193 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			193 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 29 FP additions, 30 FP multiplications, | ||
|  |  * (or, 17 additions, 18 multiplications, 12 fused multiply/add), | ||
|  |  * 38 stack variables, 2 constants, and 12 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cfv.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       V T8, Tr, Tf, Tk, Tl, Ts, Tt, Tu, T3, Tj, Te, Th, T7, Ta, T1; | ||
|  | 	       V T2, Ti, Tc, Td, Tb, Tg, T5, T6, T4, T9, Tm, Tv, Tp, Tq, Tn; | ||
|  | 	       V To, Ty, Tz, Tw, Tx; | ||
|  | 	       T1 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T3 = VFMACONJ(T2, T1); | ||
|  | 	       Ti = LDW(&(W[0])); | ||
|  | 	       Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1)); | ||
|  | 	       Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       Tb = LDW(&(W[TWVL * 8])); | ||
|  | 	       Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc)); | ||
|  | 	       Tg = LDW(&(W[TWVL * 6])); | ||
|  | 	       Th = VZMULJ(Tg, VFMACONJ(Td, Tc)); | ||
|  | 	       T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       T4 = LDW(&(W[TWVL * 4])); | ||
|  | 	       T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5)); | ||
|  | 	       T9 = LDW(&(W[TWVL * 2])); | ||
|  | 	       Ta = VZMULJ(T9, VFMACONJ(T6, T5)); | ||
|  | 	       T8 = VSUB(T3, T7); | ||
|  | 	       Tr = VADD(T3, T7); | ||
|  | 	       Tf = VSUB(Ta, Te); | ||
|  | 	       Tk = VSUB(Th, Tj); | ||
|  | 	       Tl = VADD(Tf, Tk); | ||
|  | 	       Ts = VADD(Ta, Te); | ||
|  | 	       Tt = VADD(Tj, Th); | ||
|  | 	       Tu = VADD(Ts, Tt); | ||
|  | 	       Tm = VMUL(LDK(KP500000000), VADD(T8, Tl)); | ||
|  | 	       ST(&(Rp[0]), Tm, ms, &(Rp[0])); | ||
|  | 	       Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu))); | ||
|  | 	       ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0])); | ||
|  | 	       Tn = VFNMS(LDK(KP500000000), Tl, T8); | ||
|  | 	       To = VMUL(LDK(KP866025403), VSUB(Tk, Tf)); | ||
|  | 	       Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn)); | ||
|  | 	       Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn))); | ||
|  | 	       ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0])); | ||
|  | 	       ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Tw = VFNMS(LDK(KP500000000), Tu, Tr); | ||
|  | 	       Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts)); | ||
|  | 	       Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw))); | ||
|  | 	       Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw)); | ||
|  | 	       ST(&(Rm[0]), Ty, -ms, &(Rm[0])); | ||
|  | 	       ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, { 17, 18, 12, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cfdftv_6) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 29 FP additions, 20 FP multiplications, | ||
|  |  * (or, 27 additions, 18 multiplications, 2 fused multiply/add), | ||
|  |  * 42 stack variables, 3 constants, and 12 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cfv.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2; | ||
|  | 	       V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To; | ||
|  | 	       V Tt, Ts, TA, Ty, Tz, Tx, TC, TB; | ||
|  | 	       T1 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       Tf = VCONJ(Te); | ||
|  | 	       T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       T7 = VCONJ(T6); | ||
|  | 	       T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T3 = VCONJ(T2); | ||
|  | 	       T4 = VADD(T1, T3); | ||
|  | 	       T5 = LDW(&(W[TWVL * 4])); | ||
|  | 	       T9 = VZMULIJ(T5, VSUB(T7, T8)); | ||
|  | 	       Ta = VADD(T4, T9); | ||
|  | 	       Tu = VSUB(T4, T9); | ||
|  | 	       Tj = LDW(&(W[0])); | ||
|  | 	       Tk = VZMULIJ(Tj, VSUB(T3, T1)); | ||
|  | 	       Tl = LDW(&(W[TWVL * 6])); | ||
|  | 	       Tm = VZMULJ(Tl, VADD(Tf, Tg)); | ||
|  | 	       Tn = VADD(Tk, Tm); | ||
|  | 	       Tw = VSUB(Tm, Tk); | ||
|  | 	       Tb = LDW(&(W[TWVL * 2])); | ||
|  | 	       Tc = VZMULJ(Tb, VADD(T7, T8)); | ||
|  | 	       Td = LDW(&(W[TWVL * 8])); | ||
|  | 	       Th = VZMULIJ(Td, VSUB(Tf, Tg)); | ||
|  | 	       Ti = VADD(Tc, Th); | ||
|  | 	       Tv = VSUB(Tc, Th); | ||
|  | 	       Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti)))); | ||
|  | 	       To = VADD(Ti, Tn); | ||
|  | 	       Tp = VMUL(LDK(KP500000000), VADD(Ta, To)); | ||
|  | 	       Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta)); | ||
|  | 	       ST(&(Rp[0]), Tp, ms, &(Rp[0])); | ||
|  | 	       Tt = VCONJ(VADD(Tq, Tr)); | ||
|  | 	       ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Ts = VSUB(Tq, Tr); | ||
|  | 	       ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0])); | ||
|  | 	       TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv)))); | ||
|  | 	       Tx = VADD(Tv, Tw); | ||
|  | 	       Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx))); | ||
|  | 	       Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu)); | ||
|  | 	       ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0])); | ||
|  | 	       TC = VADD(Tz, TA); | ||
|  | 	       ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       TB = VCONJ(VSUB(Tz, TA)); | ||
|  | 	       ST(&(Rm[0]), TB, -ms, &(Rm[0])); | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, { 27, 18, 2, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cfdftv_6) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |