216 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			216 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "kernel/ifftw.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int signof(INT x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     if (x < 0) return -1;
							 | 
						||
| 
								 | 
							
								     if (x == 0) return 0;
							 | 
						||
| 
								 | 
							
								     /* if (x > 0) */ return 1;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* total order among iodim's */
							 | 
						||
| 
								 | 
							
								int X(dimcmp)(const iodim *a, const iodim *b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
							 | 
						||
| 
								 | 
							
								     INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os);
							 | 
						||
| 
								 | 
							
								     INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* in descending order of min{istride, ostride} */
							 | 
						||
| 
								 | 
							
								     if (sam != sbm)
							 | 
						||
| 
								 | 
							
									  return signof(sbm - sam);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* in case of a tie, in descending order of istride */
							 | 
						||
| 
								 | 
							
								     if (sbi != sai)
							 | 
						||
| 
								 | 
							
								          return signof(sbi - sai);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* in case of a tie, in descending order of ostride */
							 | 
						||
| 
								 | 
							
								     if (sbo != sao)
							 | 
						||
| 
								 | 
							
								          return signof(sbo - sao);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* in case of a tie, in ascending order of n */
							 | 
						||
| 
								 | 
							
								     return signof(a->n - b->n);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void canonicalize(tensor *x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     if (x->rnk > 1) {
							 | 
						||
| 
								 | 
							
									  qsort(x->dims, (unsigned)x->rnk, sizeof(iodim),
							 | 
						||
| 
								 | 
							
										(int (*)(const void *, const void *))X(dimcmp));
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int compare_by_istride(const iodim *a, const iodim *b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* in descending order of istride */
							 | 
						||
| 
								 | 
							
								     return signof(sbi - sai);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static tensor *really_compress(const tensor *sz)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     int i, rnk;
							 | 
						||
| 
								 | 
							
								     tensor *x;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     A(FINITE_RNK(sz->rnk));
							 | 
						||
| 
								 | 
							
								     for (i = rnk = 0; i < sz->rnk; ++i) {
							 | 
						||
| 
								 | 
							
								          A(sz->dims[i].n > 0);
							 | 
						||
| 
								 | 
							
								          if (sz->dims[i].n != 1)
							 | 
						||
| 
								 | 
							
								               ++rnk;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     x = X(mktensor)(rnk);
							 | 
						||
| 
								 | 
							
								     for (i = rnk = 0; i < sz->rnk; ++i) {
							 | 
						||
| 
								 | 
							
								          if (sz->dims[i].n != 1)
							 | 
						||
| 
								 | 
							
								               x->dims[rnk++] = sz->dims[i];
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     return x;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Like tensor_copy, but eliminate n == 1 dimensions, which
							 | 
						||
| 
								 | 
							
								   never affect any transform or transform vector.
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								   Also, we sort the tensor into a canonical order of decreasing
							 | 
						||
| 
								 | 
							
								   strides (see X(dimcmp) for an exact definition).  In general,
							 | 
						||
| 
								 | 
							
								   processing a loop/array in order of decreasing stride will improve
							 | 
						||
| 
								 | 
							
								   locality.  Both forward and backwards traversal of the tensor are
							 | 
						||
| 
								 | 
							
								   considered e.g. by vrank-geq1, so sorting in increasing
							 | 
						||
| 
								 | 
							
								   vs. decreasing order is not really important. */
							 | 
						||
| 
								 | 
							
								tensor *X(tensor_compress)(const tensor *sz)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     tensor *x = really_compress(sz);
							 | 
						||
| 
								 | 
							
								     canonicalize(x);
							 | 
						||
| 
								 | 
							
								     return x;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Return whether the strides of a and b are such that they form an
							 | 
						||
| 
								 | 
							
								   effective contiguous 1d array.  Assumes that a.is >= b.is. */
							 | 
						||
| 
								 | 
							
								static int strides_contig(iodim *a, iodim *b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     return (a->is == b->is * b->n && a->os == b->os * b->n);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Like tensor_compress, but also compress into one dimension any
							 | 
						||
| 
								 | 
							
								   group of dimensions that form a contiguous block of indices with
							 | 
						||
| 
								 | 
							
								   some stride.  (This can safely be done for transform vector sizes.) */
							 | 
						||
| 
								 | 
							
								tensor *X(tensor_compress_contiguous)(const tensor *sz)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     int i, rnk;
							 | 
						||
| 
								 | 
							
								     tensor *sz2, *x;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (X(tensor_sz)(sz) == 0) 
							 | 
						||
| 
								 | 
							
									  return X(mktensor)(RNK_MINFTY);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     sz2 = really_compress(sz);
							 | 
						||
| 
								 | 
							
								     A(FINITE_RNK(sz2->rnk));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (sz2->rnk <= 1) { /* nothing to compress. */ 
							 | 
						||
| 
								 | 
							
									  if (0) {
							 | 
						||
| 
								 | 
							
									       /* this call is redundant, because "sz->rnk <= 1" implies
							 | 
						||
| 
								 | 
							
										  that the tensor is already canonical, but I am writing
							 | 
						||
| 
								 | 
							
										  it explicitly because "logically" we need to canonicalize
							 | 
						||
| 
								 | 
							
										  the tensor before returning. */
							 | 
						||
| 
								 | 
							
									       canonicalize(sz2);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								          return sz2;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* sort in descending order of |istride|, so that compressible
							 | 
						||
| 
								 | 
							
									dimensions appear contigously */
							 | 
						||
| 
								 | 
							
								     qsort(sz2->dims, (unsigned)sz2->rnk, sizeof(iodim),
							 | 
						||
| 
								 | 
							
										(int (*)(const void *, const void *))compare_by_istride);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* compute what the rank will be after compression */
							 | 
						||
| 
								 | 
							
								     for (i = rnk = 1; i < sz2->rnk; ++i)
							 | 
						||
| 
								 | 
							
								          if (!strides_contig(sz2->dims + i - 1, sz2->dims + i))
							 | 
						||
| 
								 | 
							
								               ++rnk;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* merge adjacent dimensions whenever possible */
							 | 
						||
| 
								 | 
							
								     x = X(mktensor)(rnk);
							 | 
						||
| 
								 | 
							
								     x->dims[0] = sz2->dims[0];
							 | 
						||
| 
								 | 
							
								     for (i = rnk = 1; i < sz2->rnk; ++i) {
							 | 
						||
| 
								 | 
							
								          if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) {
							 | 
						||
| 
								 | 
							
								               x->dims[rnk - 1].n *= sz2->dims[i].n;
							 | 
						||
| 
								 | 
							
								               x->dims[rnk - 1].is = sz2->dims[i].is;
							 | 
						||
| 
								 | 
							
								               x->dims[rnk - 1].os = sz2->dims[i].os;
							 | 
						||
| 
								 | 
							
								          } else {
							 | 
						||
| 
								 | 
							
								               A(rnk < x->rnk);
							 | 
						||
| 
								 | 
							
								               x->dims[rnk++] = sz2->dims[i];
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(tensor_destroy)(sz2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* reduce to canonical form */
							 | 
						||
| 
								 | 
							
								     canonicalize(x);
							 | 
						||
| 
								 | 
							
								     return x;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* The inverse of X(tensor_append): splits the sz tensor into
							 | 
						||
| 
								 | 
							
								   tensor a followed by tensor b, where a's rank is arnk. */
							 | 
						||
| 
								 | 
							
								void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     *a = X(tensor_copy_sub)(sz, 0, arnk);
							 | 
						||
| 
								 | 
							
								     *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* TRUE if the two tensors are equal */
							 | 
						||
| 
								 | 
							
								int X(tensor_equal)(const tensor *a, const tensor *b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     if (a->rnk != b->rnk)
							 | 
						||
| 
								 | 
							
									  return 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (FINITE_RNK(a->rnk)) {
							 | 
						||
| 
								 | 
							
									  int i;
							 | 
						||
| 
								 | 
							
									  for (i = 0; i < a->rnk; ++i) 
							 | 
						||
| 
								 | 
							
									       if (0
							 | 
						||
| 
								 | 
							
										   || a->dims[i].n != b->dims[i].n
							 | 
						||
| 
								 | 
							
										   || a->dims[i].is != b->dims[i].is
							 | 
						||
| 
								 | 
							
										   || a->dims[i].os != b->dims[i].os
							 | 
						||
| 
								 | 
							
										    )
							 | 
						||
| 
								 | 
							
										    return 0;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return 1;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* TRUE if the sets of input and output locations described by
							 | 
						||
| 
								 | 
							
								   (append sz vecsz) are the same */
							 | 
						||
| 
								 | 
							
								int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     tensor *t = X(tensor_append)(sz, vecsz);
							 | 
						||
| 
								 | 
							
								     tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS);
							 | 
						||
| 
								 | 
							
								     tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS);
							 | 
						||
| 
								 | 
							
								     tensor *tic = X(tensor_compress_contiguous)(ti);
							 | 
						||
| 
								 | 
							
								     tensor *toc = X(tensor_compress_contiguous)(to);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     int retval = X(tensor_equal)(tic, toc);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(tensor_destroy)(t);
							 | 
						||
| 
								 | 
							
								     X(tensor_destroy4)(ti, to, tic, toc);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return retval;
							 | 
						||
| 
								 | 
							
								}
							 |