ||
|  |      *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1); | ||
|  |      *(__m128d *)x = _mm256_castpd256_pd128(v); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #define STM2 ST
 | ||
|  | #define STN2(x, v0, v1, ovs) /* nop */
 | ||
|  | #define STM4(x, v, ovs, aligned_like) /* no-op */
 | ||
|  | 
 | ||
|  | /* STN4 is a macro, not a function, thanks to Visual C++ developers
 | ||
|  |    deciding "it would be infrequent that people would want to pass more | ||
|  |    than 3 [__m128 parameters] by value."  Even though the comment | ||
|  |    was made about __m128 parameters, it appears to apply to __m256 | ||
|  |    parameters as well. */ | ||
|  | #define STN4(x, v0, v1, v2, v3, ovs)					\
 | ||
|  | {									\ | ||
|  |      V xxx0, xxx1, xxx2, xxx3;						\ | ||
|  |      xxx0 = _mm256_unpacklo_pd(v0, v1);					\ | ||
|  |      xxx1 = _mm256_unpackhi_pd(v0, v1);					\ | ||
|  |      xxx2 = _mm256_unpacklo_pd(v2, v3);					\ | ||
|  |      xxx3 = _mm256_unpackhi_pd(v2, v3);					\ | ||
|  |      STA(x,           _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \ | ||
|  |      STA(x +     ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \ | ||
|  |      STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \ | ||
|  |      STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \ | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static inline V FLIP_RI(V x) | ||
|  | { | ||
|  |      return VPERM1(x, DS(SHUFVALD(1, 0), SHUFVALS(1, 0, 3, 2))); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VCONJ(V x) | ||
|  | { | ||
|  |      /* Produce a SIMD vector[VL] of (0 + -0i). 
 | ||
|  | 
 | ||
|  |         We really want to write this: | ||
|  | 
 | ||
|  |            V pmpm = VLIT(-0.0, 0.0); | ||
|  | 
 | ||
|  |         but historically some compilers have ignored the distiction | ||
|  |         between +0 and -0.  It looks like 'gcc-8 -fast-math' treats -0 | ||
|  |         as 0 too. | ||
|  |       */ | ||
|  |      union uvec { | ||
|  |           unsigned u[8]; | ||
|  |           V v; | ||
|  |      }; | ||
|  |      static const union uvec pmpm = { | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  |           { 0x00000000, 0x80000000, 0x00000000, 0x80000000, | ||
|  |             0x00000000, 0x80000000, 0x00000000, 0x80000000 } | ||
|  | #else
 | ||
|  |           { 0x00000000, 0x00000000, 0x00000000, 0x80000000, | ||
|  |             0x00000000, 0x00000000, 0x00000000, 0x80000000 } | ||
|  | #endif
 | ||
|  |      }; | ||
|  |      return VXOR(pmpm.v, x); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VBYI(V x) | ||
|  | { | ||
|  |      return FLIP_RI(VCONJ(x)); | ||
|  | } | ||
|  | 
 | ||
|  | /* FMA support */ | ||
|  | #define VFMA    SUFF(_mm256_fmadd_p)
 | ||
|  | #define VFNMS   SUFF(_mm256_fnmadd_p)
 | ||
|  | #define VFMS    SUFF(_mm256_fmsub_p)
 | ||
|  | #define VFMAI(b, c) SUFF(_mm256_addsub_p)(c, FLIP_RI(b)) /* VADD(c, VBYI(b)) */
 | ||
|  | #define VFNMSI(b, c)   VSUB(c, VBYI(b))
 | ||
|  | #define VFMACONJ(b,c)  VADD(VCONJ(b),c)
 | ||
|  | #define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
 | ||
|  | #define VFNMSCONJ(b,c) SUFF(_mm256_addsub_p)(c, b)  /* VSUB(c, VCONJ(b)) */
 | ||
|  | 
 | ||
|  | static inline V VZMUL(V tx, V sr) | ||
|  | { | ||
|  |      /* V tr = VDUPL(tx); */ | ||
|  |      /* V ti = VDUPH(tx); */ | ||
|  |      /* tr = VMUL(sr, tr); */ | ||
|  |      /* sr = VBYI(sr); */ | ||
|  |      /* return VFMA(ti, sr, tr); */ | ||
|  |      return SUFF(_mm256_fmaddsub_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx))); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VZMULJ(V tx, V sr) | ||
|  | { | ||
|  |      /* V tr = VDUPL(tx); */ | ||
|  |      /* V ti = VDUPH(tx); */ | ||
|  |      /* tr = VMUL(sr, tr); */ | ||
|  |      /* sr = VBYI(sr); */ | ||
|  |      /* return VFNMS(ti, sr, tr); */ | ||
|  |      return SUFF(_mm256_fmsubadd_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx))); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VZMULI(V tx, V sr) | ||
|  | { | ||
|  |      V tr = VDUPL(tx); | ||
|  |      V ti = VDUPH(tx); | ||
|  |      ti = VMUL(ti, sr); | ||
|  |      sr = VBYI(sr); | ||
|  |      return VFMS(tr, sr, ti); | ||
|  |     /*
 | ||
|  |      * Keep the old version | ||
|  |      * (2 permute, 1 shuffle, 1 constant load (L1), 1 xor, 2 fp), since the below FMA one | ||
|  |      * would be 2 permute, 1 shuffle, 1 xor (setzero), 3 fp), but with a longer pipeline. | ||
|  |      * | ||
|  |      * Alternative new fma version: | ||
|  |      * return SUFF(_mm256_addsub_p)(SUFF(_mm256_fnmadd_p)(sr, VDUPH(tx), SUFF(_mm256_setzero_p)()), | ||
|  |      * VMUL(FLIP_RI(sr), VDUPL(tx))); | ||
|  |     */ | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VZMULIJ(V tx, V sr) | ||
|  | { | ||
|  |      /* V tr = VDUPL(tx); */ | ||
|  |      /* V ti = VDUPH(tx); */ | ||
|  |      /* ti = VMUL(ti, sr); */ | ||
|  |      /* sr = VBYI(sr); */ | ||
|  |      /* return VFMA(tr, sr, ti); */ | ||
|  |      return SUFF(_mm256_fmaddsub_p)(sr, VDUPH(tx), VMUL(FLIP_RI(sr), VDUPL(tx))); | ||
|  | } | ||
|  | 
 | ||
|  | /* twiddle storage #1: compact, slower */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
 | ||
|  | #else
 | ||
|  | # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
 | ||
|  | #endif
 | ||
|  | #define TWVL1 (VL)
 | ||
|  | 
 | ||
|  | static inline V BYTW1(const R *t, V sr) | ||
|  | { | ||
|  |      return VZMUL(LDA(t, 2, t), sr); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V BYTWJ1(const R *t, V sr) | ||
|  | { | ||
|  |      return VZMULJ(LDA(t, 2, t), sr); | ||
|  | } | ||
|  | 
 | ||
|  | /* twiddle storage #2: twice the space, faster (when in cache) */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | # define VTW2(v,x)							\
 | ||
|  |    {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\ | ||
|  |    {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ | ||
|  |    {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ | ||
|  |    {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x} | ||
|  | #else
 | ||
|  | # define VTW2(v,x)							\
 | ||
|  |    {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\ | ||
|  |    {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} | ||
|  | #endif
 | ||
|  | #define TWVL2 (2 * VL)
 | ||
|  | 
 | ||
|  | static inline V BYTW2(const R *t, V sr) | ||
|  | { | ||
|  |      const V *twp = (const V *)t; | ||
|  |      V si = FLIP_RI(sr); | ||
|  |      V tr = twp[0], ti = twp[1]; | ||
|  |      return VFMA(tr, sr, VMUL(ti, si)); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V BYTWJ2(const R *t, V sr) | ||
|  | { | ||
|  |      const V *twp = (const V *)t; | ||
|  |      V si = FLIP_RI(sr); | ||
|  |      V tr = twp[0], ti = twp[1]; | ||
|  |      return VFNMS(ti, si, VMUL(tr, sr)); | ||
|  | } | ||
|  | 
 | ||
|  | /* twiddle storage #3 */ | ||
|  | #define VTW3 VTW1
 | ||
|  | #define TWVL3 TWVL1
 | ||
|  | 
 | ||
|  | /* twiddle storage for split arrays */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | # define VTWS(v,x)							\
 | ||
|  |   {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x},	\ | ||
|  |   {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \ | ||
|  |   {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x},	\ | ||
|  |   {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x} | ||
|  | #else
 | ||
|  | # define VTWS(v,x)							\
 | ||
|  |   {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x},	\ | ||
|  |   {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}	 | ||
|  | #endif
 | ||
|  | #define TWVLS (2 * VL)
 | ||
|  | 
 | ||
|  | #define VLEAVE _mm256_zeroupper
 | ||
|  | 
 | ||
|  | #include "simd-common.h"
 |