294 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			294 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:48 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 64 FP additions, 43 FP multiplications, | ||
|  |  * (or, 21 additions, 0 multiplications, 43 fused multiply/add), | ||
|  |  * 46 stack variables, 9 constants, and 30 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cb.h"
 | ||
|  | 
 | ||
|  | static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | ||
|  |      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { | ||
|  | 	       E T3, Tt, Th, TC, TY, TZ, TD, TH, TI, Tm, Tu, Tr, Tv, T8, Td; | ||
|  | 	       E Te; | ||
|  | 	       { | ||
|  | 		    E Tg, T1, T2, Tf; | ||
|  | 		    Tg = Ci[WS(csi, 5)]; | ||
|  | 		    T1 = Cr[0]; | ||
|  | 		    T2 = Cr[WS(csr, 5)]; | ||
|  | 		    Tf = T1 - T2; | ||
|  | 		    T3 = FMA(KP2_000000000, T2, T1); | ||
|  | 		    Tt = FNMS(KP1_732050807, Tg, Tf); | ||
|  | 		    Th = FMA(KP1_732050807, Tg, Tf); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4, TA, T9, TF, T5, T6, T7, Ta, Tb, Tc, Tq, TG, Tl, TB, Ti; | ||
|  | 		    E Tn; | ||
|  | 		    T4 = Cr[WS(csr, 3)]; | ||
|  | 		    TA = Ci[WS(csi, 3)]; | ||
|  | 		    T9 = Cr[WS(csr, 6)]; | ||
|  | 		    TF = Ci[WS(csi, 6)]; | ||
|  | 		    T5 = Cr[WS(csr, 7)]; | ||
|  | 		    T6 = Cr[WS(csr, 2)]; | ||
|  | 		    T7 = T5 + T6; | ||
|  | 		    Ta = Cr[WS(csr, 4)]; | ||
|  | 		    Tb = Cr[WS(csr, 1)]; | ||
|  | 		    Tc = Ta + Tb; | ||
|  | 		    { | ||
|  | 			 E To, Tp, Tj, Tk; | ||
|  | 			 To = Ci[WS(csi, 4)]; | ||
|  | 			 Tp = Ci[WS(csi, 1)]; | ||
|  | 			 Tq = To + Tp; | ||
|  | 			 TG = Tp - To; | ||
|  | 			 Tj = Ci[WS(csi, 7)]; | ||
|  | 			 Tk = Ci[WS(csi, 2)]; | ||
|  | 			 Tl = Tj - Tk; | ||
|  | 			 TB = Tj + Tk; | ||
|  | 		    } | ||
|  | 		    TC = FMA(KP500000000, TB, TA); | ||
|  | 		    TY = TG + TF; | ||
|  | 		    TZ = TA - TB; | ||
|  | 		    TD = T5 - T6; | ||
|  | 		    TH = FNMS(KP500000000, TG, TF); | ||
|  | 		    TI = Ta - Tb; | ||
|  | 		    Ti = FNMS(KP2_000000000, T4, T7); | ||
|  | 		    Tm = FMA(KP1_732050807, Tl, Ti); | ||
|  | 		    Tu = FNMS(KP1_732050807, Tl, Ti); | ||
|  | 		    Tn = FNMS(KP2_000000000, T9, Tc); | ||
|  | 		    Tr = FMA(KP1_732050807, Tq, Tn); | ||
|  | 		    Tv = FNMS(KP1_732050807, Tq, Tn); | ||
|  | 		    T8 = T4 + T7; | ||
|  | 		    Td = T9 + Tc; | ||
|  | 		    Te = T8 + Td; | ||
|  | 	       } | ||
|  | 	       R0[0] = FMA(KP2_000000000, Te, T3); | ||
|  | 	       { | ||
|  | 		    E T10, T12, TX, T11, TV, TW; | ||
|  | 		    T10 = FNMS(KP618033988, TZ, TY); | ||
|  | 		    T12 = FMA(KP618033988, TY, TZ); | ||
|  | 		    TV = FNMS(KP500000000, Te, T3); | ||
|  | 		    TW = T8 - Td; | ||
|  | 		    TX = FNMS(KP1_118033988, TW, TV); | ||
|  | 		    T11 = FMA(KP1_118033988, TW, TV); | ||
|  | 		    R1[WS(rs, 1)] = FNMS(KP1_902113032, T10, TX); | ||
|  | 		    R1[WS(rs, 4)] = FMA(KP1_902113032, T12, T11); | ||
|  | 		    R0[WS(rs, 6)] = FMA(KP1_902113032, T10, TX); | ||
|  | 		    R0[WS(rs, 3)] = FNMS(KP1_902113032, T12, T11); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TO, Ts, TN, TS, TU, TQ, TR, TT, TP; | ||
|  | 		    TO = Tr - Tm; | ||
|  | 		    Ts = Tm + Tr; | ||
|  | 		    TN = FMA(KP250000000, Ts, Th); | ||
|  | 		    TQ = FNMS(KP866025403, TI, TH); | ||
|  | 		    TR = FNMS(KP866025403, TD, TC); | ||
|  | 		    TS = FNMS(KP618033988, TR, TQ); | ||
|  | 		    TU = FMA(KP618033988, TQ, TR); | ||
|  | 		    R1[WS(rs, 2)] = Th - Ts; | ||
|  | 		    TT = FMA(KP559016994, TO, TN); | ||
|  | 		    R1[WS(rs, 5)] = FNMS(KP1_902113032, TU, TT); | ||
|  | 		    R0[WS(rs, 7)] = FMA(KP1_902113032, TU, TT); | ||
|  | 		    TP = FNMS(KP559016994, TO, TN); | ||
|  | 		    R0[WS(rs, 4)] = FNMS(KP1_902113032, TS, TP); | ||
|  | 		    R0[WS(rs, 1)] = FMA(KP1_902113032, TS, TP); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ty, Tw, Tx, TK, TM, TE, TJ, TL, Tz; | ||
|  | 		    Ty = Tv - Tu; | ||
|  | 		    Tw = Tu + Tv; | ||
|  | 		    Tx = FMA(KP250000000, Tw, Tt); | ||
|  | 		    TE = FMA(KP866025403, TD, TC); | ||
|  | 		    TJ = FMA(KP866025403, TI, TH); | ||
|  | 		    TK = FMA(KP618033988, TJ, TE); | ||
|  | 		    TM = FNMS(KP618033988, TE, TJ); | ||
|  | 		    R0[WS(rs, 5)] = Tt - Tw; | ||
|  | 		    TL = FNMS(KP559016994, Ty, Tx); | ||
|  | 		    R1[WS(rs, 6)] = FNMS(KP1_902113032, TM, TL); | ||
|  | 		    R1[WS(rs, 3)] = FMA(KP1_902113032, TM, TL); | ||
|  | 		    Tz = FMA(KP559016994, Ty, Tx); | ||
|  | 		    R1[0] = FNMS(KP1_902113032, TK, Tz); | ||
|  | 		    R0[WS(rs, 2)] = FMA(KP1_902113032, TK, Tz); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 15, "r2cb_15", { 21, 0, 43, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 64 FP additions, 31 FP multiplications, | ||
|  |  * (or, 47 additions, 14 multiplications, 17 fused multiply/add), | ||
|  |  * 44 stack variables, 7 constants, and 30 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cb.h"
 | ||
|  | 
 | ||
|  | static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | ||
|  |      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | ||
|  |      DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { | ||
|  | 	       E T3, Tu, Ti, TB, TZ, T10, TE, TG, TJ, Tn, Tv, Ts, Tw, T8, Td; | ||
|  | 	       E Te; | ||
|  | 	       { | ||
|  | 		    E Th, T1, T2, Tf, Tg; | ||
|  | 		    Tg = Ci[WS(csi, 5)]; | ||
|  | 		    Th = KP1_732050807 * Tg; | ||
|  | 		    T1 = Cr[0]; | ||
|  | 		    T2 = Cr[WS(csr, 5)]; | ||
|  | 		    Tf = T1 - T2; | ||
|  | 		    T3 = FMA(KP2_000000000, T2, T1); | ||
|  | 		    Tu = Tf - Th; | ||
|  | 		    Ti = Tf + Th; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4, TD, T9, TI, T5, T6, T7, Ta, Tb, Tc, Tr, TH, Tm, TC, Tj; | ||
|  | 		    E To; | ||
|  | 		    T4 = Cr[WS(csr, 3)]; | ||
|  | 		    TD = Ci[WS(csi, 3)]; | ||
|  | 		    T9 = Cr[WS(csr, 6)]; | ||
|  | 		    TI = Ci[WS(csi, 6)]; | ||
|  | 		    T5 = Cr[WS(csr, 7)]; | ||
|  | 		    T6 = Cr[WS(csr, 2)]; | ||
|  | 		    T7 = T5 + T6; | ||
|  | 		    Ta = Cr[WS(csr, 4)]; | ||
|  | 		    Tb = Cr[WS(csr, 1)]; | ||
|  | 		    Tc = Ta + Tb; | ||
|  | 		    { | ||
|  | 			 E Tp, Tq, Tk, Tl; | ||
|  | 			 Tp = Ci[WS(csi, 4)]; | ||
|  | 			 Tq = Ci[WS(csi, 1)]; | ||
|  | 			 Tr = KP866025403 * (Tp + Tq); | ||
|  | 			 TH = Tp - Tq; | ||
|  | 			 Tk = Ci[WS(csi, 7)]; | ||
|  | 			 Tl = Ci[WS(csi, 2)]; | ||
|  | 			 Tm = KP866025403 * (Tk - Tl); | ||
|  | 			 TC = Tk + Tl; | ||
|  | 		    } | ||
|  | 		    TB = KP866025403 * (T5 - T6); | ||
|  | 		    TZ = TD - TC; | ||
|  | 		    T10 = TI - TH; | ||
|  | 		    TE = FMA(KP500000000, TC, TD); | ||
|  | 		    TG = KP866025403 * (Ta - Tb); | ||
|  | 		    TJ = FMA(KP500000000, TH, TI); | ||
|  | 		    Tj = FNMS(KP500000000, T7, T4); | ||
|  | 		    Tn = Tj - Tm; | ||
|  | 		    Tv = Tj + Tm; | ||
|  | 		    To = FNMS(KP500000000, Tc, T9); | ||
|  | 		    Ts = To - Tr; | ||
|  | 		    Tw = To + Tr; | ||
|  | 		    T8 = T4 + T7; | ||
|  | 		    Td = T9 + Tc; | ||
|  | 		    Te = T8 + Td; | ||
|  | 	       } | ||
|  | 	       R0[0] = FMA(KP2_000000000, Te, T3); | ||
|  | 	       { | ||
|  | 		    E T11, T13, TY, T12, TW, TX; | ||
|  | 		    T11 = FNMS(KP1_902113032, T10, KP1_175570504 * TZ); | ||
|  | 		    T13 = FMA(KP1_902113032, TZ, KP1_175570504 * T10); | ||
|  | 		    TW = FNMS(KP500000000, Te, T3); | ||
|  | 		    TX = KP1_118033988 * (T8 - Td); | ||
|  | 		    TY = TW - TX; | ||
|  | 		    T12 = TX + TW; | ||
|  | 		    R0[WS(rs, 6)] = TY - T11; | ||
|  | 		    R1[WS(rs, 4)] = T12 + T13; | ||
|  | 		    R1[WS(rs, 1)] = TY + T11; | ||
|  | 		    R0[WS(rs, 3)] = T12 - T13; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TP, Tt, TO, TT, TV, TR, TS, TU, TQ; | ||
|  | 		    TP = KP1_118033988 * (Tn - Ts); | ||
|  | 		    Tt = Tn + Ts; | ||
|  | 		    TO = FNMS(KP500000000, Tt, Ti); | ||
|  | 		    TR = TE - TB; | ||
|  | 		    TS = TJ - TG; | ||
|  | 		    TT = FNMS(KP1_902113032, TS, KP1_175570504 * TR); | ||
|  | 		    TV = FMA(KP1_902113032, TR, KP1_175570504 * TS); | ||
|  | 		    R1[WS(rs, 2)] = FMA(KP2_000000000, Tt, Ti); | ||
|  | 		    TU = TP + TO; | ||
|  | 		    R1[WS(rs, 5)] = TU - TV; | ||
|  | 		    R0[WS(rs, 7)] = TU + TV; | ||
|  | 		    TQ = TO - TP; | ||
|  | 		    R0[WS(rs, 1)] = TQ - TT; | ||
|  | 		    R0[WS(rs, 4)] = TQ + TT; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tz, Tx, Ty, TL, TN, TF, TK, TM, TA; | ||
|  | 		    Tz = KP1_118033988 * (Tv - Tw); | ||
|  | 		    Tx = Tv + Tw; | ||
|  | 		    Ty = FNMS(KP500000000, Tx, Tu); | ||
|  | 		    TF = TB + TE; | ||
|  | 		    TK = TG + TJ; | ||
|  | 		    TL = FNMS(KP1_902113032, TK, KP1_175570504 * TF); | ||
|  | 		    TN = FMA(KP1_902113032, TF, KP1_175570504 * TK); | ||
|  | 		    R0[WS(rs, 5)] = FMA(KP2_000000000, Tx, Tu); | ||
|  | 		    TM = Tz + Ty; | ||
|  | 		    R1[0] = TM - TN; | ||
|  | 		    R0[WS(rs, 2)] = TM + TN; | ||
|  | 		    TA = Ty - Tz; | ||
|  | 		    R1[WS(rs, 3)] = TA - TL; | ||
|  | 		    R1[WS(rs, 6)] = TA + TL; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 15, "r2cb_15", { 47, 14, 17, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |