965 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			965 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						|||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						|||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						|||
| 
								 | 
							
								 *
							 | 
						|||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						|||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						|||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						|||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						|||
| 
								 | 
							
								 *
							 | 
						|||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						|||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						|||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						|||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						|||
| 
								 | 
							
								 *
							 | 
						|||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						|||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						|||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						|||
| 
								 | 
							
								 *
							 | 
						|||
| 
								 | 
							
								 */
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
							 | 
						|||
| 
								 | 
							
								   general for all of the r2r variants...oh well, for now */
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								#include "verify.h"
							 | 
						|||
| 
								 | 
							
								#include <math.h>
							 | 
						|||
| 
								 | 
							
								#include <stdlib.h>
							 | 
						|||
| 
								 | 
							
								#include <stdio.h>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								typedef struct {
							 | 
						|||
| 
								 | 
							
								     bench_problem *p;
							 | 
						|||
| 
								 | 
							
								     bench_tensor *probsz;
							 | 
						|||
| 
								 | 
							
								     bench_tensor *totalsz;
							 | 
						|||
| 
								 | 
							
								     bench_tensor *pckdsz;
							 | 
						|||
| 
								 | 
							
								     bench_tensor *pckdvecsz;
							 | 
						|||
| 
								 | 
							
								} info;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/*
							 | 
						|||
| 
								 | 
							
								 * Utility functions:
							 | 
						|||
| 
								 | 
							
								 */
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static double dabs(double x) { return (x < 0.0) ? -x : x; }
							 | 
						|||
| 
								 | 
							
								static double dmin(double x, double y) { return (x < y) ? x : y; }
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static double raerror(R *a, R *b, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     if (n > 0) {
							 | 
						|||
| 
								 | 
							
								          /* compute the relative Linf error */
							 | 
						|||
| 
								 | 
							
								          double e = 0.0, mag = 0.0;
							 | 
						|||
| 
								 | 
							
								          int i;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								          for (i = 0; i < n; ++i) {
							 | 
						|||
| 
								 | 
							
								               e = dmax(e, dabs(a[i] - b[i]));
							 | 
						|||
| 
								 | 
							
								               mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
							 | 
						|||
| 
								 | 
							
								          }
							 | 
						|||
| 
								 | 
							
									  if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
							 | 
						|||
| 
								 | 
							
									       e = 0.0;
							 | 
						|||
| 
								 | 
							
									  else
							 | 
						|||
| 
								 | 
							
									       e /= mag;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								#ifdef HAVE_ISNAN
							 | 
						|||
| 
								 | 
							
								          BENCH_ASSERT(!isnan(e));
							 | 
						|||
| 
								 | 
							
								#endif
							 | 
						|||
| 
								 | 
							
								          return e;
							 | 
						|||
| 
								 | 
							
								     } else
							 | 
						|||
| 
								 | 
							
								          return 0.0;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								#define by2pi(m, n) ((K2PI * (m)) / (n))
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/*
							 | 
						|||
| 
								 | 
							
								 * Improve accuracy by reducing x to range [0..1/8]
							 | 
						|||
| 
								 | 
							
								 * before multiplication by 2 * PI.
							 | 
						|||
| 
								 | 
							
								 */
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     /* waiting for C to get tail recursion... */
							 | 
						|||
| 
								 | 
							
								     trigreal half_n = n * 0.5;
							 | 
						|||
| 
								 | 
							
								     trigreal quarter_n = half_n * 0.5;
							 | 
						|||
| 
								 | 
							
								     trigreal eighth_n = quarter_n * 0.5;
							 | 
						|||
| 
								 | 
							
								     trigreal sgn = 1.0;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     if (sinp) goto sin;
							 | 
						|||
| 
								 | 
							
								 cos:
							 | 
						|||
| 
								 | 
							
								     if (m < 0) { m = -m; /* goto cos; */ }
							 | 
						|||
| 
								 | 
							
								     if (m > half_n) { m = n - m; goto cos; }
							 | 
						|||
| 
								 | 
							
								     if (m > eighth_n) { m = quarter_n - m; goto sin; }
							 | 
						|||
| 
								 | 
							
								     return sgn * COS(by2pi(m, n));
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								 msin:
							 | 
						|||
| 
								 | 
							
								     sgn = -sgn;
							 | 
						|||
| 
								 | 
							
								 sin:
							 | 
						|||
| 
								 | 
							
								     if (m < 0) { m = -m; goto msin; }
							 | 
						|||
| 
								 | 
							
								     if (m > half_n) { m = n - m; goto msin; }
							 | 
						|||
| 
								 | 
							
								     if (m > eighth_n) { m = quarter_n - m; goto cos; }
							 | 
						|||
| 
								 | 
							
								     return sgn * SIN(by2pi(m, n));
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal cos2pi(int m, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return bench_sincos((trigreal)m, (trigreal)n, 0);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal sin2pi(int m, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return bench_sincos((trigreal)m, (trigreal)n, 1);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal cos00(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return cos2pi(i * j, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal cos01(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return cos00(i, 2*j + 1, 2*n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal cos10(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return cos00(2*i + 1, j, 2*n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal cos11(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return cos00(2*i + 1, 2*j + 1, 4*n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal sin00(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return sin2pi(i * j, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal sin01(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return sin00(i, 2*j + 1, 2*n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal sin10(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return sin00(2*i + 1, j, 2*n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal sin11(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     return sin00(2*i + 1, 2*j + 1, 4*n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal realhalf(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     UNUSED(i);
							 | 
						|||
| 
								 | 
							
								     if (j <= n - j)
							 | 
						|||
| 
								 | 
							
									  return 1.0;
							 | 
						|||
| 
								 | 
							
								     else
							 | 
						|||
| 
								 | 
							
									  return 0.0;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal coshalf(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     if (j <= n - j)
							 | 
						|||
| 
								 | 
							
									  return cos00(i, j, n);
							 | 
						|||
| 
								 | 
							
								     else
							 | 
						|||
| 
								 | 
							
									  return cos00(i, n - j, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static trigreal unity(int i, int j, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     UNUSED(i);
							 | 
						|||
| 
								 | 
							
								     UNUSED(j);
							 | 
						|||
| 
								 | 
							
								     UNUSED(n);
							 | 
						|||
| 
								 | 
							
								     return 1.0;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								typedef trigreal (*trigfun)(int, int, int);
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void rarand(R *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     /* generate random inputs */
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < n; ++i) {
							 | 
						|||
| 
								 | 
							
									  a[i] = mydrand();
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/* C = A + B */
							 | 
						|||
| 
								 | 
							
								static void raadd(R *c, R *a, R *b, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < n; ++i) {
							 | 
						|||
| 
								 | 
							
									  c[i] = a[i] + b[i];
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/* C = A - B */
							 | 
						|||
| 
								 | 
							
								static void rasub(R *c, R *a, R *b, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < n; ++i) {
							 | 
						|||
| 
								 | 
							
									  c[i] = a[i] - b[i];
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/* B = rotate left A + rotate right A */
							 | 
						|||
| 
								 | 
							
								static void rarolr(R *b, R *a, int n, int nb, int na, 
							 | 
						|||
| 
								 | 
							
										   r2r_kind_t k)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
							 | 
						|||
| 
								 | 
							
								     int i, ib, ia;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     for (ib = 0; ib < nb; ++ib) {
							 | 
						|||
| 
								 | 
							
									  for (i = 0; i < n - 1; ++i)
							 | 
						|||
| 
								 | 
							
									       for (ia = 0; ia < na; ++ia)
							 | 
						|||
| 
								 | 
							
										    b[(ib * n + i) * na + ia] =
							 | 
						|||
| 
								 | 
							
											 a[(ib * n + i + 1) * na + ia];
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  /* ugly switch to do boundary conditions for various r2r types */
							 | 
						|||
| 
								 | 
							
									  switch (k) {
							 | 
						|||
| 
								 | 
							
									       /* periodic boundaries */
							 | 
						|||
| 
								 | 
							
									      case R2R_DHT:
							 | 
						|||
| 
								 | 
							
									      case R2R_R2HC:
							 | 
						|||
| 
								 | 
							
										   for (ia = 0; ia < na; ++ia) {
							 | 
						|||
| 
								 | 
							
											b[(ib * n + n - 1) * na + ia] = 
							 | 
						|||
| 
								 | 
							
											     a[(ib * n + 0) * na + ia];
							 | 
						|||
| 
								 | 
							
											b[(ib * n + 0) * na + ia] += 
							 | 
						|||
| 
								 | 
							
											     a[(ib * n + n - 1) * na + ia];
							 | 
						|||
| 
								 | 
							
										   }
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
										   
							 | 
						|||
| 
								 | 
							
									      case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
							 | 
						|||
| 
								 | 
							
										   if (n > 2) {
							 | 
						|||
| 
								 | 
							
											if (n % 2 == 0)
							 | 
						|||
| 
								 | 
							
											     for (ia = 0; ia < na; ++ia) {
							 | 
						|||
| 
								 | 
							
												  b[(ib * n + n - 1) * na + ia] = 0.0;
							 | 
						|||
| 
								 | 
							
												  b[(ib * n + 0) * na + ia] += 
							 | 
						|||
| 
								 | 
							
												       a[(ib * n + 1) * na + ia];
							 | 
						|||
| 
								 | 
							
												  b[(ib * n + n/2) * na + ia] += 
							 | 
						|||
| 
								 | 
							
												       + a[(ib * n + n/2 - 1) * na + ia]
							 | 
						|||
| 
								 | 
							
												       - a[(ib * n + n/2 + 1) * na + ia];
							 | 
						|||
| 
								 | 
							
												  b[(ib * n + n/2 + 1) * na + ia] += 
							 | 
						|||
| 
								 | 
							
												       - a[(ib * n + n/2) * na + ia];
							 | 
						|||
| 
								 | 
							
											     }
							 | 
						|||
| 
								 | 
							
											else 
							 | 
						|||
| 
								 | 
							
											     for (ia = 0; ia < na; ++ia) {
							 | 
						|||
| 
								 | 
							
												  b[(ib * n + n - 1) * na + ia] = 0.0;
							 | 
						|||
| 
								 | 
							
												  b[(ib * n + 0) * na + ia] += 
							 | 
						|||
| 
								 | 
							
												       a[(ib * n + 1) * na + ia];
							 | 
						|||
| 
								 | 
							
												  b[(ib * n + n/2) * na + ia] += 
							 | 
						|||
| 
								 | 
							
												       + a[(ib * n + n/2) * na + ia]
							 | 
						|||
| 
								 | 
							
												       - a[(ib * n + n/2 + 1) * na + ia];
							 | 
						|||
| 
								 | 
							
												  b[(ib * n + n/2 + 1) * na + ia] += 
							 | 
						|||
| 
								 | 
							
												       - a[(ib * n + n/2 + 1) * na + ia]
							 | 
						|||
| 
								 | 
							
												       - a[(ib * n + n/2) * na + ia];
							 | 
						|||
| 
								 | 
							
											     }
							 | 
						|||
| 
								 | 
							
										   } else /* n <= 2 */ {
							 | 
						|||
| 
								 | 
							
											for (ia = 0; ia < na; ++ia) {
							 | 
						|||
| 
								 | 
							
											     b[(ib * n + n - 1) * na + ia] =
							 | 
						|||
| 
								 | 
							
												  a[(ib * n + 0) * na + ia];
							 | 
						|||
| 
								 | 
							
											     b[(ib * n + 0) * na + ia] += 
							 | 
						|||
| 
								 | 
							
												  a[(ib * n + n - 1) * na + ia];
							 | 
						|||
| 
								 | 
							
											}
							 | 
						|||
| 
								 | 
							
										   }
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
										   
							 | 
						|||
| 
								 | 
							
									      /* various even/odd boundary conditions */
							 | 
						|||
| 
								 | 
							
									      case R2R_REDFT00:
							 | 
						|||
| 
								 | 
							
										   isL1 = isR1 = 1;
							 | 
						|||
| 
								 | 
							
										   goto mirrors;
							 | 
						|||
| 
								 | 
							
									      case R2R_REDFT01:
							 | 
						|||
| 
								 | 
							
										   isL1 = 1;
							 | 
						|||
| 
								 | 
							
										   goto mirrors;
							 | 
						|||
| 
								 | 
							
									      case R2R_REDFT10:
							 | 
						|||
| 
								 | 
							
										   isL0 = isR0 = 1;
							 | 
						|||
| 
								 | 
							
										   goto mirrors;
							 | 
						|||
| 
								 | 
							
									      case R2R_REDFT11:
							 | 
						|||
| 
								 | 
							
										   isL0 = 1;
							 | 
						|||
| 
								 | 
							
										   isR0 = -1;
							 | 
						|||
| 
								 | 
							
										   goto mirrors;
							 | 
						|||
| 
								 | 
							
									      case R2R_RODFT00:
							 | 
						|||
| 
								 | 
							
										   goto mirrors;
							 | 
						|||
| 
								 | 
							
									      case R2R_RODFT01:
							 | 
						|||
| 
								 | 
							
										   isR1 = 1;
							 | 
						|||
| 
								 | 
							
										   goto mirrors;
							 | 
						|||
| 
								 | 
							
									      case R2R_RODFT10:
							 | 
						|||
| 
								 | 
							
										   isL0 = isR0 = -1;
							 | 
						|||
| 
								 | 
							
										   goto mirrors;
							 | 
						|||
| 
								 | 
							
									      case R2R_RODFT11:
							 | 
						|||
| 
								 | 
							
										   isL0 = -1;
							 | 
						|||
| 
								 | 
							
										   isR0 = 1;
							 | 
						|||
| 
								 | 
							
										   goto mirrors;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  mirrors:
							 | 
						|||
| 
								 | 
							
										   
							 | 
						|||
| 
								 | 
							
										   for (ia = 0; ia < na; ++ia)
							 | 
						|||
| 
								 | 
							
											b[(ib * n + n - 1) * na + ia] = 
							 | 
						|||
| 
								 | 
							
											     isR0 * a[(ib * n + n - 1) * na + ia]
							 | 
						|||
| 
								 | 
							
											     + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
							 | 
						|||
| 
								 | 
							
												: 0);
							 | 
						|||
| 
								 | 
							
										   
							 | 
						|||
| 
								 | 
							
										   for (ia = 0; ia < na; ++ia)
							 | 
						|||
| 
								 | 
							
											b[(ib * n) * na + ia] += 
							 | 
						|||
| 
								 | 
							
											     isL0 * a[(ib * n) * na + ia]
							 | 
						|||
| 
								 | 
							
											     + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
							 | 
						|||
| 
								 | 
							
										   
							 | 
						|||
| 
								 | 
							
									  }
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  for (i = 1; i < n; ++i)
							 | 
						|||
| 
								 | 
							
									       for (ia = 0; ia < na; ++ia)
							 | 
						|||
| 
								 | 
							
										    b[(ib * n + i) * na + ia] +=
							 | 
						|||
| 
								 | 
							
											 a[(ib * n + i - 1) * na + ia];
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void raphase_shift(R *b, R *a, int n, int nb, int na,
							 | 
						|||
| 
								 | 
							
											 int n0, int k0, trigfun t)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int j, jb, ja;
							 | 
						|||
| 
								 | 
							
								 
							 | 
						|||
| 
								 | 
							
								     for (jb = 0; jb < nb; ++jb)
							 | 
						|||
| 
								 | 
							
								          for (j = 0; j < n; ++j) {
							 | 
						|||
| 
								 | 
							
								               trigreal c = 2.0 * t(1, j + k0, n0);
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								               for (ja = 0; ja < na; ++ja) {
							 | 
						|||
| 
								 | 
							
								                    int k = (jb * n + j) * na + ja;
							 | 
						|||
| 
								 | 
							
								                    b[k] = a[k] * c;
							 | 
						|||
| 
								 | 
							
								               }
							 | 
						|||
| 
								 | 
							
								          }
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/* A = alpha * A  (real, in place) */
							 | 
						|||
| 
								 | 
							
								static void rascale(R *a, R alpha, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < n; ++i) {
							 | 
						|||
| 
								 | 
							
									  a[i] *= alpha;
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/*
							 | 
						|||
| 
								 | 
							
								 * compute rdft:
							 | 
						|||
| 
								 | 
							
								 */
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/* copy real A into real B, using output stride of A and input stride of B */
							 | 
						|||
| 
								 | 
							
								typedef struct {
							 | 
						|||
| 
								 | 
							
								     dotens2_closure k;
							 | 
						|||
| 
								 | 
							
								     R *ra;
							 | 
						|||
| 
								 | 
							
								     R *rb;
							 | 
						|||
| 
								 | 
							
								} cpyr_closure;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void cpyr0(dotens2_closure *k_, 
							 | 
						|||
| 
								 | 
							
										  int indxa, int ondxa, int indxb, int ondxb)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     cpyr_closure *k = (cpyr_closure *)k_;
							 | 
						|||
| 
								 | 
							
								     k->rb[indxb] = k->ra[ondxa];
							 | 
						|||
| 
								 | 
							
								     UNUSED(indxa); UNUSED(ondxb);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     cpyr_closure k;
							 | 
						|||
| 
								 | 
							
								     k.k.apply = cpyr0;
							 | 
						|||
| 
								 | 
							
								     k.ra = ra; k.rb = rb;
							 | 
						|||
| 
								 | 
							
								     bench_dotens2(sza, szb, &k.k);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void dofft(info *nfo, R *in, R *out)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
							 | 
						|||
| 
								 | 
							
								     after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
							 | 
						|||
| 
								 | 
							
								     doit(1, nfo->p);
							 | 
						|||
| 
								 | 
							
								     after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
							 | 
						|||
| 
								 | 
							
								     cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static double racmp(R *a, R *b, int n, const char *test, double tol)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     double d = raerror(a, b, n);
							 | 
						|||
| 
								 | 
							
								     if (d > tol) {
							 | 
						|||
| 
								 | 
							
									  ovtpvt_err("Found relative error %e (%s)\n", d, test);
							 | 
						|||
| 
								 | 
							
									  {
							 | 
						|||
| 
								 | 
							
									       int i, N;
							 | 
						|||
| 
								 | 
							
									       N = n > 300 && verbose <= 2 ? 300 : n;
							 | 
						|||
| 
								 | 
							
									       for (i = 0; i < N; ++i)
							 | 
						|||
| 
								 | 
							
										    ovtpvt_err("%8d %16.12f   %16.12f\n", i, 
							 | 
						|||
| 
								 | 
							
											       (double) a[i],
							 | 
						|||
| 
								 | 
							
											       (double) b[i]);
							 | 
						|||
| 
								 | 
							
									  }
							 | 
						|||
| 
								 | 
							
									  bench_exit(EXIT_FAILURE);
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								     return d;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/***********************************************************************/
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								typedef struct {
							 | 
						|||
| 
								 | 
							
								     int n; /* physical size */
							 | 
						|||
| 
								 | 
							
								     int n0; /* "logical" transform size */
							 | 
						|||
| 
								 | 
							
								     int i0, k0; /* shifts of input/output */
							 | 
						|||
| 
								 | 
							
								     trigfun ti, ts;  /* impulse/shift trig functions */
							 | 
						|||
| 
								 | 
							
								} dim_stuff;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
							 | 
						|||
| 
								 | 
							
											     R *A, int N)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     if (rnk == 0)
							 | 
						|||
| 
								 | 
							
									  A[0] = impulse_amp;
							 | 
						|||
| 
								 | 
							
								     else {
							 | 
						|||
| 
								 | 
							
									  int i;
							 | 
						|||
| 
								 | 
							
									  N /= d->n;
							 | 
						|||
| 
								 | 
							
									  for (i = 0; i < d->n; ++i) {
							 | 
						|||
| 
								 | 
							
									       impulse_response(rnk - 1, d + 1,
							 | 
						|||
| 
								 | 
							
												impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
							 | 
						|||
| 
								 | 
							
												A + i * N, N);
							 | 
						|||
| 
								 | 
							
									  }
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/***************************************************************************/
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/*
							 | 
						|||
| 
								 | 
							
								 * Implementation of the FFT tester described in
							 | 
						|||
| 
								 | 
							
								 *
							 | 
						|||
| 
								 | 
							
								 * Funda Erg<EFBFBD>n. Testing multivariate linear functions: Overcoming the
							 | 
						|||
| 
								 | 
							
								 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
							 | 
						|||
| 
								 | 
							
								 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
							 | 
						|||
| 
								 | 
							
								 * Nevada, 29 May--1 June 1995.
							 | 
						|||
| 
								 | 
							
								 *
							 | 
						|||
| 
								 | 
							
								 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
							 | 
						|||
| 
								 | 
							
								 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
							 | 
						|||
| 
								 | 
							
								 */
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
							 | 
						|||
| 
								 | 
							
										      R *outB, R *outC, R *tmp, int rounds, double tol)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     double e = 0.0;
							 | 
						|||
| 
								 | 
							
								     int j;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     for (j = 0; j < rounds; ++j) {
							 | 
						|||
| 
								 | 
							
									  R alpha, beta;
							 | 
						|||
| 
								 | 
							
									  alpha = mydrand();
							 | 
						|||
| 
								 | 
							
									  beta = mydrand();
							 | 
						|||
| 
								 | 
							
									  rarand(inA, n);
							 | 
						|||
| 
								 | 
							
									  rarand(inB, n);
							 | 
						|||
| 
								 | 
							
									  dofft(nfo, inA, outA);
							 | 
						|||
| 
								 | 
							
									  dofft(nfo, inB, outB);
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  rascale(outA, alpha, n);
							 | 
						|||
| 
								 | 
							
									  rascale(outB, beta, n);
							 | 
						|||
| 
								 | 
							
									  raadd(tmp, outA, outB, n);
							 | 
						|||
| 
								 | 
							
									  rascale(inA, alpha, n);
							 | 
						|||
| 
								 | 
							
									  rascale(inB, beta, n);
							 | 
						|||
| 
								 | 
							
									  raadd(inC, inA, inB, n);
							 | 
						|||
| 
								 | 
							
									  dofft(nfo, inC, outC);
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  e = dmax(e, racmp(outC, tmp, n, "linear", tol));
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								     return e;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static double rimpulse(dim_stuff *d, R impulse_amp,
							 | 
						|||
| 
								 | 
							
										       int n, int vecn, info *nfo, 
							 | 
						|||
| 
								 | 
							
										       R *inA, R *inB, R *inC,
							 | 
						|||
| 
								 | 
							
										       R *outA, R *outB, R *outC,
							 | 
						|||
| 
								 | 
							
										       R *tmp, int rounds, double tol)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     double e = 0.0;
							 | 
						|||
| 
								 | 
							
								     int N = n * vecn;
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								     int j;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     /* test 2: check that the unit impulse is transformed properly */
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < N; ++i) {
							 | 
						|||
| 
								 | 
							
									  /* pls */
							 | 
						|||
| 
								 | 
							
									  inA[i] = 0.0;
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < vecn; ++i) {
							 | 
						|||
| 
								 | 
							
									  inA[i * n] = (i+1) / (double)(vecn+1);
							 | 
						|||
| 
								 | 
							
								     
							 | 
						|||
| 
								 | 
							
									  /* transform of the pls */
							 | 
						|||
| 
								 | 
							
									  impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
							 | 
						|||
| 
								 | 
							
											   outA + i * n, n);
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     dofft(nfo, inA, tmp);
							 | 
						|||
| 
								 | 
							
								     e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     for (j = 0; j < rounds; ++j) {
							 | 
						|||
| 
								 | 
							
								          rarand(inB, N);
							 | 
						|||
| 
								 | 
							
								          rasub(inC, inA, inB, N);
							 | 
						|||
| 
								 | 
							
								          dofft(nfo, inB, outB);
							 | 
						|||
| 
								 | 
							
								          dofft(nfo, inC, outC);
							 | 
						|||
| 
								 | 
							
								          raadd(tmp, outB, outC, N);
							 | 
						|||
| 
								 | 
							
								          e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								     return e;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static double t_shift(int n, int vecn, info *nfo, 
							 | 
						|||
| 
								 | 
							
										      R *inA, R *inB, R *outA, R *outB, R *tmp,
							 | 
						|||
| 
								 | 
							
										      int rounds, double tol,
							 | 
						|||
| 
								 | 
							
										      dim_stuff *d)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     double e = 0.0;
							 | 
						|||
| 
								 | 
							
								     int nb, na, dim, N = n * vecn;
							 | 
						|||
| 
								 | 
							
								     int i, j;
							 | 
						|||
| 
								 | 
							
								     bench_tensor *sz = nfo->probsz;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     /* test 3: check the time-shift property */
							 | 
						|||
| 
								 | 
							
								     /* the paper performs more tests, but this code should be fine too */
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     nb = 1;
							 | 
						|||
| 
								 | 
							
								     na = n;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     /* check shifts across all SZ dimensions */
							 | 
						|||
| 
								 | 
							
								     for (dim = 0; dim < sz->rnk; ++dim) {
							 | 
						|||
| 
								 | 
							
									  int ncur = sz->dims[dim].n;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  na /= ncur;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  for (j = 0; j < rounds; ++j) {
							 | 
						|||
| 
								 | 
							
									       rarand(inA, N);
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									       for (i = 0; i < vecn; ++i) {
							 | 
						|||
| 
								 | 
							
										    rarolr(inB + i * n, inA + i*n, ncur, nb,na, 
							 | 
						|||
| 
								 | 
							
											  nfo->p->k[dim]);
							 | 
						|||
| 
								 | 
							
									       }
							 | 
						|||
| 
								 | 
							
									       dofft(nfo, inA, outA);
							 | 
						|||
| 
								 | 
							
									       dofft(nfo, inB, outB);
							 | 
						|||
| 
								 | 
							
									       for (i = 0; i < vecn; ++i) 
							 | 
						|||
| 
								 | 
							
										    raphase_shift(tmp + i * n, outA + i * n, ncur, 
							 | 
						|||
| 
								 | 
							
												 nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
							 | 
						|||
| 
								 | 
							
									       e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
							 | 
						|||
| 
								 | 
							
									  }
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  nb *= ncur;
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								     return e;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								/***********************************************************************/
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
							 | 
						|||
| 
								 | 
							
								     info nfo;
							 | 
						|||
| 
								 | 
							
								     int n, vecn, N;
							 | 
						|||
| 
								 | 
							
								     double impulse_amp = 1.0;
							 | 
						|||
| 
								 | 
							
								     dim_stuff *d;
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     if (rounds == 0)
							 | 
						|||
| 
								 | 
							
									  rounds = 20;  /* default value */
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     n = tensor_sz(p->sz);
							 | 
						|||
| 
								 | 
							
								     vecn = tensor_sz(p->vecsz);
							 | 
						|||
| 
								 | 
							
								     N = n * vecn;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < p->sz->rnk; ++i) {
							 | 
						|||
| 
								 | 
							
									  int n0, i0, k0;
							 | 
						|||
| 
								 | 
							
									  trigfun ti, ts;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  d[i].n = n0 = p->sz->dims[i].n;
							 | 
						|||
| 
								 | 
							
									  if (p->k[i] > R2R_DHT)
							 | 
						|||
| 
								 | 
							
									       n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 : 
							 | 
						|||
| 
								 | 
							
											       (p->k[i] == R2R_RODFT00 ? 1 : 0)));
							 | 
						|||
| 
								 | 
							
									  
							 | 
						|||
| 
								 | 
							
									  switch (p->k[i]) {
							 | 
						|||
| 
								 | 
							
									      case R2R_R2HC:
							 | 
						|||
| 
								 | 
							
										   i0 = k0 = 0;
							 | 
						|||
| 
								 | 
							
										   ti = realhalf;
							 | 
						|||
| 
								 | 
							
										   ts = coshalf;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_DHT:
							 | 
						|||
| 
								 | 
							
										   i0 = k0 = 0;
							 | 
						|||
| 
								 | 
							
										   ti = unity;
							 | 
						|||
| 
								 | 
							
										   ts = cos00;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_HC2R:
							 | 
						|||
| 
								 | 
							
										   i0 = k0 = 0;
							 | 
						|||
| 
								 | 
							
										   ti = unity;
							 | 
						|||
| 
								 | 
							
										   ts = cos00;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_REDFT00:
							 | 
						|||
| 
								 | 
							
										   i0 = k0 = 0;
							 | 
						|||
| 
								 | 
							
										   ti = ts = cos00;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_REDFT01:
							 | 
						|||
| 
								 | 
							
										   i0 = k0 = 0;
							 | 
						|||
| 
								 | 
							
										   ti = ts = cos01;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_REDFT10:
							 | 
						|||
| 
								 | 
							
										   i0 = k0 = 0;
							 | 
						|||
| 
								 | 
							
										   ti = cos10; impulse_amp *= 2.0;
							 | 
						|||
| 
								 | 
							
										   ts = cos00;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_REDFT11:
							 | 
						|||
| 
								 | 
							
										   i0 = k0 = 0;
							 | 
						|||
| 
								 | 
							
										   ti = cos11; impulse_amp *= 2.0;
							 | 
						|||
| 
								 | 
							
										   ts = cos01;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_RODFT00:
							 | 
						|||
| 
								 | 
							
										   i0 = k0 = 1;
							 | 
						|||
| 
								 | 
							
										   ti = sin00; impulse_amp *= 2.0;
							 | 
						|||
| 
								 | 
							
										   ts = cos00;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_RODFT01:
							 | 
						|||
| 
								 | 
							
										   i0 = 1; k0 = 0;
							 | 
						|||
| 
								 | 
							
										   ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
							 | 
						|||
| 
								 | 
							
										   ts = cos01;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_RODFT10:
							 | 
						|||
| 
								 | 
							
										   i0 = 0; k0 = 1;
							 | 
						|||
| 
								 | 
							
										   ti = sin10; impulse_amp *= 2.0;
							 | 
						|||
| 
								 | 
							
										   ts = cos00;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      case R2R_RODFT11:
							 | 
						|||
| 
								 | 
							
										   i0 = k0 = 0;
							 | 
						|||
| 
								 | 
							
										   ti = sin11; impulse_amp *= 2.0;
							 | 
						|||
| 
								 | 
							
										   ts = cos01;
							 | 
						|||
| 
								 | 
							
										   break;
							 | 
						|||
| 
								 | 
							
									      default:
							 | 
						|||
| 
								 | 
							
										   BENCH_ASSERT(0);
							 | 
						|||
| 
								 | 
							
										   return;
							 | 
						|||
| 
								 | 
							
									  }
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  d[i].n0 = n0;
							 | 
						|||
| 
								 | 
							
									  d[i].i0 = i0;
							 | 
						|||
| 
								 | 
							
									  d[i].k0 = k0;
							 | 
						|||
| 
								 | 
							
									  d[i].ti = ti;
							 | 
						|||
| 
								 | 
							
									  d[i].ts = ts;
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     inA = (R *) bench_malloc(N * sizeof(R));
							 | 
						|||
| 
								 | 
							
								     inB = (R *) bench_malloc(N * sizeof(R));
							 | 
						|||
| 
								 | 
							
								     inC = (R *) bench_malloc(N * sizeof(R));
							 | 
						|||
| 
								 | 
							
								     outA = (R *) bench_malloc(N * sizeof(R));
							 | 
						|||
| 
								 | 
							
								     outB = (R *) bench_malloc(N * sizeof(R));
							 | 
						|||
| 
								 | 
							
								     outC = (R *) bench_malloc(N * sizeof(R));
							 | 
						|||
| 
								 | 
							
								     tmp = (R *) bench_malloc(N * sizeof(R));
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     nfo.p = p;
							 | 
						|||
| 
								 | 
							
								     nfo.probsz = p->sz;
							 | 
						|||
| 
								 | 
							
								     nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
							 | 
						|||
| 
								 | 
							
								     nfo.pckdsz = verify_pack(nfo.totalsz, 1);
							 | 
						|||
| 
								 | 
							
								     nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
							 | 
						|||
| 
								 | 
							
										     inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
							 | 
						|||
| 
								 | 
							
								     e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
							 | 
						|||
| 
								 | 
							
								     e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp, 
							 | 
						|||
| 
								 | 
							
										    rounds, tol, d);
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     /* grr, verify-lib.c:preserves_input() only works for complex */
							 | 
						|||
| 
								 | 
							
								     if (!p->in_place && !p->destroy_input) {
							 | 
						|||
| 
								 | 
							
									  bench_tensor *totalsz_swap, *pckdsz_swap;
							 | 
						|||
| 
								 | 
							
									  totalsz_swap = tensor_copy_swapio(nfo.totalsz);
							 | 
						|||
| 
								 | 
							
									  pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  for (i = 0; i < rounds; ++i) {
							 | 
						|||
| 
								 | 
							
									       rarand(inA, N);
							 | 
						|||
| 
								 | 
							
									       dofft(&nfo, inA, outB);
							 | 
						|||
| 
								 | 
							
									       cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
							 | 
						|||
| 
								 | 
							
									       racmp(inB, inA, N, "preserves_input", 0.0);
							 | 
						|||
| 
								 | 
							
									  }
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
									  tensor_destroy(totalsz_swap);
							 | 
						|||
| 
								 | 
							
									  tensor_destroy(pckdsz_swap);
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     tensor_destroy(nfo.totalsz);
							 | 
						|||
| 
								 | 
							
								     tensor_destroy(nfo.pckdsz);
							 | 
						|||
| 
								 | 
							
								     tensor_destroy(nfo.pckdvecsz);
							 | 
						|||
| 
								 | 
							
								     bench_free(tmp);
							 | 
						|||
| 
								 | 
							
								     bench_free(outC);
							 | 
						|||
| 
								 | 
							
								     bench_free(outB);
							 | 
						|||
| 
								 | 
							
								     bench_free(outA);
							 | 
						|||
| 
								 | 
							
								     bench_free(inC);
							 | 
						|||
| 
								 | 
							
								     bench_free(inB);
							 | 
						|||
| 
								 | 
							
								     bench_free(inA);
							 | 
						|||
| 
								 | 
							
								     bench_free(d);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								typedef struct {
							 | 
						|||
| 
								 | 
							
								     dofft_closure k;
							 | 
						|||
| 
								 | 
							
								     bench_problem *p;
							 | 
						|||
| 
								 | 
							
								     int n0;
							 | 
						|||
| 
								 | 
							
								} dofft_r2r_closure;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < n; ++i)
							 | 
						|||
| 
								 | 
							
									  out[i * os] = in[i * is] * scale;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mke00(C *a, int n, int c)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								     for (i = 1; i + i < n; ++i)
							 | 
						|||
| 
								 | 
							
									  a[n - i][c] = a[i][c];
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkre00(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     mkreal(a, n);
							 | 
						|||
| 
								 | 
							
								     mke00(a, n, 0);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkimag(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < n; ++i)
							 | 
						|||
| 
								 | 
							
									  c_re(a[i]) = 0.0;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mko00(C *a, int n, int c)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								     a[0][c] = 0.0;
							 | 
						|||
| 
								 | 
							
								     for (i = 1; i + i < n; ++i)
							 | 
						|||
| 
								 | 
							
									  a[n - i][c] = -a[i][c];
							 | 
						|||
| 
								 | 
							
								     if (i + i == n)
							 | 
						|||
| 
								 | 
							
									  a[i][c] = 0.0;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkro00(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     mkreal(a, n);
							 | 
						|||
| 
								 | 
							
								     mko00(a, n, 0);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkio00(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     mkimag(a, n);
							 | 
						|||
| 
								 | 
							
								     mko00(a, n, 1);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkre01(C *a, int n) /* n should be be multiple of 4 */
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     R a0;
							 | 
						|||
| 
								 | 
							
								     a0 = c_re(a[0]);
							 | 
						|||
| 
								 | 
							
								     mko00(a, n/2, 0);
							 | 
						|||
| 
								 | 
							
								     c_re(a[n/2]) = -(c_re(a[0]) = a0);
							 | 
						|||
| 
								 | 
							
								     mkre00(a, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkro01(C *a, int n) /* n should be be multiple of 4 */
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     c_re(a[0]) = c_im(a[0]) = 0.0;
							 | 
						|||
| 
								 | 
							
								     mkre00(a, n/2);
							 | 
						|||
| 
								 | 
							
								     mkro00(a, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkoddonly(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     int i;
							 | 
						|||
| 
								 | 
							
								     for (i = 0; i < n; i += 2)
							 | 
						|||
| 
								 | 
							
									  c_re(a[i]) = c_im(a[i]) = 0.0;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkre10(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     mkoddonly(a, n);
							 | 
						|||
| 
								 | 
							
								     mkre00(a, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkio10(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     mkoddonly(a, n);
							 | 
						|||
| 
								 | 
							
								     mkio00(a, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkre11(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     mkoddonly(a, n);
							 | 
						|||
| 
								 | 
							
								     mko00(a, n/2, 0);
							 | 
						|||
| 
								 | 
							
								     mkre00(a, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkro11(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     mkoddonly(a, n);
							 | 
						|||
| 
								 | 
							
								     mkre00(a, n/2);
							 | 
						|||
| 
								 | 
							
								     mkro00(a, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void mkio11(C *a, int n)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     mkoddonly(a, n);
							 | 
						|||
| 
								 | 
							
								     mke00(a, n/2, 1);
							 | 
						|||
| 
								 | 
							
								     mkio00(a, n);
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
							 | 
						|||
| 
								 | 
							
								     bench_problem *p = k->p;
							 | 
						|||
| 
								 | 
							
								     bench_real *ri, *ro;
							 | 
						|||
| 
								 | 
							
								     int n, is, os;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     n = p->sz->dims[0].n;
							 | 
						|||
| 
								 | 
							
								     is = p->sz->dims[0].is;
							 | 
						|||
| 
								 | 
							
								     os = p->sz->dims[0].os;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     ri = (bench_real *) p->in;
							 | 
						|||
| 
								 | 
							
								     ro = (bench_real *) p->out;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     switch (p->k[0]) {
							 | 
						|||
| 
								 | 
							
									 case R2R_R2HC:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_HC2R:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_REDFT00:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_RODFT00:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_REDFT01:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_REDFT10:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_RODFT01:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_RODFT10:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_REDFT11:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_RODFT11:
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 default:
							 | 
						|||
| 
								 | 
							
									      BENCH_ASSERT(0); /* not yet implemented */
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     after_problem_rcopy_from(p, ri);
							 | 
						|||
| 
								 | 
							
								     doit(1, p);
							 | 
						|||
| 
								 | 
							
								     after_problem_rcopy_to(p, ro);
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     switch (p->k[0]) {
							 | 
						|||
| 
								 | 
							
									 case R2R_R2HC:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input)
							 | 
						|||
| 
								 | 
							
										   cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      c_im(out[0]) = 0.0;
							 | 
						|||
| 
								 | 
							
									      if (n % 2 == 0)
							 | 
						|||
| 
								 | 
							
										   c_im(out[n/2]) = 0.0;
							 | 
						|||
| 
								 | 
							
									      mkhermitian1(out, n);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_HC2R:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input) {
							 | 
						|||
| 
								 | 
							
										   cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
										   cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
							 | 
						|||
| 
								 | 
							
									      }
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      mkreal(out, n);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_REDFT00:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input)
							 | 
						|||
| 
								 | 
							
										   cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      mkre00(out, k->n0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_RODFT00:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input)
							 | 
						|||
| 
								 | 
							
										   cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
							 | 
						|||
| 
								 | 
							
									      mkio00(out, k->n0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_REDFT01:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input)
							 | 
						|||
| 
								 | 
							
										   cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
							 | 
						|||
| 
								 | 
							
									      mkre10(out, k->n0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_REDFT10:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input)
							 | 
						|||
| 
								 | 
							
										   cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      mkre01(out, k->n0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_RODFT01:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input)
							 | 
						|||
| 
								 | 
							
										   cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
							 | 
						|||
| 
								 | 
							
									      mkio10(out, k->n0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_RODFT10:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input)
							 | 
						|||
| 
								 | 
							
										   cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
							 | 
						|||
| 
								 | 
							
									      mkro01(out, k->n0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_REDFT11:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input)
							 | 
						|||
| 
								 | 
							
										   cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
							 | 
						|||
| 
								 | 
							
									      mkre11(out, k->n0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 case R2R_RODFT11:
							 | 
						|||
| 
								 | 
							
									      if (k->k.recopy_input)
							 | 
						|||
| 
								 | 
							
										   cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
							 | 
						|||
| 
								 | 
							
									      cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
							 | 
						|||
| 
								 | 
							
									      mkio11(out, k->n0);
							 | 
						|||
| 
								 | 
							
									      break;
							 | 
						|||
| 
								 | 
							
									 default:
							 | 
						|||
| 
								 | 
							
									      BENCH_ASSERT(0); /* not yet implemented */
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
							 | 
						|||
| 
								 | 
							
										  double t[6])
							 | 
						|||
| 
								 | 
							
								{
							 | 
						|||
| 
								 | 
							
								     dofft_r2r_closure k;
							 | 
						|||
| 
								 | 
							
								     int n, n0 = 1;
							 | 
						|||
| 
								 | 
							
								     C *a, *b;
							 | 
						|||
| 
								 | 
							
								     aconstrain constrain = 0;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     BENCH_ASSERT(p->kind == PROBLEM_R2R);
							 | 
						|||
| 
								 | 
							
								     BENCH_ASSERT(p->sz->rnk == 1);
							 | 
						|||
| 
								 | 
							
								     BENCH_ASSERT(p->vecsz->rnk == 0);
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     k.k.apply = r2r_apply;
							 | 
						|||
| 
								 | 
							
								     k.k.recopy_input = 0;
							 | 
						|||
| 
								 | 
							
								     k.p = p;
							 | 
						|||
| 
								 | 
							
								     n = tensor_sz(p->sz);
							 | 
						|||
| 
								 | 
							
								     
							 | 
						|||
| 
								 | 
							
								     switch (p->k[0]) {
							 | 
						|||
| 
								 | 
							
								         case R2R_R2HC: constrain = mkreal; n0 = n; break;
							 | 
						|||
| 
								 | 
							
								         case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
							 | 
						|||
| 
								 | 
							
								         case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
							 | 
						|||
| 
								 | 
							
								         case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
							 | 
						|||
| 
								 | 
							
								         case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
							 | 
						|||
| 
								 | 
							
								         case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
							 | 
						|||
| 
								 | 
							
								         case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
							 | 
						|||
| 
								 | 
							
								         case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
							 | 
						|||
| 
								 | 
							
								         case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
							 | 
						|||
| 
								 | 
							
								         case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
							 | 
						|||
| 
								 | 
							
									 default: BENCH_ASSERT(0); /* not yet implemented */
							 | 
						|||
| 
								 | 
							
								     }
							 | 
						|||
| 
								 | 
							
								     k.n0 = n0;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								     a = (C *) bench_malloc(n0 * sizeof(C));
							 | 
						|||
| 
								 | 
							
								     b = (C *) bench_malloc(n0 * sizeof(C));
							 | 
						|||
| 
								 | 
							
								     accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
							 | 
						|||
| 
								 | 
							
								     bench_free(b);
							 | 
						|||
| 
								 | 
							
								     bench_free(a);
							 | 
						|||
| 
								 | 
							
								}
							 |