4026 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			4026 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:51 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 64 -dif -name hb_64 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 1038 FP additions, 644 FP multiplications, | ||
|  |  * (or, 520 additions, 126 multiplications, 518 fused multiply/add), | ||
|  |  * 192 stack variables, 15 constants, and 256 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP881921264, +0.881921264348355029712756863660388349508442621); | ||
|  |      DK(KP534511135, +0.534511135950791641089685961295362908582039528); | ||
|  |      DK(KP956940335, +0.956940335732208864935797886980269969482849206); | ||
|  |      DK(KP303346683, +0.303346683607342391675883946941299872384187453); | ||
|  |      DK(KP995184726, +0.995184726672196886244836953109479921575474869); | ||
|  |      DK(KP098491403, +0.098491403357164253077197521291327432293052451); | ||
|  |      DK(KP831469612, +0.831469612302545237078788377617905756738560812); | ||
|  |      DK(KP773010453, +0.773010453362736960810906609758469800971041293); | ||
|  |      DK(KP820678790, +0.820678790828660330972281985331011598767386482); | ||
|  |      DK(KP980785280, +0.980785280403230449126182236134239036973933731); | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP668178637, +0.668178637919298919997757686523080761552472251); | ||
|  |      DK(KP198912367, +0.198912367379658006911597622644676228597850501); | ||
|  |      DK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | ||
|  | 	       E Tv, Thy, T5B, T7n, Tey, TfP, TjB, Tkl, T2k, T6U, T2H, T7o, Tia, TiH, Tj8; | ||
|  | 	       E Tk8, T5E, T6V, T9N, Tbz, T9Q, Tb7, Tev, Tgh, T8G, Tb6, T8N, TbA, TcU, TfO; | ||
|  | 	       E Td5, Tgi, T10, Ti3, Tje, TjC, ThF, TiI, Tds, TeA, Tjb, TjD, Tdh, TeB, TfT; | ||
|  | 	       E Tgl, TfW, Tgk, T39, T7r, T5H, T6Z, T8V, TbC, T9S, Tbb, T3A, T7q, T5G, T72; | ||
|  | 	       E T92, TbD, T9T, Tbe, T1w, ThH, Tjq, Tke, Tjt, Tkf, ThO, TiK, Tec, TgT, Tfc; | ||
|  | 	       E Tgb, Tel, TgU, Tfd, Tg8, T5a, T82, T83, T5n, T6i, T77, T7a, T6j, T9f, Tcb; | ||
|  | 	       E Tcc, T9m, Tar, Tbj, Tbm, Tas, T21, ThQ, Tjj, Tkb, Tjm, Tkc, ThX, TiL, TdL; | ||
|  | 	       E TgW, Tf9, Tg4, TdU, TgX, Tfa, Tg1, T4h, T7Z, T80, T4u, T6f, T7e, T7h, T6g; | ||
|  | 	       E T9y, Tce, Tcf, T9F, Tau, Tbq, Tbt, Tav; | ||
|  | 	       { | ||
|  | 		    E T3, T6, T7, T5t, T24, Tes, Ter, T27, Ti4, T5w, Ta, TcR, Td, TcS, Te; | ||
|  | 		    E T2d, Ti5, T5z, T5y, T2i, Tm, Td3, Ti7, T2p, T2u, T8I, Td0, T8H, Tt, TcY; | ||
|  | 		    E Ti8, T2A, T2F, T8L, TcX, T8K; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T4, T5; | ||
|  | 			 T1 = cr[0]; | ||
|  | 			 T2 = ci[WS(rs, 31)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T4 = cr[WS(rs, 16)]; | ||
|  | 			 T5 = ci[WS(rs, 15)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 T5t = T4 - T5; | ||
|  | 			 T24 = T1 - T2; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T25, T26, T5u, T5v; | ||
|  | 			 T25 = ci[WS(rs, 47)]; | ||
|  | 			 T26 = cr[WS(rs, 48)]; | ||
|  | 			 Tes = T25 - T26; | ||
|  | 			 T5u = ci[WS(rs, 63)]; | ||
|  | 			 T5v = cr[WS(rs, 32)]; | ||
|  | 			 Ter = T5u - T5v; | ||
|  | 			 T27 = T25 + T26; | ||
|  | 			 Ti4 = Ter + Tes; | ||
|  | 			 T5w = T5u + T5v; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T29, T2h, T2e, T2c; | ||
|  | 			 { | ||
|  | 			      E T8, T9, T2f, T2g; | ||
|  | 			      T8 = cr[WS(rs, 8)]; | ||
|  | 			      T9 = ci[WS(rs, 23)]; | ||
|  | 			      Ta = T8 + T9; | ||
|  | 			      T29 = T8 - T9; | ||
|  | 			      T2f = ci[WS(rs, 39)]; | ||
|  | 			      T2g = cr[WS(rs, 56)]; | ||
|  | 			      T2h = T2f + T2g; | ||
|  | 			      TcR = T2f - T2g; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tb, Tc, T2a, T2b; | ||
|  | 			      Tb = ci[WS(rs, 7)]; | ||
|  | 			      Tc = cr[WS(rs, 24)]; | ||
|  | 			      Td = Tb + Tc; | ||
|  | 			      T2e = Tb - Tc; | ||
|  | 			      T2a = ci[WS(rs, 55)]; | ||
|  | 			      T2b = cr[WS(rs, 40)]; | ||
|  | 			      T2c = T2a + T2b; | ||
|  | 			      TcS = T2a - T2b; | ||
|  | 			 } | ||
|  | 			 Te = Ta + Td; | ||
|  | 			 T2d = T29 - T2c; | ||
|  | 			 Ti5 = TcS + TcR; | ||
|  | 			 T5z = T2e + T2h; | ||
|  | 			 T5y = T29 + T2c; | ||
|  | 			 T2i = T2e - T2h; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ti, T2l, T2t, Td1, Tl, T2q, T2o, Td2; | ||
|  | 			 { | ||
|  | 			      E Tg, Th, T2r, T2s; | ||
|  | 			      Tg = cr[WS(rs, 4)]; | ||
|  | 			      Th = ci[WS(rs, 27)]; | ||
|  | 			      Ti = Tg + Th; | ||
|  | 			      T2l = Tg - Th; | ||
|  | 			      T2r = ci[WS(rs, 59)]; | ||
|  | 			      T2s = cr[WS(rs, 36)]; | ||
|  | 			      T2t = T2r + T2s; | ||
|  | 			      Td1 = T2r - T2s; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tj, Tk, T2m, T2n; | ||
|  | 			      Tj = cr[WS(rs, 20)]; | ||
|  | 			      Tk = ci[WS(rs, 11)]; | ||
|  | 			      Tl = Tj + Tk; | ||
|  | 			      T2q = Tj - Tk; | ||
|  | 			      T2m = ci[WS(rs, 43)]; | ||
|  | 			      T2n = cr[WS(rs, 52)]; | ||
|  | 			      T2o = T2m + T2n; | ||
|  | 			      Td2 = T2m - T2n; | ||
|  | 			 } | ||
|  | 			 Tm = Ti + Tl; | ||
|  | 			 Td3 = Td1 - Td2; | ||
|  | 			 Ti7 = Td1 + Td2; | ||
|  | 			 T2p = T2l - T2o; | ||
|  | 			 T2u = T2q + T2t; | ||
|  | 			 T8I = T2l + T2o; | ||
|  | 			 Td0 = Ti - Tl; | ||
|  | 			 T8H = T2t - T2q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tp, T2w, T2E, TcV, Ts, T2B, T2z, TcW; | ||
|  | 			 { | ||
|  | 			      E Tn, To, T2C, T2D; | ||
|  | 			      Tn = ci[WS(rs, 3)]; | ||
|  | 			      To = cr[WS(rs, 28)]; | ||
|  | 			      Tp = Tn + To; | ||
|  | 			      T2w = Tn - To; | ||
|  | 			      T2C = ci[WS(rs, 35)]; | ||
|  | 			      T2D = cr[WS(rs, 60)]; | ||
|  | 			      T2E = T2C + T2D; | ||
|  | 			      TcV = T2C - T2D; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tq, Tr, T2x, T2y; | ||
|  | 			      Tq = cr[WS(rs, 12)]; | ||
|  | 			      Tr = ci[WS(rs, 19)]; | ||
|  | 			      Ts = Tq + Tr; | ||
|  | 			      T2B = Tq - Tr; | ||
|  | 			      T2x = ci[WS(rs, 51)]; | ||
|  | 			      T2y = cr[WS(rs, 44)]; | ||
|  | 			      T2z = T2x + T2y; | ||
|  | 			      TcW = T2x - T2y; | ||
|  | 			 } | ||
|  | 			 Tt = Tp + Ts; | ||
|  | 			 TcY = Tp - Ts; | ||
|  | 			 Ti8 = TcV + TcW; | ||
|  | 			 T2A = T2w - T2z; | ||
|  | 			 T2F = T2B - T2E; | ||
|  | 			 T8L = T2w + T2z; | ||
|  | 			 TcX = TcV - TcW; | ||
|  | 			 T8K = T2B + T2E; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tf, Tu, T5x, T5A; | ||
|  | 			 Tf = T7 + Te; | ||
|  | 			 Tu = Tm + Tt; | ||
|  | 			 Tv = Tf + Tu; | ||
|  | 			 Thy = Tf - Tu; | ||
|  | 			 T5x = T5t + T5w; | ||
|  | 			 T5A = T5y - T5z; | ||
|  | 			 T5B = FMA(KP707106781, T5A, T5x); | ||
|  | 			 T7n = FNMS(KP707106781, T5A, T5x); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tew, Tex, Tjz, TjA; | ||
|  | 			 Tew = Td0 - Td3; | ||
|  | 			 Tex = TcY + TcX; | ||
|  | 			 Tey = Tew - Tex; | ||
|  | 			 TfP = Tew + Tex; | ||
|  | 			 Tjz = Ti4 - Ti5; | ||
|  | 			 TjA = Tm - Tt; | ||
|  | 			 TjB = Tjz - TjA; | ||
|  | 			 Tkl = TjA + Tjz; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T28, T2j, T2v, T2G; | ||
|  | 			 T28 = T24 - T27; | ||
|  | 			 T2j = T2d + T2i; | ||
|  | 			 T2k = FMA(KP707106781, T2j, T28); | ||
|  | 			 T6U = FNMS(KP707106781, T2j, T28); | ||
|  | 			 T2v = FNMS(KP414213562, T2u, T2p); | ||
|  | 			 T2G = FMA(KP414213562, T2F, T2A); | ||
|  | 			 T2H = T2v + T2G; | ||
|  | 			 T7o = T2v - T2G; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ti6, Ti9, Tj6, Tj7; | ||
|  | 			 Ti6 = Ti4 + Ti5; | ||
|  | 			 Ti9 = Ti7 + Ti8; | ||
|  | 			 Tia = Ti6 - Ti9; | ||
|  | 			 TiH = Ti6 + Ti9; | ||
|  | 			 Tj6 = T7 - Te; | ||
|  | 			 Tj7 = Ti8 - Ti7; | ||
|  | 			 Tj8 = Tj6 - Tj7; | ||
|  | 			 Tk8 = Tj6 + Tj7; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5C, T5D, T9L, T9M; | ||
|  | 			 T5C = FMA(KP414213562, T2p, T2u); | ||
|  | 			 T5D = FNMS(KP414213562, T2A, T2F); | ||
|  | 			 T5E = T5C + T5D; | ||
|  | 			 T6V = T5D - T5C; | ||
|  | 			 T9L = T5w - T5t; | ||
|  | 			 T9M = T2d - T2i; | ||
|  | 			 T9N = FMA(KP707106781, T9M, T9L); | ||
|  | 			 Tbz = FNMS(KP707106781, T9M, T9L); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9O, T9P, Tet, Teu; | ||
|  | 			 T9O = FMA(KP414213562, T8H, T8I); | ||
|  | 			 T9P = FMA(KP414213562, T8K, T8L); | ||
|  | 			 T9Q = T9O - T9P; | ||
|  | 			 Tb7 = T9O + T9P; | ||
|  | 			 Tet = Ter - Tes; | ||
|  | 			 Teu = Ta - Td; | ||
|  | 			 Tev = Tet - Teu; | ||
|  | 			 Tgh = Teu + Tet; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8E, T8F, T8J, T8M; | ||
|  | 			 T8E = T24 + T27; | ||
|  | 			 T8F = T5y + T5z; | ||
|  | 			 T8G = FNMS(KP707106781, T8F, T8E); | ||
|  | 			 Tb6 = FMA(KP707106781, T8F, T8E); | ||
|  | 			 T8J = FNMS(KP414213562, T8I, T8H); | ||
|  | 			 T8M = FNMS(KP414213562, T8L, T8K); | ||
|  | 			 T8N = T8J + T8M; | ||
|  | 			 TbA = T8M - T8J; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcQ, TcT, TcZ, Td4; | ||
|  | 			 TcQ = T3 - T6; | ||
|  | 			 TcT = TcR - TcS; | ||
|  | 			 TcU = TcQ - TcT; | ||
|  | 			 TfO = TcQ + TcT; | ||
|  | 			 TcZ = TcX - TcY; | ||
|  | 			 Td4 = Td0 + Td3; | ||
|  | 			 Td5 = TcZ - Td4; | ||
|  | 			 Tgi = Td4 + TcZ; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TC, Tdn, ThC, T3e, T3v, T8S, Tdk, T8P, TY, Tdf, ThA, T2S, T2X, T36, Tda; | ||
|  | 		    E T35, TJ, Tdq, ThD, T3j, T3o, T3x, Tdl, T3w, TR, Tdc, Thz, T2N, T34, T8Z; | ||
|  | 		    E Td9, T8W; | ||
|  | 		    { | ||
|  | 			 E Ty, T3r, T3u, Tdj, TB, T3a, T3d, Tdi; | ||
|  | 			 { | ||
|  | 			      E Tw, Tx, T3s, T3t; | ||
|  | 			      Tw = cr[WS(rs, 2)]; | ||
|  | 			      Tx = ci[WS(rs, 29)]; | ||
|  | 			      Ty = Tw + Tx; | ||
|  | 			      T3r = Tw - Tx; | ||
|  | 			      T3s = ci[WS(rs, 45)]; | ||
|  | 			      T3t = cr[WS(rs, 50)]; | ||
|  | 			      T3u = T3s + T3t; | ||
|  | 			      Tdj = T3s - T3t; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tz, TA, T3b, T3c; | ||
|  | 			      Tz = cr[WS(rs, 18)]; | ||
|  | 			      TA = ci[WS(rs, 13)]; | ||
|  | 			      TB = Tz + TA; | ||
|  | 			      T3a = Tz - TA; | ||
|  | 			      T3b = ci[WS(rs, 61)]; | ||
|  | 			      T3c = cr[WS(rs, 34)]; | ||
|  | 			      T3d = T3b + T3c; | ||
|  | 			      Tdi = T3b - T3c; | ||
|  | 			 } | ||
|  | 			 TC = Ty + TB; | ||
|  | 			 Tdn = Ty - TB; | ||
|  | 			 ThC = Tdi + Tdj; | ||
|  | 			 T3e = T3a + T3d; | ||
|  | 			 T3v = T3r - T3u; | ||
|  | 			 T8S = T3r + T3u; | ||
|  | 			 Tdk = Tdi - Tdj; | ||
|  | 			 T8P = T3d - T3a; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TU, T2O, T2W, Tdd, TX, T2T, T2R, Tde; | ||
|  | 			 { | ||
|  | 			      E TS, TT, T2U, T2V; | ||
|  | 			      TS = cr[WS(rs, 6)]; | ||
|  | 			      TT = ci[WS(rs, 25)]; | ||
|  | 			      TU = TS + TT; | ||
|  | 			      T2O = TS - TT; | ||
|  | 			      T2U = ci[WS(rs, 41)]; | ||
|  | 			      T2V = cr[WS(rs, 54)]; | ||
|  | 			      T2W = T2U + T2V; | ||
|  | 			      Tdd = T2U - T2V; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TV, TW, T2P, T2Q; | ||
|  | 			      TV = ci[WS(rs, 9)]; | ||
|  | 			      TW = cr[WS(rs, 22)]; | ||
|  | 			      TX = TV + TW; | ||
|  | 			      T2T = TV - TW; | ||
|  | 			      T2P = ci[WS(rs, 57)]; | ||
|  | 			      T2Q = cr[WS(rs, 38)]; | ||
|  | 			      T2R = T2P + T2Q; | ||
|  | 			      Tde = T2P - T2Q; | ||
|  | 			 } | ||
|  | 			 TY = TU + TX; | ||
|  | 			 Tdf = Tdd - Tde; | ||
|  | 			 ThA = Tde + Tdd; | ||
|  | 			 T2S = T2O + T2R; | ||
|  | 			 T2X = T2T + T2W; | ||
|  | 			 T36 = T2T - T2W; | ||
|  | 			 Tda = TU - TX; | ||
|  | 			 T35 = T2O - T2R; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TF, T3f, T3n, Tdo, TI, T3k, T3i, Tdp; | ||
|  | 			 { | ||
|  | 			      E TD, TE, T3l, T3m; | ||
|  | 			      TD = cr[WS(rs, 10)]; | ||
|  | 			      TE = ci[WS(rs, 21)]; | ||
|  | 			      TF = TD + TE; | ||
|  | 			      T3f = TD - TE; | ||
|  | 			      T3l = ci[WS(rs, 37)]; | ||
|  | 			      T3m = cr[WS(rs, 58)]; | ||
|  | 			      T3n = T3l + T3m; | ||
|  | 			      Tdo = T3l - T3m; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TG, TH, T3g, T3h; | ||
|  | 			      TG = ci[WS(rs, 5)]; | ||
|  | 			      TH = cr[WS(rs, 26)]; | ||
|  | 			      TI = TG + TH; | ||
|  | 			      T3k = TG - TH; | ||
|  | 			      T3g = ci[WS(rs, 53)]; | ||
|  | 			      T3h = cr[WS(rs, 42)]; | ||
|  | 			      T3i = T3g + T3h; | ||
|  | 			      Tdp = T3g - T3h; | ||
|  | 			 } | ||
|  | 			 TJ = TF + TI; | ||
|  | 			 Tdq = Tdo - Tdp; | ||
|  | 			 ThD = Tdp + Tdo; | ||
|  | 			 T3j = T3f + T3i; | ||
|  | 			 T3o = T3k + T3n; | ||
|  | 			 T3x = T3k - T3n; | ||
|  | 			 Tdl = TF - TI; | ||
|  | 			 T3w = T3f - T3i; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TN, T30, T33, Td8, TQ, T2J, T2M, Td7; | ||
|  | 			 { | ||
|  | 			      E TL, TM, T31, T32; | ||
|  | 			      TL = ci[WS(rs, 1)]; | ||
|  | 			      TM = cr[WS(rs, 30)]; | ||
|  | 			      TN = TL + TM; | ||
|  | 			      T30 = TL - TM; | ||
|  | 			      T31 = ci[WS(rs, 49)]; | ||
|  | 			      T32 = cr[WS(rs, 46)]; | ||
|  | 			      T33 = T31 + T32; | ||
|  | 			      Td8 = T31 - T32; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TO, TP, T2K, T2L; | ||
|  | 			      TO = cr[WS(rs, 14)]; | ||
|  | 			      TP = ci[WS(rs, 17)]; | ||
|  | 			      TQ = TO + TP; | ||
|  | 			      T2J = TO - TP; | ||
|  | 			      T2K = ci[WS(rs, 33)]; | ||
|  | 			      T2L = cr[WS(rs, 62)]; | ||
|  | 			      T2M = T2K + T2L; | ||
|  | 			      Td7 = T2K - T2L; | ||
|  | 			 } | ||
|  | 			 TR = TN + TQ; | ||
|  | 			 Tdc = TN - TQ; | ||
|  | 			 Thz = Td7 + Td8; | ||
|  | 			 T2N = T2J - T2M; | ||
|  | 			 T34 = T30 - T33; | ||
|  | 			 T8Z = T30 + T33; | ||
|  | 			 Td9 = Td7 - Td8; | ||
|  | 			 T8W = T2J + T2M; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TK, TZ, Tdm, Tdr; | ||
|  | 			 TK = TC + TJ; | ||
|  | 			 TZ = TR + TY; | ||
|  | 			 T10 = TK + TZ; | ||
|  | 			 Ti3 = TK - TZ; | ||
|  | 			 { | ||
|  | 			      E Tjc, Tjd, ThB, ThE; | ||
|  | 			      Tjc = TC - TJ; | ||
|  | 			      Tjd = ThC - ThD; | ||
|  | 			      Tje = Tjc + Tjd; | ||
|  | 			      TjC = Tjc - Tjd; | ||
|  | 			      ThB = Thz + ThA; | ||
|  | 			      ThE = ThC + ThD; | ||
|  | 			      ThF = ThB - ThE; | ||
|  | 			      TiI = ThE + ThB; | ||
|  | 			 } | ||
|  | 			 Tdm = Tdk - Tdl; | ||
|  | 			 Tdr = Tdn - Tdq; | ||
|  | 			 Tds = FNMS(KP414213562, Tdr, Tdm); | ||
|  | 			 TeA = FMA(KP414213562, Tdm, Tdr); | ||
|  | 			 { | ||
|  | 			      E Tj9, Tja, Tdb, Tdg; | ||
|  | 			      Tj9 = Thz - ThA; | ||
|  | 			      Tja = TR - TY; | ||
|  | 			      Tjb = Tj9 - Tja; | ||
|  | 			      TjD = Tja + Tj9; | ||
|  | 			      Tdb = Td9 - Tda; | ||
|  | 			      Tdg = Tdc - Tdf; | ||
|  | 			      Tdh = FMA(KP414213562, Tdg, Tdb); | ||
|  | 			      TeB = FNMS(KP414213562, Tdb, Tdg); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfR, TfS, TfU, TfV; | ||
|  | 			 TfR = Tda + Td9; | ||
|  | 			 TfS = Tdc + Tdf; | ||
|  | 			 TfT = FNMS(KP414213562, TfS, TfR); | ||
|  | 			 Tgl = FMA(KP414213562, TfR, TfS); | ||
|  | 			 TfU = Tdl + Tdk; | ||
|  | 			 TfV = Tdn + Tdq; | ||
|  | 			 TfW = FMA(KP414213562, TfV, TfU); | ||
|  | 			 Tgk = FNMS(KP414213562, TfU, TfV); | ||
|  | 			 { | ||
|  | 			      E T2Z, T6X, T38, T6Y, T2Y, T37; | ||
|  | 			      T2Y = T2S - T2X; | ||
|  | 			      T2Z = FMA(KP707106781, T2Y, T2N); | ||
|  | 			      T6X = FNMS(KP707106781, T2Y, T2N); | ||
|  | 			      T37 = T35 + T36; | ||
|  | 			      T38 = FMA(KP707106781, T37, T34); | ||
|  | 			      T6Y = FNMS(KP707106781, T37, T34); | ||
|  | 			      T39 = FNMS(KP198912367, T38, T2Z); | ||
|  | 			      T7r = FNMS(KP668178637, T6X, T6Y); | ||
|  | 			      T5H = FMA(KP198912367, T2Z, T38); | ||
|  | 			      T6Z = FMA(KP668178637, T6Y, T6X); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8R, Tb9, T8U, Tba, T8Q, T8T; | ||
|  | 			 T8Q = T3x - T3w; | ||
|  | 			 T8R = FNMS(KP707106781, T8Q, T8P); | ||
|  | 			 Tb9 = FMA(KP707106781, T8Q, T8P); | ||
|  | 			 T8T = T3j + T3o; | ||
|  | 			 T8U = FNMS(KP707106781, T8T, T8S); | ||
|  | 			 Tba = FMA(KP707106781, T8T, T8S); | ||
|  | 			 T8V = FMA(KP668178637, T8U, T8R); | ||
|  | 			 TbC = FMA(KP198912367, Tb9, Tba); | ||
|  | 			 T9S = FNMS(KP668178637, T8R, T8U); | ||
|  | 			 Tbb = FNMS(KP198912367, Tba, Tb9); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3q, T70, T3z, T71, T3p, T3y; | ||
|  | 			 T3p = T3j - T3o; | ||
|  | 			 T3q = FMA(KP707106781, T3p, T3e); | ||
|  | 			 T70 = FNMS(KP707106781, T3p, T3e); | ||
|  | 			 T3y = T3w + T3x; | ||
|  | 			 T3z = FMA(KP707106781, T3y, T3v); | ||
|  | 			 T71 = FNMS(KP707106781, T3y, T3v); | ||
|  | 			 T3A = FMA(KP198912367, T3z, T3q); | ||
|  | 			 T7q = FMA(KP668178637, T70, T71); | ||
|  | 			 T5G = FNMS(KP198912367, T3q, T3z); | ||
|  | 			 T72 = FNMS(KP668178637, T71, T70); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8Y, Tbc, T91, Tbd, T8X, T90; | ||
|  | 			 T8X = T35 - T36; | ||
|  | 			 T8Y = FNMS(KP707106781, T8X, T8W); | ||
|  | 			 Tbc = FMA(KP707106781, T8X, T8W); | ||
|  | 			 T90 = T2S + T2X; | ||
|  | 			 T91 = FNMS(KP707106781, T90, T8Z); | ||
|  | 			 Tbd = FMA(KP707106781, T90, T8Z); | ||
|  | 			 T92 = FMA(KP668178637, T91, T8Y); | ||
|  | 			 TbD = FMA(KP198912367, Tbc, Tbd); | ||
|  | 			 T9T = FNMS(KP668178637, T8Y, T91); | ||
|  | 			 Tbe = FNMS(KP198912367, Tbd, Tbc); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T18, Ted, ThI, T4A, T5f, T9g, TdY, T95, T1u, Te4, ThM, T52, T57, T9c, Te1; | ||
|  | 		    E T9b, T1f, Teg, ThJ, T4F, T4K, T5h, TdZ, T5g, T1n, Te9, ThL, T4R, T4W, T99; | ||
|  | 		    E Te6, T98; | ||
|  | 		    { | ||
|  | 			 E T14, T5b, T5e, TdX, T17, T4w, T4z, TdW; | ||
|  | 			 { | ||
|  | 			      E T12, T13, T5c, T5d; | ||
|  | 			      T12 = cr[WS(rs, 1)]; | ||
|  | 			      T13 = ci[WS(rs, 30)]; | ||
|  | 			      T14 = T12 + T13; | ||
|  | 			      T5b = T12 - T13; | ||
|  | 			      T5c = ci[WS(rs, 46)]; | ||
|  | 			      T5d = cr[WS(rs, 49)]; | ||
|  | 			      T5e = T5c + T5d; | ||
|  | 			      TdX = T5c - T5d; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T15, T16, T4x, T4y; | ||
|  | 			      T15 = cr[WS(rs, 17)]; | ||
|  | 			      T16 = ci[WS(rs, 14)]; | ||
|  | 			      T17 = T15 + T16; | ||
|  | 			      T4w = T15 - T16; | ||
|  | 			      T4x = ci[WS(rs, 62)]; | ||
|  | 			      T4y = cr[WS(rs, 33)]; | ||
|  | 			      T4z = T4x + T4y; | ||
|  | 			      TdW = T4x - T4y; | ||
|  | 			 } | ||
|  | 			 T18 = T14 + T17; | ||
|  | 			 Ted = T14 - T17; | ||
|  | 			 ThI = TdW + TdX; | ||
|  | 			 T4A = T4w + T4z; | ||
|  | 			 T5f = T5b - T5e; | ||
|  | 			 T9g = T5b + T5e; | ||
|  | 			 TdY = TdW - TdX; | ||
|  | 			 T95 = T4z - T4w; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1q, T53, T56, Te3, T1t, T4Y, T51, Te2; | ||
|  | 			 { | ||
|  | 			      E T1o, T1p, T54, T55; | ||
|  | 			      T1o = ci[WS(rs, 2)]; | ||
|  | 			      T1p = cr[WS(rs, 29)]; | ||
|  | 			      T1q = T1o + T1p; | ||
|  | 			      T53 = T1o - T1p; | ||
|  | 			      T54 = ci[WS(rs, 50)]; | ||
|  | 			      T55 = cr[WS(rs, 45)]; | ||
|  | 			      T56 = T54 + T55; | ||
|  | 			      Te3 = T54 - T55; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1r, T1s, T4Z, T50; | ||
|  | 			      T1r = cr[WS(rs, 13)]; | ||
|  | 			      T1s = ci[WS(rs, 18)]; | ||
|  | 			      T1t = T1r + T1s; | ||
|  | 			      T4Y = T1r - T1s; | ||
|  | 			      T4Z = ci[WS(rs, 34)]; | ||
|  | 			      T50 = cr[WS(rs, 61)]; | ||
|  | 			      T51 = T4Z + T50; | ||
|  | 			      Te2 = T4Z - T50; | ||
|  | 			 } | ||
|  | 			 T1u = T1q + T1t; | ||
|  | 			 Te4 = Te2 - Te3; | ||
|  | 			 ThM = Te2 + Te3; | ||
|  | 			 T52 = T4Y - T51; | ||
|  | 			 T57 = T53 - T56; | ||
|  | 			 T9c = T4Y + T51; | ||
|  | 			 Te1 = T1q - T1t; | ||
|  | 			 T9b = T53 + T56; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1b, T4B, T4J, Tee, T1e, T4G, T4E, Tef; | ||
|  | 			 { | ||
|  | 			      E T19, T1a, T4H, T4I; | ||
|  | 			      T19 = cr[WS(rs, 9)]; | ||
|  | 			      T1a = ci[WS(rs, 22)]; | ||
|  | 			      T1b = T19 + T1a; | ||
|  | 			      T4B = T19 - T1a; | ||
|  | 			      T4H = ci[WS(rs, 38)]; | ||
|  | 			      T4I = cr[WS(rs, 57)]; | ||
|  | 			      T4J = T4H + T4I; | ||
|  | 			      Tee = T4H - T4I; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1c, T1d, T4C, T4D; | ||
|  | 			      T1c = ci[WS(rs, 6)]; | ||
|  | 			      T1d = cr[WS(rs, 25)]; | ||
|  | 			      T1e = T1c + T1d; | ||
|  | 			      T4G = T1c - T1d; | ||
|  | 			      T4C = ci[WS(rs, 54)]; | ||
|  | 			      T4D = cr[WS(rs, 41)]; | ||
|  | 			      T4E = T4C + T4D; | ||
|  | 			      Tef = T4C - T4D; | ||
|  | 			 } | ||
|  | 			 T1f = T1b + T1e; | ||
|  | 			 Teg = Tee - Tef; | ||
|  | 			 ThJ = Tef + Tee; | ||
|  | 			 T4F = T4B + T4E; | ||
|  | 			 T4K = T4G + T4J; | ||
|  | 			 T5h = T4G - T4J; | ||
|  | 			 TdZ = T1b - T1e; | ||
|  | 			 T5g = T4B - T4E; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1j, T4S, T4V, Te8, T1m, T4N, T4Q, Te7; | ||
|  | 			 { | ||
|  | 			      E T1h, T1i, T4T, T4U; | ||
|  | 			      T1h = cr[WS(rs, 5)]; | ||
|  | 			      T1i = ci[WS(rs, 26)]; | ||
|  | 			      T1j = T1h + T1i; | ||
|  | 			      T4S = T1h - T1i; | ||
|  | 			      T4T = ci[WS(rs, 42)]; | ||
|  | 			      T4U = cr[WS(rs, 53)]; | ||
|  | 			      T4V = T4T + T4U; | ||
|  | 			      Te8 = T4T - T4U; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1k, T1l, T4O, T4P; | ||
|  | 			      T1k = cr[WS(rs, 21)]; | ||
|  | 			      T1l = ci[WS(rs, 10)]; | ||
|  | 			      T1m = T1k + T1l; | ||
|  | 			      T4N = T1k - T1l; | ||
|  | 			      T4O = ci[WS(rs, 58)]; | ||
|  | 			      T4P = cr[WS(rs, 37)]; | ||
|  | 			      T4Q = T4O + T4P; | ||
|  | 			      Te7 = T4O - T4P; | ||
|  | 			 } | ||
|  | 			 T1n = T1j + T1m; | ||
|  | 			 Te9 = Te7 - Te8; | ||
|  | 			 ThL = Te7 + Te8; | ||
|  | 			 T4R = T4N + T4Q; | ||
|  | 			 T4W = T4S - T4V; | ||
|  | 			 T99 = T4Q - T4N; | ||
|  | 			 Te6 = T1j - T1m; | ||
|  | 			 T98 = T4S + T4V; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1g, T1v, Tjo, Tjp; | ||
|  | 			 T1g = T18 + T1f; | ||
|  | 			 T1v = T1n + T1u; | ||
|  | 			 T1w = T1g + T1v; | ||
|  | 			 ThH = T1g - T1v; | ||
|  | 			 Tjo = ThI - ThJ; | ||
|  | 			 Tjp = T1n - T1u; | ||
|  | 			 Tjq = Tjo - Tjp; | ||
|  | 			 Tke = Tjp + Tjo; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tjr, Tjs, ThK, ThN; | ||
|  | 			 Tjr = T18 - T1f; | ||
|  | 			 Tjs = ThM - ThL; | ||
|  | 			 Tjt = Tjr - Tjs; | ||
|  | 			 Tkf = Tjr + Tjs; | ||
|  | 			 ThK = ThI + ThJ; | ||
|  | 			 ThN = ThL + ThM; | ||
|  | 			 ThO = ThK - ThN; | ||
|  | 			 TiK = ThK + ThN; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te0, Tg9, Teb, Tga, Te5, Tea; | ||
|  | 			 Te0 = TdY - TdZ; | ||
|  | 			 Tg9 = Ted + Teg; | ||
|  | 			 Te5 = Te1 + Te4; | ||
|  | 			 Tea = Te6 - Te9; | ||
|  | 			 Teb = Te5 - Tea; | ||
|  | 			 Tga = Tea + Te5; | ||
|  | 			 Tec = FNMS(KP707106781, Teb, Te0); | ||
|  | 			 TgT = FMA(KP707106781, Tga, Tg9); | ||
|  | 			 Tfc = FMA(KP707106781, Teb, Te0); | ||
|  | 			 Tgb = FNMS(KP707106781, Tga, Tg9); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Teh, Tg6, Tek, Tg7, Tei, Tej; | ||
|  | 			 Teh = Ted - Teg; | ||
|  | 			 Tg6 = TdZ + TdY; | ||
|  | 			 Tei = Te6 + Te9; | ||
|  | 			 Tej = Te4 - Te1; | ||
|  | 			 Tek = Tei - Tej; | ||
|  | 			 Tg7 = Tei + Tej; | ||
|  | 			 Tel = FNMS(KP707106781, Tek, Teh); | ||
|  | 			 TgU = FMA(KP707106781, Tg7, Tg6); | ||
|  | 			 Tfd = FMA(KP707106781, Tek, Teh); | ||
|  | 			 Tg8 = FNMS(KP707106781, Tg7, Tg6); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4M, T78, T5j, T75, T59, T76, T5m, T79, T4L, T5i; | ||
|  | 			 T4L = T4F - T4K; | ||
|  | 			 T4M = FMA(KP707106781, T4L, T4A); | ||
|  | 			 T78 = FNMS(KP707106781, T4L, T4A); | ||
|  | 			 T5i = T5g + T5h; | ||
|  | 			 T5j = FMA(KP707106781, T5i, T5f); | ||
|  | 			 T75 = FNMS(KP707106781, T5i, T5f); | ||
|  | 			 { | ||
|  | 			      E T4X, T58, T5k, T5l; | ||
|  | 			      T4X = FMA(KP414213562, T4W, T4R); | ||
|  | 			      T58 = FNMS(KP414213562, T57, T52); | ||
|  | 			      T59 = T4X + T58; | ||
|  | 			      T76 = T4X - T58; | ||
|  | 			      T5k = FNMS(KP414213562, T4R, T4W); | ||
|  | 			      T5l = FMA(KP414213562, T52, T57); | ||
|  | 			      T5m = T5k + T5l; | ||
|  | 			      T79 = T5l - T5k; | ||
|  | 			 } | ||
|  | 			 T5a = FNMS(KP923879532, T59, T4M); | ||
|  | 			 T82 = FMA(KP923879532, T79, T78); | ||
|  | 			 T83 = FMA(KP923879532, T76, T75); | ||
|  | 			 T5n = FNMS(KP923879532, T5m, T5j); | ||
|  | 			 T6i = FMA(KP923879532, T59, T4M); | ||
|  | 			 T77 = FNMS(KP923879532, T76, T75); | ||
|  | 			 T7a = FNMS(KP923879532, T79, T78); | ||
|  | 			 T6j = FMA(KP923879532, T5m, T5j); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T97, Tbk, T9i, Tbh, T9e, Tbi, T9l, Tbl, T96, T9h; | ||
|  | 			 T96 = T5h - T5g; | ||
|  | 			 T97 = FNMS(KP707106781, T96, T95); | ||
|  | 			 Tbk = FMA(KP707106781, T96, T95); | ||
|  | 			 T9h = T4F + T4K; | ||
|  | 			 T9i = FNMS(KP707106781, T9h, T9g); | ||
|  | 			 Tbh = FMA(KP707106781, T9h, T9g); | ||
|  | 			 { | ||
|  | 			      E T9a, T9d, T9j, T9k; | ||
|  | 			      T9a = FMA(KP414213562, T99, T98); | ||
|  | 			      T9d = FMA(KP414213562, T9c, T9b); | ||
|  | 			      T9e = T9a - T9d; | ||
|  | 			      Tbi = T9a + T9d; | ||
|  | 			      T9j = FNMS(KP414213562, T98, T99); | ||
|  | 			      T9k = FNMS(KP414213562, T9b, T9c); | ||
|  | 			      T9l = T9j + T9k; | ||
|  | 			      Tbl = T9j - T9k; | ||
|  | 			 } | ||
|  | 			 T9f = FNMS(KP923879532, T9e, T97); | ||
|  | 			 Tcb = FMA(KP923879532, Tbl, Tbk); | ||
|  | 			 Tcc = FMA(KP923879532, Tbi, Tbh); | ||
|  | 			 T9m = FMA(KP923879532, T9l, T9i); | ||
|  | 			 Tar = FNMS(KP923879532, T9l, T9i); | ||
|  | 			 Tbj = FNMS(KP923879532, Tbi, Tbh); | ||
|  | 			 Tbm = FNMS(KP923879532, Tbl, Tbk); | ||
|  | 			 Tas = FMA(KP923879532, T9e, T97); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1D, TdM, ThR, T3H, T4m, T9z, Tdx, T9o, T1Z, TdD, ThV, T49, T4e, T9s, TdA; | ||
|  | 		    E T9r, T1K, TdP, ThS, T3M, T3R, T4o, Tdy, T4n, T1S, TdI, ThU, T3Y, T43, T9v; | ||
|  | 		    E TdF, T9u; | ||
|  | 		    { | ||
|  | 			 E T1z, T4i, T4l, Tdw, T1C, T3D, T3G, Tdv; | ||
|  | 			 { | ||
|  | 			      E T1x, T1y, T4j, T4k; | ||
|  | 			      T1x = ci[0]; | ||
|  | 			      T1y = cr[WS(rs, 31)]; | ||
|  | 			      T1z = T1x + T1y; | ||
|  | 			      T4i = T1x - T1y; | ||
|  | 			      T4j = ci[WS(rs, 48)]; | ||
|  | 			      T4k = cr[WS(rs, 47)]; | ||
|  | 			      T4l = T4j + T4k; | ||
|  | 			      Tdw = T4j - T4k; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1A, T1B, T3E, T3F; | ||
|  | 			      T1A = cr[WS(rs, 15)]; | ||
|  | 			      T1B = ci[WS(rs, 16)]; | ||
|  | 			      T1C = T1A + T1B; | ||
|  | 			      T3D = T1A - T1B; | ||
|  | 			      T3E = ci[WS(rs, 32)]; | ||
|  | 			      T3F = cr[WS(rs, 63)]; | ||
|  | 			      T3G = T3E + T3F; | ||
|  | 			      Tdv = T3E - T3F; | ||
|  | 			 } | ||
|  | 			 T1D = T1z + T1C; | ||
|  | 			 TdM = T1z - T1C; | ||
|  | 			 ThR = Tdv + Tdw; | ||
|  | 			 T3H = T3D - T3G; | ||
|  | 			 T4m = T4i - T4l; | ||
|  | 			 T9z = T4i + T4l; | ||
|  | 			 Tdx = Tdv - Tdw; | ||
|  | 			 T9o = T3D + T3G; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1V, T4a, T4d, TdC, T1Y, T45, T48, TdB; | ||
|  | 			 { | ||
|  | 			      E T1T, T1U, T4b, T4c; | ||
|  | 			      T1T = ci[WS(rs, 4)]; | ||
|  | 			      T1U = cr[WS(rs, 27)]; | ||
|  | 			      T1V = T1T + T1U; | ||
|  | 			      T4a = T1T - T1U; | ||
|  | 			      T4b = ci[WS(rs, 52)]; | ||
|  | 			      T4c = cr[WS(rs, 43)]; | ||
|  | 			      T4d = T4b + T4c; | ||
|  | 			      TdC = T4b - T4c; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1W, T1X, T46, T47; | ||
|  | 			      T1W = cr[WS(rs, 11)]; | ||
|  | 			      T1X = ci[WS(rs, 20)]; | ||
|  | 			      T1Y = T1W + T1X; | ||
|  | 			      T45 = T1W - T1X; | ||
|  | 			      T46 = ci[WS(rs, 36)]; | ||
|  | 			      T47 = cr[WS(rs, 59)]; | ||
|  | 			      T48 = T46 + T47; | ||
|  | 			      TdB = T46 - T47; | ||
|  | 			 } | ||
|  | 			 T1Z = T1V + T1Y; | ||
|  | 			 TdD = TdB - TdC; | ||
|  | 			 ThV = TdB + TdC; | ||
|  | 			 T49 = T45 - T48; | ||
|  | 			 T4e = T4a - T4d; | ||
|  | 			 T9s = T45 + T48; | ||
|  | 			 TdA = T1V - T1Y; | ||
|  | 			 T9r = T4a + T4d; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1G, T3I, T3Q, TdN, T1J, T3N, T3L, TdO; | ||
|  | 			 { | ||
|  | 			      E T1E, T1F, T3O, T3P; | ||
|  | 			      T1E = cr[WS(rs, 7)]; | ||
|  | 			      T1F = ci[WS(rs, 24)]; | ||
|  | 			      T1G = T1E + T1F; | ||
|  | 			      T3I = T1E - T1F; | ||
|  | 			      T3O = ci[WS(rs, 40)]; | ||
|  | 			      T3P = cr[WS(rs, 55)]; | ||
|  | 			      T3Q = T3O + T3P; | ||
|  | 			      TdN = T3O - T3P; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1H, T1I, T3J, T3K; | ||
|  | 			      T1H = ci[WS(rs, 8)]; | ||
|  | 			      T1I = cr[WS(rs, 23)]; | ||
|  | 			      T1J = T1H + T1I; | ||
|  | 			      T3N = T1H - T1I; | ||
|  | 			      T3J = ci[WS(rs, 56)]; | ||
|  | 			      T3K = cr[WS(rs, 39)]; | ||
|  | 			      T3L = T3J + T3K; | ||
|  | 			      TdO = T3J - T3K; | ||
|  | 			 } | ||
|  | 			 T1K = T1G + T1J; | ||
|  | 			 TdP = TdN - TdO; | ||
|  | 			 ThS = TdO + TdN; | ||
|  | 			 T3M = T3I + T3L; | ||
|  | 			 T3R = T3N + T3Q; | ||
|  | 			 T4o = T3N - T3Q; | ||
|  | 			 Tdy = T1G - T1J; | ||
|  | 			 T4n = T3I - T3L; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1O, T3Z, T42, TdH, T1R, T3U, T3X, TdG; | ||
|  | 			 { | ||
|  | 			      E T1M, T1N, T40, T41; | ||
|  | 			      T1M = cr[WS(rs, 3)]; | ||
|  | 			      T1N = ci[WS(rs, 28)]; | ||
|  | 			      T1O = T1M + T1N; | ||
|  | 			      T3Z = T1M - T1N; | ||
|  | 			      T40 = ci[WS(rs, 44)]; | ||
|  | 			      T41 = cr[WS(rs, 51)]; | ||
|  | 			      T42 = T40 + T41; | ||
|  | 			      TdH = T40 - T41; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1P, T1Q, T3V, T3W; | ||
|  | 			      T1P = cr[WS(rs, 19)]; | ||
|  | 			      T1Q = ci[WS(rs, 12)]; | ||
|  | 			      T1R = T1P + T1Q; | ||
|  | 			      T3U = T1P - T1Q; | ||
|  | 			      T3V = ci[WS(rs, 60)]; | ||
|  | 			      T3W = cr[WS(rs, 35)]; | ||
|  | 			      T3X = T3V + T3W; | ||
|  | 			      TdG = T3V - T3W; | ||
|  | 			 } | ||
|  | 			 T1S = T1O + T1R; | ||
|  | 			 TdI = TdG - TdH; | ||
|  | 			 ThU = TdG + TdH; | ||
|  | 			 T3Y = T3U + T3X; | ||
|  | 			 T43 = T3Z - T42; | ||
|  | 			 T9v = T3U - T3X; | ||
|  | 			 TdF = T1O - T1R; | ||
|  | 			 T9u = T3Z + T42; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1L, T20, Tjh, Tji; | ||
|  | 			 T1L = T1D + T1K; | ||
|  | 			 T20 = T1S + T1Z; | ||
|  | 			 T21 = T1L + T20; | ||
|  | 			 ThQ = T1L - T20; | ||
|  | 			 Tjh = ThR - ThS; | ||
|  | 			 Tji = T1S - T1Z; | ||
|  | 			 Tjj = Tjh - Tji; | ||
|  | 			 Tkb = Tji + Tjh; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tjk, Tjl, ThT, ThW; | ||
|  | 			 Tjk = T1D - T1K; | ||
|  | 			 Tjl = ThV - ThU; | ||
|  | 			 Tjm = Tjk - Tjl; | ||
|  | 			 Tkc = Tjk + Tjl; | ||
|  | 			 ThT = ThR + ThS; | ||
|  | 			 ThW = ThU + ThV; | ||
|  | 			 ThX = ThT - ThW; | ||
|  | 			 TiL = ThT + ThW; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdz, Tg2, TdK, Tg3, TdE, TdJ; | ||
|  | 			 Tdz = Tdx - Tdy; | ||
|  | 			 Tg2 = TdM + TdP; | ||
|  | 			 TdE = TdA + TdD; | ||
|  | 			 TdJ = TdF - TdI; | ||
|  | 			 TdK = TdE - TdJ; | ||
|  | 			 Tg3 = TdJ + TdE; | ||
|  | 			 TdL = FNMS(KP707106781, TdK, Tdz); | ||
|  | 			 TgW = FMA(KP707106781, Tg3, Tg2); | ||
|  | 			 Tf9 = FMA(KP707106781, TdK, Tdz); | ||
|  | 			 Tg4 = FNMS(KP707106781, Tg3, Tg2); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdQ, TfZ, TdT, Tg0, TdR, TdS; | ||
|  | 			 TdQ = TdM - TdP; | ||
|  | 			 TfZ = Tdy + Tdx; | ||
|  | 			 TdR = TdF + TdI; | ||
|  | 			 TdS = TdD - TdA; | ||
|  | 			 TdT = TdR - TdS; | ||
|  | 			 Tg0 = TdR + TdS; | ||
|  | 			 TdU = FNMS(KP707106781, TdT, TdQ); | ||
|  | 			 TgX = FMA(KP707106781, Tg0, TfZ); | ||
|  | 			 Tfa = FMA(KP707106781, TdT, TdQ); | ||
|  | 			 Tg1 = FNMS(KP707106781, Tg0, TfZ); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3T, T7f, T4q, T7c, T4g, T7d, T4t, T7g, T3S, T4p; | ||
|  | 			 T3S = T3M - T3R; | ||
|  | 			 T3T = FMA(KP707106781, T3S, T3H); | ||
|  | 			 T7f = FNMS(KP707106781, T3S, T3H); | ||
|  | 			 T4p = T4n + T4o; | ||
|  | 			 T4q = FMA(KP707106781, T4p, T4m); | ||
|  | 			 T7c = FNMS(KP707106781, T4p, T4m); | ||
|  | 			 { | ||
|  | 			      E T44, T4f, T4r, T4s; | ||
|  | 			      T44 = FMA(KP414213562, T43, T3Y); | ||
|  | 			      T4f = FNMS(KP414213562, T4e, T49); | ||
|  | 			      T4g = T44 + T4f; | ||
|  | 			      T7d = T44 - T4f; | ||
|  | 			      T4r = FNMS(KP414213562, T3Y, T43); | ||
|  | 			      T4s = FMA(KP414213562, T49, T4e); | ||
|  | 			      T4t = T4r + T4s; | ||
|  | 			      T7g = T4s - T4r; | ||
|  | 			 } | ||
|  | 			 T4h = FNMS(KP923879532, T4g, T3T); | ||
|  | 			 T7Z = FMA(KP923879532, T7g, T7f); | ||
|  | 			 T80 = FMA(KP923879532, T7d, T7c); | ||
|  | 			 T4u = FNMS(KP923879532, T4t, T4q); | ||
|  | 			 T6f = FMA(KP923879532, T4g, T3T); | ||
|  | 			 T7e = FNMS(KP923879532, T7d, T7c); | ||
|  | 			 T7h = FNMS(KP923879532, T7g, T7f); | ||
|  | 			 T6g = FMA(KP923879532, T4t, T4q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9q, Tbr, T9B, Tbo, T9x, Tbp, T9E, Tbs, T9p, T9A; | ||
|  | 			 T9p = T4n - T4o; | ||
|  | 			 T9q = FNMS(KP707106781, T9p, T9o); | ||
|  | 			 Tbr = FMA(KP707106781, T9p, T9o); | ||
|  | 			 T9A = T3M + T3R; | ||
|  | 			 T9B = FNMS(KP707106781, T9A, T9z); | ||
|  | 			 Tbo = FMA(KP707106781, T9A, T9z); | ||
|  | 			 { | ||
|  | 			      E T9t, T9w, T9C, T9D; | ||
|  | 			      T9t = FMA(KP414213562, T9s, T9r); | ||
|  | 			      T9w = FNMS(KP414213562, T9v, T9u); | ||
|  | 			      T9x = T9t - T9w; | ||
|  | 			      Tbp = T9w + T9t; | ||
|  | 			      T9C = FMA(KP414213562, T9u, T9v); | ||
|  | 			      T9D = FNMS(KP414213562, T9r, T9s); | ||
|  | 			      T9E = T9C - T9D; | ||
|  | 			      Tbs = T9C + T9D; | ||
|  | 			 } | ||
|  | 			 T9y = FNMS(KP923879532, T9x, T9q); | ||
|  | 			 Tce = FMA(KP923879532, Tbs, Tbr); | ||
|  | 			 Tcf = FMA(KP923879532, Tbp, Tbo); | ||
|  | 			 T9F = FNMS(KP923879532, T9E, T9B); | ||
|  | 			 Tau = FMA(KP923879532, T9E, T9B); | ||
|  | 			 Tbq = FNMS(KP923879532, Tbp, Tbo); | ||
|  | 			 Tbt = FNMS(KP923879532, Tbs, Tbr); | ||
|  | 			 Tav = FMA(KP923879532, T9x, T9q); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T11, T22, TiE, TiJ, TiM, TiN; | ||
|  | 		    T11 = Tv + T10; | ||
|  | 		    T22 = T1w + T21; | ||
|  | 		    TiE = T11 - T22; | ||
|  | 		    TiJ = TiH + TiI; | ||
|  | 		    TiM = TiK + TiL; | ||
|  | 		    TiN = TiJ - TiM; | ||
|  | 		    cr[0] = T11 + T22; | ||
|  | 		    ci[0] = TiJ + TiM; | ||
|  | 		    { | ||
|  | 			 E TiD, TiF, TiG, TiO; | ||
|  | 			 TiD = W[62]; | ||
|  | 			 TiF = TiD * TiE; | ||
|  | 			 TiG = W[63]; | ||
|  | 			 TiO = TiG * TiE; | ||
|  | 			 cr[WS(rs, 32)] = FNMS(TiG, TiN, TiF); | ||
|  | 			 ci[WS(rs, 32)] = FMA(TiD, TiN, TiO); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TiS, Tj0, TiX, Tj3; | ||
|  | 		    { | ||
|  | 			 E TiQ, TiR, TiV, TiW; | ||
|  | 			 TiQ = Tv - T10; | ||
|  | 			 TiR = TiL - TiK; | ||
|  | 			 TiS = TiQ - TiR; | ||
|  | 			 Tj0 = TiQ + TiR; | ||
|  | 			 TiV = TiH - TiI; | ||
|  | 			 TiW = T1w - T21; | ||
|  | 			 TiX = TiV - TiW; | ||
|  | 			 Tj3 = TiW + TiV; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TiT, TiY, TiP, TiU; | ||
|  | 			 TiP = W[94]; | ||
|  | 			 TiT = TiP * TiS; | ||
|  | 			 TiY = TiP * TiX; | ||
|  | 			 TiU = W[95]; | ||
|  | 			 cr[WS(rs, 48)] = FNMS(TiU, TiX, TiT); | ||
|  | 			 ci[WS(rs, 48)] = FMA(TiU, TiS, TiY); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj1, Tj4, TiZ, Tj2; | ||
|  | 			 TiZ = W[30]; | ||
|  | 			 Tj1 = TiZ * Tj0; | ||
|  | 			 Tj4 = TiZ * Tj3; | ||
|  | 			 Tj2 = W[31]; | ||
|  | 			 cr[WS(rs, 16)] = FNMS(Tj2, Tj3, Tj1); | ||
|  | 			 ci[WS(rs, 16)] = FMA(Tj2, Tj0, Tj4); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tib, Tie, Tiy, Tiq, Ti0, TiB, Tii, Tiv; | ||
|  | 		    Tib = Ti3 + Tia; | ||
|  | 		    { | ||
|  | 			 E Tio, Tic, Tid, Tip; | ||
|  | 			 Tio = Thy - ThF; | ||
|  | 			 Tic = ThH + ThO; | ||
|  | 			 Tid = ThX - ThQ; | ||
|  | 			 Tip = Tid - Tic; | ||
|  | 			 Tie = Tic + Tid; | ||
|  | 			 Tiy = FMA(KP707106781, Tip, Tio); | ||
|  | 			 Tiq = FNMS(KP707106781, Tip, Tio); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThG, Tit, ThZ, Tiu, ThP, ThY; | ||
|  | 			 ThG = Thy + ThF; | ||
|  | 			 Tit = Tia - Ti3; | ||
|  | 			 ThP = ThH - ThO; | ||
|  | 			 ThY = ThQ + ThX; | ||
|  | 			 ThZ = ThP + ThY; | ||
|  | 			 Tiu = ThP - ThY; | ||
|  | 			 Ti0 = FNMS(KP707106781, ThZ, ThG); | ||
|  | 			 TiB = FMA(KP707106781, Tiu, Tit); | ||
|  | 			 Tii = FMA(KP707106781, ThZ, ThG); | ||
|  | 			 Tiv = FNMS(KP707106781, Tiu, Tit); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tir, Tiw, Tin, Tis; | ||
|  | 			 Tin = W[110]; | ||
|  | 			 Tir = Tin * Tiq; | ||
|  | 			 Tiw = Tin * Tiv; | ||
|  | 			 Tis = W[111]; | ||
|  | 			 cr[WS(rs, 56)] = FNMS(Tis, Tiv, Tir); | ||
|  | 			 ci[WS(rs, 56)] = FMA(Tis, Tiq, Tiw); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tiz, TiC, Tix, TiA; | ||
|  | 			 Tix = W[46]; | ||
|  | 			 Tiz = Tix * Tiy; | ||
|  | 			 TiC = Tix * TiB; | ||
|  | 			 TiA = W[47]; | ||
|  | 			 cr[WS(rs, 24)] = FNMS(TiA, TiB, Tiz); | ||
|  | 			 ci[WS(rs, 24)] = FMA(TiA, Tiy, TiC); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tif, Ti2, Tig, Thx, Ti1; | ||
|  | 			 Tif = FNMS(KP707106781, Tie, Tib); | ||
|  | 			 Ti2 = W[79]; | ||
|  | 			 Tig = Ti2 * Ti0; | ||
|  | 			 Thx = W[78]; | ||
|  | 			 Ti1 = Thx * Ti0; | ||
|  | 			 cr[WS(rs, 40)] = FNMS(Ti2, Tif, Ti1); | ||
|  | 			 ci[WS(rs, 40)] = FMA(Thx, Tif, Tig); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Til, Tik, Tim, Tih, Tij; | ||
|  | 			 Til = FMA(KP707106781, Tie, Tib); | ||
|  | 			 Tik = W[15]; | ||
|  | 			 Tim = Tik * Tii; | ||
|  | 			 Tih = W[14]; | ||
|  | 			 Tij = Tih * Tii; | ||
|  | 			 cr[WS(rs, 8)] = FNMS(Tik, Til, Tij); | ||
|  | 			 ci[WS(rs, 8)] = FMA(Tih, Til, Tim); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tjw, Tk2, Tk5, TjF, TjI, TjU, TjZ, TjM; | ||
|  | 		    { | ||
|  | 			 E TjE, TjX, Tjg, TjS, TjG, TjH, TjT, Tjv, TjY, Tjf, Tjn, Tju; | ||
|  | 			 TjE = TjC - TjD; | ||
|  | 			 TjX = FNMS(KP707106781, TjE, TjB); | ||
|  | 			 Tjf = Tjb - Tje; | ||
|  | 			 Tjg = FMA(KP707106781, Tjf, Tj8); | ||
|  | 			 TjS = FNMS(KP707106781, Tjf, Tj8); | ||
|  | 			 TjG = FMA(KP414213562, Tjq, Tjt); | ||
|  | 			 TjH = FNMS(KP414213562, Tjj, Tjm); | ||
|  | 			 TjT = TjG + TjH; | ||
|  | 			 Tjn = FMA(KP414213562, Tjm, Tjj); | ||
|  | 			 Tju = FNMS(KP414213562, Tjt, Tjq); | ||
|  | 			 Tjv = Tjn - Tju; | ||
|  | 			 TjY = Tju + Tjn; | ||
|  | 			 Tjw = FNMS(KP923879532, Tjv, Tjg); | ||
|  | 			 Tk2 = FMA(KP923879532, TjT, TjS); | ||
|  | 			 Tk5 = FMA(KP923879532, TjY, TjX); | ||
|  | 			 TjF = FMA(KP707106781, TjE, TjB); | ||
|  | 			 TjI = TjG - TjH; | ||
|  | 			 TjU = FNMS(KP923879532, TjT, TjS); | ||
|  | 			 TjZ = FNMS(KP923879532, TjY, TjX); | ||
|  | 			 TjM = FMA(KP923879532, Tjv, Tjg); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TjV, Tk0, TjR, TjW; | ||
|  | 			 TjR = W[54]; | ||
|  | 			 TjV = TjR * TjU; | ||
|  | 			 Tk0 = TjR * TjZ; | ||
|  | 			 TjW = W[55]; | ||
|  | 			 cr[WS(rs, 28)] = FNMS(TjW, TjZ, TjV); | ||
|  | 			 ci[WS(rs, 28)] = FMA(TjW, TjU, Tk0); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tk3, Tk6, Tk1, Tk4; | ||
|  | 			 Tk1 = W[118]; | ||
|  | 			 Tk3 = Tk1 * Tk2; | ||
|  | 			 Tk6 = Tk1 * Tk5; | ||
|  | 			 Tk4 = W[119]; | ||
|  | 			 cr[WS(rs, 60)] = FNMS(Tk4, Tk5, Tk3); | ||
|  | 			 ci[WS(rs, 60)] = FMA(Tk4, Tk2, Tk6); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TjJ, Tjy, TjK, Tj5, Tjx; | ||
|  | 			 TjJ = FNMS(KP923879532, TjI, TjF); | ||
|  | 			 Tjy = W[87]; | ||
|  | 			 TjK = Tjy * Tjw; | ||
|  | 			 Tj5 = W[86]; | ||
|  | 			 Tjx = Tj5 * Tjw; | ||
|  | 			 cr[WS(rs, 44)] = FNMS(Tjy, TjJ, Tjx); | ||
|  | 			 ci[WS(rs, 44)] = FMA(Tj5, TjJ, TjK); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TjP, TjO, TjQ, TjL, TjN; | ||
|  | 			 TjP = FMA(KP923879532, TjI, TjF); | ||
|  | 			 TjO = W[23]; | ||
|  | 			 TjQ = TjO * TjM; | ||
|  | 			 TjL = W[22]; | ||
|  | 			 TjN = TjL * TjM; | ||
|  | 			 cr[WS(rs, 12)] = FNMS(TjO, TjP, TjN); | ||
|  | 			 ci[WS(rs, 12)] = FMA(TjL, TjP, TjQ); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tki, TkK, TkN, Tkn, Tkq, TkC, TkH, Tku; | ||
|  | 		    { | ||
|  | 			 E Tkm, TkF, Tka, TkA, Tko, Tkp, TkB, Tkh, TkG, Tk9, Tkd, Tkg; | ||
|  | 			 Tkm = Tje + Tjb; | ||
|  | 			 TkF = FMA(KP707106781, Tkm, Tkl); | ||
|  | 			 Tk9 = TjC + TjD; | ||
|  | 			 Tka = FNMS(KP707106781, Tk9, Tk8); | ||
|  | 			 TkA = FMA(KP707106781, Tk9, Tk8); | ||
|  | 			 Tko = FNMS(KP414213562, Tke, Tkf); | ||
|  | 			 Tkp = FMA(KP414213562, Tkb, Tkc); | ||
|  | 			 TkB = Tko + Tkp; | ||
|  | 			 Tkd = FNMS(KP414213562, Tkc, Tkb); | ||
|  | 			 Tkg = FMA(KP414213562, Tkf, Tke); | ||
|  | 			 Tkh = Tkd - Tkg; | ||
|  | 			 TkG = Tkg + Tkd; | ||
|  | 			 Tki = FNMS(KP923879532, Tkh, Tka); | ||
|  | 			 TkK = FMA(KP923879532, TkB, TkA); | ||
|  | 			 TkN = FMA(KP923879532, TkG, TkF); | ||
|  | 			 Tkn = FNMS(KP707106781, Tkm, Tkl); | ||
|  | 			 Tkq = Tko - Tkp; | ||
|  | 			 TkC = FNMS(KP923879532, TkB, TkA); | ||
|  | 			 TkH = FNMS(KP923879532, TkG, TkF); | ||
|  | 			 Tku = FMA(KP923879532, Tkh, Tka); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TkD, TkI, Tkz, TkE; | ||
|  | 			 Tkz = W[70]; | ||
|  | 			 TkD = Tkz * TkC; | ||
|  | 			 TkI = Tkz * TkH; | ||
|  | 			 TkE = W[71]; | ||
|  | 			 cr[WS(rs, 36)] = FNMS(TkE, TkH, TkD); | ||
|  | 			 ci[WS(rs, 36)] = FMA(TkE, TkC, TkI); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TkL, TkO, TkJ, TkM; | ||
|  | 			 TkJ = W[6]; | ||
|  | 			 TkL = TkJ * TkK; | ||
|  | 			 TkO = TkJ * TkN; | ||
|  | 			 TkM = W[7]; | ||
|  | 			 cr[WS(rs, 4)] = FNMS(TkM, TkN, TkL); | ||
|  | 			 ci[WS(rs, 4)] = FMA(TkM, TkK, TkO); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tkr, Tkk, Tks, Tk7, Tkj; | ||
|  | 			 Tkr = FNMS(KP923879532, Tkq, Tkn); | ||
|  | 			 Tkk = W[103]; | ||
|  | 			 Tks = Tkk * Tki; | ||
|  | 			 Tk7 = W[102]; | ||
|  | 			 Tkj = Tk7 * Tki; | ||
|  | 			 cr[WS(rs, 52)] = FNMS(Tkk, Tkr, Tkj); | ||
|  | 			 ci[WS(rs, 52)] = FMA(Tk7, Tkr, Tks); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tkx, Tkw, Tky, Tkt, Tkv; | ||
|  | 			 Tkx = FMA(KP923879532, Tkq, Tkn); | ||
|  | 			 Tkw = W[39]; | ||
|  | 			 Tky = Tkw * Tku; | ||
|  | 			 Tkt = W[38]; | ||
|  | 			 Tkv = Tkt * Tku; | ||
|  | 			 cr[WS(rs, 20)] = FNMS(Tkw, Tkx, Tkv); | ||
|  | 			 ci[WS(rs, 20)] = FMA(Tkt, Tkx, Tky); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5q, T66, T69, T5J, T5M, T5Y, T63, T5Q; | ||
|  | 		    { | ||
|  | 			 E T5F, T5I, T61, T5K, T5L, T5X, T3C, T5W, T5p, T62; | ||
|  | 			 T5F = FNMS(KP923879532, T5E, T5B); | ||
|  | 			 T5I = T5G - T5H; | ||
|  | 			 T61 = FNMS(KP980785280, T5I, T5F); | ||
|  | 			 T5K = FMA(KP820678790, T5a, T5n); | ||
|  | 			 T5L = FNMS(KP820678790, T4h, T4u); | ||
|  | 			 T5X = T5K + T5L; | ||
|  | 			 { | ||
|  | 			      E T2I, T3B, T4v, T5o; | ||
|  | 			      T2I = FNMS(KP923879532, T2H, T2k); | ||
|  | 			      T3B = T39 - T3A; | ||
|  | 			      T3C = FMA(KP980785280, T3B, T2I); | ||
|  | 			      T5W = FNMS(KP980785280, T3B, T2I); | ||
|  | 			      T4v = FMA(KP820678790, T4u, T4h); | ||
|  | 			      T5o = FNMS(KP820678790, T5n, T5a); | ||
|  | 			      T5p = T4v - T5o; | ||
|  | 			      T62 = T5o + T4v; | ||
|  | 			 } | ||
|  | 			 T5q = FNMS(KP773010453, T5p, T3C); | ||
|  | 			 T66 = FMA(KP773010453, T5X, T5W); | ||
|  | 			 T69 = FMA(KP773010453, T62, T61); | ||
|  | 			 T5J = FMA(KP980785280, T5I, T5F); | ||
|  | 			 T5M = T5K - T5L; | ||
|  | 			 T5Y = FNMS(KP773010453, T5X, T5W); | ||
|  | 			 T63 = FNMS(KP773010453, T62, T61); | ||
|  | 			 T5Q = FMA(KP773010453, T5p, T3C); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5Z, T64, T5V, T60; | ||
|  | 			 T5V = W[48]; | ||
|  | 			 T5Z = T5V * T5Y; | ||
|  | 			 T64 = T5V * T63; | ||
|  | 			 T60 = W[49]; | ||
|  | 			 cr[WS(rs, 25)] = FNMS(T60, T63, T5Z); | ||
|  | 			 ci[WS(rs, 25)] = FMA(T60, T5Y, T64); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T67, T6a, T65, T68; | ||
|  | 			 T65 = W[112]; | ||
|  | 			 T67 = T65 * T66; | ||
|  | 			 T6a = T65 * T69; | ||
|  | 			 T68 = W[113]; | ||
|  | 			 cr[WS(rs, 57)] = FNMS(T68, T69, T67); | ||
|  | 			 ci[WS(rs, 57)] = FMA(T68, T66, T6a); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5N, T5s, T5O, T23, T5r; | ||
|  | 			 T5N = FNMS(KP773010453, T5M, T5J); | ||
|  | 			 T5s = W[81]; | ||
|  | 			 T5O = T5s * T5q; | ||
|  | 			 T23 = W[80]; | ||
|  | 			 T5r = T23 * T5q; | ||
|  | 			 cr[WS(rs, 41)] = FNMS(T5s, T5N, T5r); | ||
|  | 			 ci[WS(rs, 41)] = FMA(T23, T5N, T5O); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5T, T5S, T5U, T5P, T5R; | ||
|  | 			 T5T = FMA(KP773010453, T5M, T5J); | ||
|  | 			 T5S = W[17]; | ||
|  | 			 T5U = T5S * T5Q; | ||
|  | 			 T5P = W[16]; | ||
|  | 			 T5R = T5P * T5Q; | ||
|  | 			 cr[WS(rs, 9)] = FNMS(T5S, T5T, T5R); | ||
|  | 			 ci[WS(rs, 9)] = FMA(T5P, T5T, T5U); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tge, TgG, TgK, Tgr, Tgu, TgC, TgF, Tgx; | ||
|  | 		    { | ||
|  | 			 E Tg5, Tgc, Tgd, Tgj, Tgm, Tgn, TfY, TgA, Tgq, TgB; | ||
|  | 			 Tg5 = FMA(KP668178637, Tg4, Tg1); | ||
|  | 			 Tgc = FNMS(KP668178637, Tgb, Tg8); | ||
|  | 			 Tgd = Tg5 - Tgc; | ||
|  | 			 Tgj = FNMS(KP707106781, Tgi, Tgh); | ||
|  | 			 Tgm = Tgk - Tgl; | ||
|  | 			 Tgn = FMA(KP923879532, Tgm, Tgj); | ||
|  | 			 { | ||
|  | 			      E TfQ, TfX, Tgo, Tgp; | ||
|  | 			      TfQ = FNMS(KP707106781, TfP, TfO); | ||
|  | 			      TfX = TfT - TfW; | ||
|  | 			      TfY = FMA(KP923879532, TfX, TfQ); | ||
|  | 			      TgA = FNMS(KP923879532, TfX, TfQ); | ||
|  | 			      Tgo = FMA(KP668178637, Tg8, Tgb); | ||
|  | 			      Tgp = FNMS(KP668178637, Tg1, Tg4); | ||
|  | 			      Tgq = Tgo - Tgp; | ||
|  | 			      TgB = Tgo + Tgp; | ||
|  | 			 } | ||
|  | 			 Tge = FNMS(KP831469612, Tgd, TfY); | ||
|  | 			 TgG = Tgc + Tg5; | ||
|  | 			 TgK = FMA(KP831469612, TgB, TgA); | ||
|  | 			 Tgr = FNMS(KP831469612, Tgq, Tgn); | ||
|  | 			 Tgu = FMA(KP831469612, Tgd, TfY); | ||
|  | 			 TgC = FNMS(KP831469612, TgB, TgA); | ||
|  | 			 TgF = FNMS(KP923879532, Tgm, Tgj); | ||
|  | 			 Tgx = FMA(KP831469612, Tgq, Tgn); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgf, Tgs, TfN, Tgg; | ||
|  | 			 TfN = W[82]; | ||
|  | 			 Tgf = TfN * Tge; | ||
|  | 			 Tgs = TfN * Tgr; | ||
|  | 			 Tgg = W[83]; | ||
|  | 			 cr[WS(rs, 42)] = FNMS(Tgg, Tgr, Tgf); | ||
|  | 			 ci[WS(rs, 42)] = FMA(Tgg, Tge, Tgs); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgv, Tgy, Tgt, Tgw; | ||
|  | 			 Tgt = W[18]; | ||
|  | 			 Tgv = Tgt * Tgu; | ||
|  | 			 Tgy = Tgt * Tgx; | ||
|  | 			 Tgw = W[19]; | ||
|  | 			 cr[WS(rs, 10)] = FNMS(Tgw, Tgx, Tgv); | ||
|  | 			 ci[WS(rs, 10)] = FMA(Tgw, Tgu, Tgy); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgH, TgE, TgI, Tgz, TgD; | ||
|  | 			 TgH = FNMS(KP831469612, TgG, TgF); | ||
|  | 			 TgE = W[51]; | ||
|  | 			 TgI = TgE * TgC; | ||
|  | 			 Tgz = W[50]; | ||
|  | 			 TgD = Tgz * TgC; | ||
|  | 			 cr[WS(rs, 26)] = FNMS(TgE, TgH, TgD); | ||
|  | 			 ci[WS(rs, 26)] = FMA(Tgz, TgH, TgI); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgN, TgM, TgO, TgJ, TgL; | ||
|  | 			 TgN = FMA(KP831469612, TgG, TgF); | ||
|  | 			 TgM = W[115]; | ||
|  | 			 TgO = TgM * TgK; | ||
|  | 			 TgJ = W[114]; | ||
|  | 			 TgL = TgJ * TgK; | ||
|  | 			 cr[WS(rs, 58)] = FNMS(TgM, TgN, TgL); | ||
|  | 			 ci[WS(rs, 58)] = FMA(TgJ, TgN, TgO); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Th0, Ths, Thv, Th5, Th8, Thk, Thp, Thc; | ||
|  | 		    { | ||
|  | 			 E Th3, Th4, Thn, Th6, Th7, Thj, TgS, Thi, TgZ, Tho; | ||
|  | 			 Th3 = FMA(KP707106781, Tgi, Tgh); | ||
|  | 			 Th4 = TfW + TfT; | ||
|  | 			 Thn = FNMS(KP923879532, Th4, Th3); | ||
|  | 			 Th6 = FMA(KP198912367, TgT, TgU); | ||
|  | 			 Th7 = FNMS(KP198912367, TgW, TgX); | ||
|  | 			 Thj = Th7 - Th6; | ||
|  | 			 { | ||
|  | 			      E TgQ, TgR, TgV, TgY; | ||
|  | 			      TgQ = FMA(KP707106781, TfP, TfO); | ||
|  | 			      TgR = Tgk + Tgl; | ||
|  | 			      TgS = FMA(KP923879532, TgR, TgQ); | ||
|  | 			      Thi = FNMS(KP923879532, TgR, TgQ); | ||
|  | 			      TgV = FNMS(KP198912367, TgU, TgT); | ||
|  | 			      TgY = FMA(KP198912367, TgX, TgW); | ||
|  | 			      TgZ = TgV + TgY; | ||
|  | 			      Tho = TgV - TgY; | ||
|  | 			 } | ||
|  | 			 Th0 = FNMS(KP980785280, TgZ, TgS); | ||
|  | 			 Ths = FMA(KP980785280, Thj, Thi); | ||
|  | 			 Thv = FMA(KP980785280, Tho, Thn); | ||
|  | 			 Th5 = FMA(KP923879532, Th4, Th3); | ||
|  | 			 Th8 = Th6 + Th7; | ||
|  | 			 Thk = FNMS(KP980785280, Thj, Thi); | ||
|  | 			 Thp = FNMS(KP980785280, Tho, Thn); | ||
|  | 			 Thc = FMA(KP980785280, TgZ, TgS); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Thl, Thq, Thh, Thm; | ||
|  | 			 Thh = W[98]; | ||
|  | 			 Thl = Thh * Thk; | ||
|  | 			 Thq = Thh * Thp; | ||
|  | 			 Thm = W[99]; | ||
|  | 			 cr[WS(rs, 50)] = FNMS(Thm, Thp, Thl); | ||
|  | 			 ci[WS(rs, 50)] = FMA(Thm, Thk, Thq); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tht, Thw, Thr, Thu; | ||
|  | 			 Thr = W[34]; | ||
|  | 			 Tht = Thr * Ths; | ||
|  | 			 Thw = Thr * Thv; | ||
|  | 			 Thu = W[35]; | ||
|  | 			 cr[WS(rs, 18)] = FNMS(Thu, Thv, Tht); | ||
|  | 			 ci[WS(rs, 18)] = FMA(Thu, Ths, Thw); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Th9, Th2, Tha, TgP, Th1; | ||
|  | 			 Th9 = FNMS(KP980785280, Th8, Th5); | ||
|  | 			 Th2 = W[67]; | ||
|  | 			 Tha = Th2 * Th0; | ||
|  | 			 TgP = W[66]; | ||
|  | 			 Th1 = TgP * Th0; | ||
|  | 			 cr[WS(rs, 34)] = FNMS(Th2, Th9, Th1); | ||
|  | 			 ci[WS(rs, 34)] = FMA(TgP, Th9, Tha); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Thf, The, Thg, Thb, Thd; | ||
|  | 			 Thf = FMA(KP980785280, Th8, Th5); | ||
|  | 			 The = W[3]; | ||
|  | 			 Thg = The * Thc; | ||
|  | 			 Thb = W[2]; | ||
|  | 			 Thd = Thb * Thc; | ||
|  | 			 cr[WS(rs, 2)] = FNMS(The, Thf, Thd); | ||
|  | 			 ci[WS(rs, 2)] = FMA(Thb, Thf, Thg); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6m, T6O, T6R, T6r, T6u, T6G, T6L, T6y; | ||
|  | 		    { | ||
|  | 			 E T6p, T6q, T6J, T6s, T6t, T6F, T6e, T6E, T6l, T6K; | ||
|  | 			 T6p = FMA(KP923879532, T5E, T5B); | ||
|  | 			 T6q = T3A + T39; | ||
|  | 			 T6J = FMA(KP980785280, T6q, T6p); | ||
|  | 			 T6s = FNMS(KP098491403, T6i, T6j); | ||
|  | 			 T6t = FMA(KP098491403, T6f, T6g); | ||
|  | 			 T6F = T6s + T6t; | ||
|  | 			 { | ||
|  | 			      E T6c, T6d, T6h, T6k; | ||
|  | 			      T6c = FMA(KP923879532, T2H, T2k); | ||
|  | 			      T6d = T5G + T5H; | ||
|  | 			      T6e = FNMS(KP980785280, T6d, T6c); | ||
|  | 			      T6E = FMA(KP980785280, T6d, T6c); | ||
|  | 			      T6h = FNMS(KP098491403, T6g, T6f); | ||
|  | 			      T6k = FMA(KP098491403, T6j, T6i); | ||
|  | 			      T6l = T6h - T6k; | ||
|  | 			      T6K = T6k + T6h; | ||
|  | 			 } | ||
|  | 			 T6m = FNMS(KP995184726, T6l, T6e); | ||
|  | 			 T6O = FMA(KP995184726, T6F, T6E); | ||
|  | 			 T6R = FMA(KP995184726, T6K, T6J); | ||
|  | 			 T6r = FNMS(KP980785280, T6q, T6p); | ||
|  | 			 T6u = T6s - T6t; | ||
|  | 			 T6G = FNMS(KP995184726, T6F, T6E); | ||
|  | 			 T6L = FNMS(KP995184726, T6K, T6J); | ||
|  | 			 T6y = FMA(KP995184726, T6l, T6e); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6H, T6M, T6D, T6I; | ||
|  | 			 T6D = W[64]; | ||
|  | 			 T6H = T6D * T6G; | ||
|  | 			 T6M = T6D * T6L; | ||
|  | 			 T6I = W[65]; | ||
|  | 			 cr[WS(rs, 33)] = FNMS(T6I, T6L, T6H); | ||
|  | 			 ci[WS(rs, 33)] = FMA(T6I, T6G, T6M); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6P, T6S, T6N, T6Q; | ||
|  | 			 T6N = W[0]; | ||
|  | 			 T6P = T6N * T6O; | ||
|  | 			 T6S = T6N * T6R; | ||
|  | 			 T6Q = W[1]; | ||
|  | 			 cr[WS(rs, 1)] = FNMS(T6Q, T6R, T6P); | ||
|  | 			 ci[WS(rs, 1)] = FMA(T6Q, T6O, T6S); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6v, T6o, T6w, T6b, T6n; | ||
|  | 			 T6v = FNMS(KP995184726, T6u, T6r); | ||
|  | 			 T6o = W[97]; | ||
|  | 			 T6w = T6o * T6m; | ||
|  | 			 T6b = W[96]; | ||
|  | 			 T6n = T6b * T6m; | ||
|  | 			 cr[WS(rs, 49)] = FNMS(T6o, T6v, T6n); | ||
|  | 			 ci[WS(rs, 49)] = FMA(T6b, T6v, T6w); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6B, T6A, T6C, T6x, T6z; | ||
|  | 			 T6B = FMA(KP995184726, T6u, T6r); | ||
|  | 			 T6A = W[33]; | ||
|  | 			 T6C = T6A * T6y; | ||
|  | 			 T6x = W[32]; | ||
|  | 			 T6z = T6x * T6y; | ||
|  | 			 cr[WS(rs, 17)] = FNMS(T6A, T6B, T6z); | ||
|  | 			 ci[WS(rs, 17)] = FMA(T6x, T6B, T6C); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tbw, Tc2, Tc5, TbF, TbI, TbU, TbZ, TbM; | ||
|  | 		    { | ||
|  | 			 E TbB, TbE, TbX, TbG, TbH, TbT, Tbg, TbS, Tbv, TbY; | ||
|  | 			 TbB = FMA(KP923879532, TbA, Tbz); | ||
|  | 			 TbE = TbC - TbD; | ||
|  | 			 TbX = FNMS(KP980785280, TbE, TbB); | ||
|  | 			 TbG = FMA(KP820678790, Tbj, Tbm); | ||
|  | 			 TbH = FMA(KP820678790, Tbq, Tbt); | ||
|  | 			 TbT = TbG + TbH; | ||
|  | 			 { | ||
|  | 			      E Tb8, Tbf, Tbn, Tbu; | ||
|  | 			      Tb8 = FNMS(KP923879532, Tb7, Tb6); | ||
|  | 			      Tbf = Tbb + Tbe; | ||
|  | 			      Tbg = FNMS(KP980785280, Tbf, Tb8); | ||
|  | 			      TbS = FMA(KP980785280, Tbf, Tb8); | ||
|  | 			      Tbn = FNMS(KP820678790, Tbm, Tbj); | ||
|  | 			      Tbu = FNMS(KP820678790, Tbt, Tbq); | ||
|  | 			      Tbv = Tbn + Tbu; | ||
|  | 			      TbY = Tbn - Tbu; | ||
|  | 			 } | ||
|  | 			 Tbw = FNMS(KP773010453, Tbv, Tbg); | ||
|  | 			 Tc2 = FMA(KP773010453, TbT, TbS); | ||
|  | 			 Tc5 = FNMS(KP773010453, TbY, TbX); | ||
|  | 			 TbF = FMA(KP980785280, TbE, TbB); | ||
|  | 			 TbI = TbG - TbH; | ||
|  | 			 TbU = FNMS(KP773010453, TbT, TbS); | ||
|  | 			 TbZ = FMA(KP773010453, TbY, TbX); | ||
|  | 			 TbM = FMA(KP773010453, Tbv, Tbg); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbV, Tc0, TbR, TbW; | ||
|  | 			 TbR = W[44]; | ||
|  | 			 TbV = TbR * TbU; | ||
|  | 			 Tc0 = TbR * TbZ; | ||
|  | 			 TbW = W[45]; | ||
|  | 			 cr[WS(rs, 23)] = FNMS(TbW, TbZ, TbV); | ||
|  | 			 ci[WS(rs, 23)] = FMA(TbW, TbU, Tc0); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tc3, Tc6, Tc1, Tc4; | ||
|  | 			 Tc1 = W[108]; | ||
|  | 			 Tc3 = Tc1 * Tc2; | ||
|  | 			 Tc6 = Tc1 * Tc5; | ||
|  | 			 Tc4 = W[109]; | ||
|  | 			 cr[WS(rs, 55)] = FNMS(Tc4, Tc5, Tc3); | ||
|  | 			 ci[WS(rs, 55)] = FMA(Tc4, Tc2, Tc6); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbJ, Tby, TbK, Tb5, Tbx; | ||
|  | 			 TbJ = FNMS(KP773010453, TbI, TbF); | ||
|  | 			 Tby = W[77]; | ||
|  | 			 TbK = Tby * Tbw; | ||
|  | 			 Tb5 = W[76]; | ||
|  | 			 Tbx = Tb5 * Tbw; | ||
|  | 			 cr[WS(rs, 39)] = FNMS(Tby, TbJ, Tbx); | ||
|  | 			 ci[WS(rs, 39)] = FMA(Tb5, TbJ, TbK); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbP, TbO, TbQ, TbL, TbN; | ||
|  | 			 TbP = FMA(KP773010453, TbI, TbF); | ||
|  | 			 TbO = W[13]; | ||
|  | 			 TbQ = TbO * TbM; | ||
|  | 			 TbL = W[12]; | ||
|  | 			 TbN = TbL * TbM; | ||
|  | 			 cr[WS(rs, 7)] = FNMS(TbO, TbP, TbN); | ||
|  | 			 ci[WS(rs, 7)] = FMA(TbL, TbP, TbQ); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tay, Tb0, Tb3, TaD, TaG, TaS, TaX, TaK; | ||
|  | 		    { | ||
|  | 			 E TaB, TaC, TaV, TaE, TaF, TaR, Taq, TaQ, Tax, TaW; | ||
|  | 			 TaB = FMA(KP923879532, T9Q, T9N); | ||
|  | 			 TaC = T8V - T92; | ||
|  | 			 TaV = FNMS(KP831469612, TaC, TaB); | ||
|  | 			 TaE = FMA(KP303346683, Tar, Tas); | ||
|  | 			 TaF = FMA(KP303346683, Tau, Tav); | ||
|  | 			 TaR = TaE + TaF; | ||
|  | 			 { | ||
|  | 			      E Tao, Tap, Tat, Taw; | ||
|  | 			      Tao = FNMS(KP923879532, T8N, T8G); | ||
|  | 			      Tap = T9S + T9T; | ||
|  | 			      Taq = FMA(KP831469612, Tap, Tao); | ||
|  | 			      TaQ = FNMS(KP831469612, Tap, Tao); | ||
|  | 			      Tat = FNMS(KP303346683, Tas, Tar); | ||
|  | 			      Taw = FNMS(KP303346683, Tav, Tau); | ||
|  | 			      Tax = Tat + Taw; | ||
|  | 			      TaW = Tat - Taw; | ||
|  | 			 } | ||
|  | 			 Tay = FNMS(KP956940335, Tax, Taq); | ||
|  | 			 Tb0 = FMA(KP956940335, TaR, TaQ); | ||
|  | 			 Tb3 = FNMS(KP956940335, TaW, TaV); | ||
|  | 			 TaD = FMA(KP831469612, TaC, TaB); | ||
|  | 			 TaG = TaE - TaF; | ||
|  | 			 TaS = FNMS(KP956940335, TaR, TaQ); | ||
|  | 			 TaX = FMA(KP956940335, TaW, TaV); | ||
|  | 			 TaK = FMA(KP956940335, Tax, Taq); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaT, TaY, TaP, TaU; | ||
|  | 			 TaP = W[36]; | ||
|  | 			 TaT = TaP * TaS; | ||
|  | 			 TaY = TaP * TaX; | ||
|  | 			 TaU = W[37]; | ||
|  | 			 cr[WS(rs, 19)] = FNMS(TaU, TaX, TaT); | ||
|  | 			 ci[WS(rs, 19)] = FMA(TaU, TaS, TaY); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb1, Tb4, TaZ, Tb2; | ||
|  | 			 TaZ = W[100]; | ||
|  | 			 Tb1 = TaZ * Tb0; | ||
|  | 			 Tb4 = TaZ * Tb3; | ||
|  | 			 Tb2 = W[101]; | ||
|  | 			 cr[WS(rs, 51)] = FNMS(Tb2, Tb3, Tb1); | ||
|  | 			 ci[WS(rs, 51)] = FMA(Tb2, Tb0, Tb4); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaH, TaA, TaI, Tan, Taz; | ||
|  | 			 TaH = FNMS(KP956940335, TaG, TaD); | ||
|  | 			 TaA = W[69]; | ||
|  | 			 TaI = TaA * Tay; | ||
|  | 			 Tan = W[68]; | ||
|  | 			 Taz = Tan * Tay; | ||
|  | 			 cr[WS(rs, 35)] = FNMS(TaA, TaH, Taz); | ||
|  | 			 ci[WS(rs, 35)] = FMA(Tan, TaH, TaI); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaN, TaM, TaO, TaJ, TaL; | ||
|  | 			 TaN = FMA(KP956940335, TaG, TaD); | ||
|  | 			 TaM = W[5]; | ||
|  | 			 TaO = TaM * TaK; | ||
|  | 			 TaJ = W[4]; | ||
|  | 			 TaL = TaJ * TaK; | ||
|  | 			 cr[WS(rs, 3)] = FNMS(TaM, TaN, TaL); | ||
|  | 			 ci[WS(rs, 3)] = FMA(TaJ, TaN, TaO); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tfg, TfI, TfL, Tfl, Tfo, TfA, TfF, Tfs; | ||
|  | 		    { | ||
|  | 			 E Tfj, Tfk, TfD, Tfm, Tfn, Tfz, Tf8, Tfy, Tff, TfE; | ||
|  | 			 Tfj = FNMS(KP707106781, Tey, Tev); | ||
|  | 			 Tfk = Tds + Tdh; | ||
|  | 			 TfD = FMA(KP923879532, Tfk, Tfj); | ||
|  | 			 Tfm = FMA(KP198912367, Tfc, Tfd); | ||
|  | 			 Tfn = FNMS(KP198912367, Tf9, Tfa); | ||
|  | 			 Tfz = Tfm + Tfn; | ||
|  | 			 { | ||
|  | 			      E Tf6, Tf7, Tfb, Tfe; | ||
|  | 			      Tf6 = FNMS(KP707106781, Td5, TcU); | ||
|  | 			      Tf7 = TeA + TeB; | ||
|  | 			      Tf8 = FNMS(KP923879532, Tf7, Tf6); | ||
|  | 			      Tfy = FMA(KP923879532, Tf7, Tf6); | ||
|  | 			      Tfb = FMA(KP198912367, Tfa, Tf9); | ||
|  | 			      Tfe = FNMS(KP198912367, Tfd, Tfc); | ||
|  | 			      Tff = Tfb - Tfe; | ||
|  | 			      TfE = Tfe + Tfb; | ||
|  | 			 } | ||
|  | 			 Tfg = FNMS(KP980785280, Tff, Tf8); | ||
|  | 			 TfI = FMA(KP980785280, Tfz, Tfy); | ||
|  | 			 TfL = FMA(KP980785280, TfE, TfD); | ||
|  | 			 Tfl = FNMS(KP923879532, Tfk, Tfj); | ||
|  | 			 Tfo = Tfm - Tfn; | ||
|  | 			 TfA = FNMS(KP980785280, Tfz, Tfy); | ||
|  | 			 TfF = FNMS(KP980785280, TfE, TfD); | ||
|  | 			 Tfs = FMA(KP980785280, Tff, Tf8); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfB, TfG, Tfx, TfC; | ||
|  | 			 Tfx = W[58]; | ||
|  | 			 TfB = Tfx * TfA; | ||
|  | 			 TfG = Tfx * TfF; | ||
|  | 			 TfC = W[59]; | ||
|  | 			 cr[WS(rs, 30)] = FNMS(TfC, TfF, TfB); | ||
|  | 			 ci[WS(rs, 30)] = FMA(TfC, TfA, TfG); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfJ, TfM, TfH, TfK; | ||
|  | 			 TfH = W[122]; | ||
|  | 			 TfJ = TfH * TfI; | ||
|  | 			 TfM = TfH * TfL; | ||
|  | 			 TfK = W[123]; | ||
|  | 			 cr[WS(rs, 62)] = FNMS(TfK, TfL, TfJ); | ||
|  | 			 ci[WS(rs, 62)] = FMA(TfK, TfI, TfM); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tfp, Tfi, Tfq, Tf5, Tfh; | ||
|  | 			 Tfp = FNMS(KP980785280, Tfo, Tfl); | ||
|  | 			 Tfi = W[91]; | ||
|  | 			 Tfq = Tfi * Tfg; | ||
|  | 			 Tf5 = W[90]; | ||
|  | 			 Tfh = Tf5 * Tfg; | ||
|  | 			 cr[WS(rs, 46)] = FNMS(Tfi, Tfp, Tfh); | ||
|  | 			 ci[WS(rs, 46)] = FMA(Tf5, Tfp, Tfq); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tfv, Tfu, Tfw, Tfr, Tft; | ||
|  | 			 Tfv = FMA(KP980785280, Tfo, Tfl); | ||
|  | 			 Tfu = W[27]; | ||
|  | 			 Tfw = Tfu * Tfs; | ||
|  | 			 Tfr = W[26]; | ||
|  | 			 Tft = Tfr * Tfs; | ||
|  | 			 cr[WS(rs, 14)] = FNMS(Tfu, Tfv, Tft); | ||
|  | 			 ci[WS(rs, 14)] = FMA(Tfr, Tfv, Tfw); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7k, T7Q, T7T, T7t, T7w, T7I, T7N, T7A; | ||
|  | 		    { | ||
|  | 			 E T7p, T7s, T7L, T7u, T7v, T7H, T74, T7G, T7j, T7M; | ||
|  | 			 T7p = FMA(KP923879532, T7o, T7n); | ||
|  | 			 T7s = T7q - T7r; | ||
|  | 			 T7L = FNMS(KP831469612, T7s, T7p); | ||
|  | 			 T7u = FMA(KP534511135, T77, T7a); | ||
|  | 			 T7v = FNMS(KP534511135, T7e, T7h); | ||
|  | 			 T7H = T7v - T7u; | ||
|  | 			 { | ||
|  | 			      E T6W, T73, T7b, T7i; | ||
|  | 			      T6W = FMA(KP923879532, T6V, T6U); | ||
|  | 			      T73 = T6Z - T72; | ||
|  | 			      T74 = FMA(KP831469612, T73, T6W); | ||
|  | 			      T7G = FNMS(KP831469612, T73, T6W); | ||
|  | 			      T7b = FNMS(KP534511135, T7a, T77); | ||
|  | 			      T7i = FMA(KP534511135, T7h, T7e); | ||
|  | 			      T7j = T7b + T7i; | ||
|  | 			      T7M = T7b - T7i; | ||
|  | 			 } | ||
|  | 			 T7k = FNMS(KP881921264, T7j, T74); | ||
|  | 			 T7Q = FMA(KP881921264, T7H, T7G); | ||
|  | 			 T7T = FMA(KP881921264, T7M, T7L); | ||
|  | 			 T7t = FMA(KP831469612, T7s, T7p); | ||
|  | 			 T7w = T7u + T7v; | ||
|  | 			 T7I = FNMS(KP881921264, T7H, T7G); | ||
|  | 			 T7N = FNMS(KP881921264, T7M, T7L); | ||
|  | 			 T7A = FMA(KP881921264, T7j, T74); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7J, T7O, T7F, T7K; | ||
|  | 			 T7F = W[104]; | ||
|  | 			 T7J = T7F * T7I; | ||
|  | 			 T7O = T7F * T7N; | ||
|  | 			 T7K = W[105]; | ||
|  | 			 cr[WS(rs, 53)] = FNMS(T7K, T7N, T7J); | ||
|  | 			 ci[WS(rs, 53)] = FMA(T7K, T7I, T7O); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7R, T7U, T7P, T7S; | ||
|  | 			 T7P = W[40]; | ||
|  | 			 T7R = T7P * T7Q; | ||
|  | 			 T7U = T7P * T7T; | ||
|  | 			 T7S = W[41]; | ||
|  | 			 cr[WS(rs, 21)] = FNMS(T7S, T7T, T7R); | ||
|  | 			 ci[WS(rs, 21)] = FMA(T7S, T7Q, T7U); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7x, T7m, T7y, T6T, T7l; | ||
|  | 			 T7x = FNMS(KP881921264, T7w, T7t); | ||
|  | 			 T7m = W[73]; | ||
|  | 			 T7y = T7m * T7k; | ||
|  | 			 T6T = W[72]; | ||
|  | 			 T7l = T6T * T7k; | ||
|  | 			 cr[WS(rs, 37)] = FNMS(T7m, T7x, T7l); | ||
|  | 			 ci[WS(rs, 37)] = FMA(T6T, T7x, T7y); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7D, T7C, T7E, T7z, T7B; | ||
|  | 			 T7D = FMA(KP881921264, T7w, T7t); | ||
|  | 			 T7C = W[9]; | ||
|  | 			 T7E = T7C * T7A; | ||
|  | 			 T7z = W[8]; | ||
|  | 			 T7B = T7z * T7A; | ||
|  | 			 cr[WS(rs, 5)] = FNMS(T7C, T7D, T7B); | ||
|  | 			 ci[WS(rs, 5)] = FMA(T7z, T7D, T7E); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T86, T8u, T8y, T8f, T8i, T8q, T8t, T8l; | ||
|  | 		    { | ||
|  | 			 E T81, T84, T85, T89, T8a, T8b, T7Y, T8o, T8e, T8p; | ||
|  | 			 T81 = FMA(KP303346683, T80, T7Z); | ||
|  | 			 T84 = FNMS(KP303346683, T83, T82); | ||
|  | 			 T85 = T81 - T84; | ||
|  | 			 T89 = FNMS(KP923879532, T7o, T7n); | ||
|  | 			 T8a = T72 + T6Z; | ||
|  | 			 T8b = FNMS(KP831469612, T8a, T89); | ||
|  | 			 { | ||
|  | 			      E T7W, T7X, T8c, T8d; | ||
|  | 			      T7W = FNMS(KP923879532, T6V, T6U); | ||
|  | 			      T7X = T7q + T7r; | ||
|  | 			      T7Y = FNMS(KP831469612, T7X, T7W); | ||
|  | 			      T8o = FMA(KP831469612, T7X, T7W); | ||
|  | 			      T8c = FMA(KP303346683, T82, T83); | ||
|  | 			      T8d = FNMS(KP303346683, T7Z, T80); | ||
|  | 			      T8e = T8c - T8d; | ||
|  | 			      T8p = T8c + T8d; | ||
|  | 			 } | ||
|  | 			 T86 = FNMS(KP956940335, T85, T7Y); | ||
|  | 			 T8u = T84 + T81; | ||
|  | 			 T8y = FMA(KP956940335, T8p, T8o); | ||
|  | 			 T8f = FNMS(KP956940335, T8e, T8b); | ||
|  | 			 T8i = FMA(KP956940335, T85, T7Y); | ||
|  | 			 T8q = FNMS(KP956940335, T8p, T8o); | ||
|  | 			 T8t = FMA(KP831469612, T8a, T89); | ||
|  | 			 T8l = FMA(KP956940335, T8e, T8b); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T87, T8g, T7V, T88; | ||
|  | 			 T7V = W[88]; | ||
|  | 			 T87 = T7V * T86; | ||
|  | 			 T8g = T7V * T8f; | ||
|  | 			 T88 = W[89]; | ||
|  | 			 cr[WS(rs, 45)] = FNMS(T88, T8f, T87); | ||
|  | 			 ci[WS(rs, 45)] = FMA(T88, T86, T8g); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8j, T8m, T8h, T8k; | ||
|  | 			 T8h = W[24]; | ||
|  | 			 T8j = T8h * T8i; | ||
|  | 			 T8m = T8h * T8l; | ||
|  | 			 T8k = W[25]; | ||
|  | 			 cr[WS(rs, 13)] = FNMS(T8k, T8l, T8j); | ||
|  | 			 ci[WS(rs, 13)] = FMA(T8k, T8i, T8m); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8v, T8s, T8w, T8n, T8r; | ||
|  | 			 T8v = FNMS(KP956940335, T8u, T8t); | ||
|  | 			 T8s = W[57]; | ||
|  | 			 T8w = T8s * T8q; | ||
|  | 			 T8n = W[56]; | ||
|  | 			 T8r = T8n * T8q; | ||
|  | 			 cr[WS(rs, 29)] = FNMS(T8s, T8v, T8r); | ||
|  | 			 ci[WS(rs, 29)] = FMA(T8n, T8v, T8w); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8B, T8A, T8C, T8x, T8z; | ||
|  | 			 T8B = FMA(KP956940335, T8u, T8t); | ||
|  | 			 T8A = W[121]; | ||
|  | 			 T8C = T8A * T8y; | ||
|  | 			 T8x = W[120]; | ||
|  | 			 T8z = T8x * T8y; | ||
|  | 			 cr[WS(rs, 61)] = FNMS(T8A, T8B, T8z); | ||
|  | 			 ci[WS(rs, 61)] = FMA(T8x, T8B, T8C); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9I, Tai, Tal, T9V, T9Y, Taa, Taf, Ta2; | ||
|  | 		    { | ||
|  | 			 E T9R, T9U, Tad, T9W, T9X, Ta9, T94, Ta8, T9H, Tae; | ||
|  | 			 T9R = FNMS(KP923879532, T9Q, T9N); | ||
|  | 			 T9U = T9S - T9T; | ||
|  | 			 Tad = FNMS(KP831469612, T9U, T9R); | ||
|  | 			 T9W = FMA(KP534511135, T9f, T9m); | ||
|  | 			 T9X = FMA(KP534511135, T9y, T9F); | ||
|  | 			 Ta9 = T9W + T9X; | ||
|  | 			 { | ||
|  | 			      E T8O, T93, T9n, T9G; | ||
|  | 			      T8O = FMA(KP923879532, T8N, T8G); | ||
|  | 			      T93 = T8V + T92; | ||
|  | 			      T94 = FNMS(KP831469612, T93, T8O); | ||
|  | 			      Ta8 = FMA(KP831469612, T93, T8O); | ||
|  | 			      T9n = FNMS(KP534511135, T9m, T9f); | ||
|  | 			      T9G = FNMS(KP534511135, T9F, T9y); | ||
|  | 			      T9H = T9n + T9G; | ||
|  | 			      Tae = T9G - T9n; | ||
|  | 			 } | ||
|  | 			 T9I = FMA(KP881921264, T9H, T94); | ||
|  | 			 Tai = FMA(KP881921264, Ta9, Ta8); | ||
|  | 			 Tal = FNMS(KP881921264, Tae, Tad); | ||
|  | 			 T9V = FMA(KP831469612, T9U, T9R); | ||
|  | 			 T9Y = T9W - T9X; | ||
|  | 			 Taa = FNMS(KP881921264, Ta9, Ta8); | ||
|  | 			 Taf = FMA(KP881921264, Tae, Tad); | ||
|  | 			 Ta2 = FNMS(KP881921264, T9H, T94); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tab, Tag, Ta7, Tac; | ||
|  | 			 Ta7 = W[52]; | ||
|  | 			 Tab = Ta7 * Taa; | ||
|  | 			 Tag = Ta7 * Taf; | ||
|  | 			 Tac = W[53]; | ||
|  | 			 cr[WS(rs, 27)] = FNMS(Tac, Taf, Tab); | ||
|  | 			 ci[WS(rs, 27)] = FMA(Tac, Taa, Tag); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Taj, Tam, Tah, Tak; | ||
|  | 			 Tah = W[116]; | ||
|  | 			 Taj = Tah * Tai; | ||
|  | 			 Tam = Tah * Tal; | ||
|  | 			 Tak = W[117]; | ||
|  | 			 cr[WS(rs, 59)] = FNMS(Tak, Tal, Taj); | ||
|  | 			 ci[WS(rs, 59)] = FMA(Tak, Tai, Tam); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9Z, T9K, Ta0, T8D, T9J; | ||
|  | 			 T9Z = FNMS(KP881921264, T9Y, T9V); | ||
|  | 			 T9K = W[85]; | ||
|  | 			 Ta0 = T9K * T9I; | ||
|  | 			 T8D = W[84]; | ||
|  | 			 T9J = T8D * T9I; | ||
|  | 			 cr[WS(rs, 43)] = FNMS(T9K, T9Z, T9J); | ||
|  | 			 ci[WS(rs, 43)] = FMA(T8D, T9Z, Ta0); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta5, Ta4, Ta6, Ta1, Ta3; | ||
|  | 			 Ta5 = FMA(KP881921264, T9Y, T9V); | ||
|  | 			 Ta4 = W[21]; | ||
|  | 			 Ta6 = Ta4 * Ta2; | ||
|  | 			 Ta1 = W[20]; | ||
|  | 			 Ta3 = Ta1 * Ta2; | ||
|  | 			 cr[WS(rs, 11)] = FNMS(Ta4, Ta5, Ta3); | ||
|  | 			 ci[WS(rs, 11)] = FMA(Ta1, Ta5, Ta6); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Teo, Tf0, Tf3, TeD, TeG, TeS, TeX, TeK; | ||
|  | 		    { | ||
|  | 			 E Tez, TeC, TeV, TeE, TeF, TeR, Tdu, TeQ, Ten, TeW; | ||
|  | 			 Tez = FMA(KP707106781, Tey, Tev); | ||
|  | 			 TeC = TeA - TeB; | ||
|  | 			 TeV = FMA(KP923879532, TeC, Tez); | ||
|  | 			 TeE = FNMS(KP668178637, Tec, Tel); | ||
|  | 			 TeF = FMA(KP668178637, TdL, TdU); | ||
|  | 			 TeR = TeE + TeF; | ||
|  | 			 { | ||
|  | 			      E Td6, Tdt, TdV, Tem; | ||
|  | 			      Td6 = FMA(KP707106781, Td5, TcU); | ||
|  | 			      Tdt = Tdh - Tds; | ||
|  | 			      Tdu = FNMS(KP923879532, Tdt, Td6); | ||
|  | 			      TeQ = FMA(KP923879532, Tdt, Td6); | ||
|  | 			      TdV = FNMS(KP668178637, TdU, TdL); | ||
|  | 			      Tem = FMA(KP668178637, Tel, Tec); | ||
|  | 			      Ten = TdV - Tem; | ||
|  | 			      TeW = Tem + TdV; | ||
|  | 			 } | ||
|  | 			 Teo = FNMS(KP831469612, Ten, Tdu); | ||
|  | 			 Tf0 = FMA(KP831469612, TeR, TeQ); | ||
|  | 			 Tf3 = FMA(KP831469612, TeW, TeV); | ||
|  | 			 TeD = FNMS(KP923879532, TeC, Tez); | ||
|  | 			 TeG = TeE - TeF; | ||
|  | 			 TeS = FNMS(KP831469612, TeR, TeQ); | ||
|  | 			 TeX = FNMS(KP831469612, TeW, TeV); | ||
|  | 			 TeK = FMA(KP831469612, Ten, Tdu); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TeT, TeY, TeP, TeU; | ||
|  | 			 TeP = W[74]; | ||
|  | 			 TeT = TeP * TeS; | ||
|  | 			 TeY = TeP * TeX; | ||
|  | 			 TeU = W[75]; | ||
|  | 			 cr[WS(rs, 38)] = FNMS(TeU, TeX, TeT); | ||
|  | 			 ci[WS(rs, 38)] = FMA(TeU, TeS, TeY); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tf1, Tf4, TeZ, Tf2; | ||
|  | 			 TeZ = W[10]; | ||
|  | 			 Tf1 = TeZ * Tf0; | ||
|  | 			 Tf4 = TeZ * Tf3; | ||
|  | 			 Tf2 = W[11]; | ||
|  | 			 cr[WS(rs, 6)] = FNMS(Tf2, Tf3, Tf1); | ||
|  | 			 ci[WS(rs, 6)] = FMA(Tf2, Tf0, Tf4); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TeH, Teq, TeI, TcP, Tep; | ||
|  | 			 TeH = FNMS(KP831469612, TeG, TeD); | ||
|  | 			 Teq = W[107]; | ||
|  | 			 TeI = Teq * Teo; | ||
|  | 			 TcP = W[106]; | ||
|  | 			 Tep = TcP * Teo; | ||
|  | 			 cr[WS(rs, 54)] = FNMS(Teq, TeH, Tep); | ||
|  | 			 ci[WS(rs, 54)] = FMA(TcP, TeH, TeI); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TeN, TeM, TeO, TeJ, TeL; | ||
|  | 			 TeN = FMA(KP831469612, TeG, TeD); | ||
|  | 			 TeM = W[43]; | ||
|  | 			 TeO = TeM * TeK; | ||
|  | 			 TeJ = W[42]; | ||
|  | 			 TeL = TeJ * TeK; | ||
|  | 			 cr[WS(rs, 22)] = FNMS(TeM, TeN, TeL); | ||
|  | 			 ci[WS(rs, 22)] = FMA(TeJ, TeN, TeO); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tci, TcK, TcN, Tcn, Tcq, TcC, TcH, Tcu; | ||
|  | 		    { | ||
|  | 			 E Tcl, Tcm, TcF, Tco, Tcp, TcB, Tca, TcA, Tch, TcG; | ||
|  | 			 Tcl = FNMS(KP923879532, TbA, Tbz); | ||
|  | 			 Tcm = Tbe - Tbb; | ||
|  | 			 TcF = FNMS(KP980785280, Tcm, Tcl); | ||
|  | 			 Tco = FMA(KP098491403, Tcb, Tcc); | ||
|  | 			 Tcp = FMA(KP098491403, Tce, Tcf); | ||
|  | 			 TcB = Tco + Tcp; | ||
|  | 			 { | ||
|  | 			      E Tc8, Tc9, Tcd, Tcg; | ||
|  | 			      Tc8 = FMA(KP923879532, Tb7, Tb6); | ||
|  | 			      Tc9 = TbC + TbD; | ||
|  | 			      Tca = FNMS(KP980785280, Tc9, Tc8); | ||
|  | 			      TcA = FMA(KP980785280, Tc9, Tc8); | ||
|  | 			      Tcd = FNMS(KP098491403, Tcc, Tcb); | ||
|  | 			      Tcg = FNMS(KP098491403, Tcf, Tce); | ||
|  | 			      Tch = Tcd + Tcg; | ||
|  | 			      TcG = Tcg - Tcd; | ||
|  | 			 } | ||
|  | 			 Tci = FMA(KP995184726, Tch, Tca); | ||
|  | 			 TcK = FMA(KP995184726, TcB, TcA); | ||
|  | 			 TcN = FNMS(KP995184726, TcG, TcF); | ||
|  | 			 Tcn = FMA(KP980785280, Tcm, Tcl); | ||
|  | 			 Tcq = Tco - Tcp; | ||
|  | 			 TcC = FNMS(KP995184726, TcB, TcA); | ||
|  | 			 TcH = FMA(KP995184726, TcG, TcF); | ||
|  | 			 Tcu = FNMS(KP995184726, Tch, Tca); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcD, TcI, Tcz, TcE; | ||
|  | 			 Tcz = W[60]; | ||
|  | 			 TcD = Tcz * TcC; | ||
|  | 			 TcI = Tcz * TcH; | ||
|  | 			 TcE = W[61]; | ||
|  | 			 cr[WS(rs, 31)] = FNMS(TcE, TcH, TcD); | ||
|  | 			 ci[WS(rs, 31)] = FMA(TcE, TcC, TcI); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcL, TcO, TcJ, TcM; | ||
|  | 			 TcJ = W[124]; | ||
|  | 			 TcL = TcJ * TcK; | ||
|  | 			 TcO = TcJ * TcN; | ||
|  | 			 TcM = W[125]; | ||
|  | 			 cr[WS(rs, 63)] = FNMS(TcM, TcN, TcL); | ||
|  | 			 ci[WS(rs, 63)] = FMA(TcM, TcK, TcO); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcr, Tck, Tcs, Tc7, Tcj; | ||
|  | 			 Tcr = FNMS(KP995184726, Tcq, Tcn); | ||
|  | 			 Tck = W[93]; | ||
|  | 			 Tcs = Tck * Tci; | ||
|  | 			 Tc7 = W[92]; | ||
|  | 			 Tcj = Tc7 * Tci; | ||
|  | 			 cr[WS(rs, 47)] = FNMS(Tck, Tcr, Tcj); | ||
|  | 			 ci[WS(rs, 47)] = FMA(Tc7, Tcr, Tcs); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcx, Tcw, Tcy, Tct, Tcv; | ||
|  | 			 Tcx = FMA(KP995184726, Tcq, Tcn); | ||
|  | 			 Tcw = W[29]; | ||
|  | 			 Tcy = Tcw * Tcu; | ||
|  | 			 Tct = W[28]; | ||
|  | 			 Tcv = Tct * Tcu; | ||
|  | 			 cr[WS(rs, 15)] = FNMS(Tcw, Tcx, Tcv); | ||
|  | 			 ci[WS(rs, 15)] = FMA(Tct, Tcx, Tcy); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 64 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 64, "hb_64", twinstr, &GENUS, { 520, 126, 518, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb_64) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb_64, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 64 -dif -name hb_64 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 1038 FP additions, 500 FP multiplications, | ||
|  |  * (or, 808 additions, 270 multiplications, 230 fused multiply/add), | ||
|  |  * 196 stack variables, 15 constants, and 256 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP098017140, +0.098017140329560601994195563888641845861136673); | ||
|  |      DK(KP995184726, +0.995184726672196886244836953109479921575474869); | ||
|  |      DK(KP773010453, +0.773010453362736960810906609758469800971041293); | ||
|  |      DK(KP634393284, +0.634393284163645498215171613225493370675687095); | ||
|  |      DK(KP471396736, +0.471396736825997648556387625905254377657460319); | ||
|  |      DK(KP881921264, +0.881921264348355029712756863660388349508442621); | ||
|  |      DK(KP956940335, +0.956940335732208864935797886980269969482849206); | ||
|  |      DK(KP290284677, +0.290284677254462367636192375817395274691476278); | ||
|  |      DK(KP195090322, +0.195090322016128267848284868477022240927691618); | ||
|  |      DK(KP980785280, +0.980785280403230449126182236134239036973933731); | ||
|  |      DK(KP555570233, +0.555570233019602224742830813948532874374937191); | ||
|  |      DK(KP831469612, +0.831469612302545237078788377617905756738560812); | ||
|  |      DK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | ||
|  | 	       E Tf, T8C, Tfa, Thk, Tgg, ThM, T2c, T5O, T4K, T6g, Tag, TdE, TcA, Te6, T7P; | ||
|  | 	       E T94, TK, T7o, T38, T4P, Tfv, Thn, T5W, T6j, Tb0, TdK, Tfs, Tho, T8K, T97; | ||
|  | 	       E Tb7, TdL, TZ, T7l, T2P, T4Q, Tfo, Thq, T5T, T6k, TaH, TdH, Tfl, Thr, T8H; | ||
|  | 	       E T98, TaO, TdI, Tu, T95, Tfh, ThN, Tgj, Thl, T2v, T6h, T4N, T5P, Tav, Te7; | ||
|  | 	       E TcD, TdF, T7S, T8D, T1L, T20, T7A, T7D, T7G, T7H, T40, T62, Tg1, Thv, Tg8; | ||
|  | 	       E Thz, Tg5, Thw, T4t, T5Z, T4j, T60, T4w, T63, TbY, TdS, Tcd, TdQ, TfU, Thy; | ||
|  | 	       E T8P, T9z, T8S, T9A, Tcl, TdP, Tco, TdT, T1g, T1v, T7r, T7u, T7x, T7y, T3j; | ||
|  | 	       E T69, TfI, ThD, TfP, ThG, TfM, ThC, T3M, T66, T3C, T67, T3P, T6a, Tbl, TdZ; | ||
|  | 	       E TbA, TdX, TfB, ThF, T8W, T9C, T8Z, T9D, TbI, TdW, TbL, Te0; | ||
|  | 	       { | ||
|  | 		    E T3, Ta6, T6, Tcu, T4I, Ta7, T4F, Tcv, Td, Tcy, T27, Tae, Ta, Tcx, T2a; | ||
|  | 		    E Tab; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T4D, T4E; | ||
|  | 			 T1 = cr[0]; | ||
|  | 			 T2 = ci[WS(rs, 31)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 Ta6 = T1 - T2; | ||
|  | 			 { | ||
|  | 			      E T4, T5, T4G, T4H; | ||
|  | 			      T4 = cr[WS(rs, 16)]; | ||
|  | 			      T5 = ci[WS(rs, 15)]; | ||
|  | 			      T6 = T4 + T5; | ||
|  | 			      Tcu = T4 - T5; | ||
|  | 			      T4G = ci[WS(rs, 47)]; | ||
|  | 			      T4H = cr[WS(rs, 48)]; | ||
|  | 			      T4I = T4G - T4H; | ||
|  | 			      Ta7 = T4G + T4H; | ||
|  | 			 } | ||
|  | 			 T4D = ci[WS(rs, 63)]; | ||
|  | 			 T4E = cr[WS(rs, 32)]; | ||
|  | 			 T4F = T4D - T4E; | ||
|  | 			 Tcv = T4D + T4E; | ||
|  | 			 { | ||
|  | 			      E Tb, Tc, Tac, T25, T26, Tad; | ||
|  | 			      Tb = ci[WS(rs, 7)]; | ||
|  | 			      Tc = cr[WS(rs, 24)]; | ||
|  | 			      Tac = Tb - Tc; | ||
|  | 			      T25 = ci[WS(rs, 39)]; | ||
|  | 			      T26 = cr[WS(rs, 56)]; | ||
|  | 			      Tad = T25 + T26; | ||
|  | 			      Td = Tb + Tc; | ||
|  | 			      Tcy = Tac + Tad; | ||
|  | 			      T27 = T25 - T26; | ||
|  | 			      Tae = Tac - Tad; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T8, T9, Ta9, T28, T29, Taa; | ||
|  | 			      T8 = cr[WS(rs, 8)]; | ||
|  | 			      T9 = ci[WS(rs, 23)]; | ||
|  | 			      Ta9 = T8 - T9; | ||
|  | 			      T28 = ci[WS(rs, 55)]; | ||
|  | 			      T29 = cr[WS(rs, 40)]; | ||
|  | 			      Taa = T28 + T29; | ||
|  | 			      Ta = T8 + T9; | ||
|  | 			      Tcx = Ta9 + Taa; | ||
|  | 			      T2a = T28 - T29; | ||
|  | 			      Tab = Ta9 - Taa; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, Te, Tf8, Tf9; | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 Te = Ta + Td; | ||
|  | 			 Tf = T7 + Te; | ||
|  | 			 T8C = T7 - Te; | ||
|  | 			 Tf8 = Ta6 + Ta7; | ||
|  | 			 Tf9 = KP707106781 * (Tcx + Tcy); | ||
|  | 			 Tfa = Tf8 - Tf9; | ||
|  | 			 Thk = Tf8 + Tf9; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tge, Tgf, T24, T2b; | ||
|  | 			 Tge = Tcv - Tcu; | ||
|  | 			 Tgf = KP707106781 * (Tab - Tae); | ||
|  | 			 Tgg = Tge + Tgf; | ||
|  | 			 ThM = Tge - Tgf; | ||
|  | 			 T24 = T3 - T6; | ||
|  | 			 T2b = T27 - T2a; | ||
|  | 			 T2c = T24 + T2b; | ||
|  | 			 T5O = T24 - T2b; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4C, T4J, Ta8, Taf; | ||
|  | 			 T4C = Ta - Td; | ||
|  | 			 T4J = T4F - T4I; | ||
|  | 			 T4K = T4C + T4J; | ||
|  | 			 T6g = T4J - T4C; | ||
|  | 			 Ta8 = Ta6 - Ta7; | ||
|  | 			 Taf = KP707106781 * (Tab + Tae); | ||
|  | 			 Tag = Ta8 - Taf; | ||
|  | 			 TdE = Ta8 + Taf; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcw, Tcz, T7N, T7O; | ||
|  | 			 Tcw = Tcu + Tcv; | ||
|  | 			 Tcz = KP707106781 * (Tcx - Tcy); | ||
|  | 			 TcA = Tcw - Tcz; | ||
|  | 			 Te6 = Tcw + Tcz; | ||
|  | 			 T7N = T4F + T4I; | ||
|  | 			 T7O = T2a + T27; | ||
|  | 			 T7P = T7N + T7O; | ||
|  | 			 T94 = T7N - T7O; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TC, Tb1, T2Z, TaQ, T2X, Tb2, T7m, TaR, TJ, Tb4, Tb5, T2Q, T36, TaV, TaY; | ||
|  | 		    E T7n, Tfq, Tfr; | ||
|  | 		    { | ||
|  | 			 E Tw, Tx, Ty, Tz, TA, TB; | ||
|  | 			 Tw = cr[WS(rs, 2)]; | ||
|  | 			 Tx = ci[WS(rs, 29)]; | ||
|  | 			 Ty = Tw + Tx; | ||
|  | 			 Tz = cr[WS(rs, 18)]; | ||
|  | 			 TA = ci[WS(rs, 13)]; | ||
|  | 			 TB = Tz + TA; | ||
|  | 			 TC = Ty + TB; | ||
|  | 			 Tb1 = Tz - TA; | ||
|  | 			 T2Z = Ty - TB; | ||
|  | 			 TaQ = Tw - Tx; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2R, T2S, T2T, T2U, T2V, T2W; | ||
|  | 			 T2R = ci[WS(rs, 61)]; | ||
|  | 			 T2S = cr[WS(rs, 34)]; | ||
|  | 			 T2T = T2R - T2S; | ||
|  | 			 T2U = ci[WS(rs, 45)]; | ||
|  | 			 T2V = cr[WS(rs, 50)]; | ||
|  | 			 T2W = T2U - T2V; | ||
|  | 			 T2X = T2T - T2W; | ||
|  | 			 Tb2 = T2R + T2S; | ||
|  | 			 T7m = T2T + T2W; | ||
|  | 			 TaR = T2U + T2V; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TF, TaT, T35, TaU, TI, TaW, T32, TaX; | ||
|  | 			 { | ||
|  | 			      E TD, TE, T33, T34; | ||
|  | 			      TD = cr[WS(rs, 10)]; | ||
|  | 			      TE = ci[WS(rs, 21)]; | ||
|  | 			      TF = TD + TE; | ||
|  | 			      TaT = TD - TE; | ||
|  | 			      T33 = ci[WS(rs, 53)]; | ||
|  | 			      T34 = cr[WS(rs, 42)]; | ||
|  | 			      T35 = T33 - T34; | ||
|  | 			      TaU = T33 + T34; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TG, TH, T30, T31; | ||
|  | 			      TG = ci[WS(rs, 5)]; | ||
|  | 			      TH = cr[WS(rs, 26)]; | ||
|  | 			      TI = TG + TH; | ||
|  | 			      TaW = TG - TH; | ||
|  | 			      T30 = ci[WS(rs, 37)]; | ||
|  | 			      T31 = cr[WS(rs, 58)]; | ||
|  | 			      T32 = T30 - T31; | ||
|  | 			      TaX = T30 + T31; | ||
|  | 			 } | ||
|  | 			 TJ = TF + TI; | ||
|  | 			 Tb4 = TaT + TaU; | ||
|  | 			 Tb5 = TaW + TaX; | ||
|  | 			 T2Q = TF - TI; | ||
|  | 			 T36 = T32 - T35; | ||
|  | 			 TaV = TaT - TaU; | ||
|  | 			 TaY = TaW - TaX; | ||
|  | 			 T7n = T35 + T32; | ||
|  | 		    } | ||
|  | 		    TK = TC + TJ; | ||
|  | 		    T7o = T7m + T7n; | ||
|  | 		    { | ||
|  | 			 E T2Y, T37, Tft, Tfu; | ||
|  | 			 T2Y = T2Q + T2X; | ||
|  | 			 T37 = T2Z + T36; | ||
|  | 			 T38 = FMA(KP923879532, T2Y, KP382683432 * T37); | ||
|  | 			 T4P = FNMS(KP382683432, T2Y, KP923879532 * T37); | ||
|  | 			 Tft = TaQ + TaR; | ||
|  | 			 Tfu = KP707106781 * (Tb4 + Tb5); | ||
|  | 			 Tfv = Tft - Tfu; | ||
|  | 			 Thn = Tft + Tfu; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5U, T5V, TaS, TaZ; | ||
|  | 			 T5U = T2X - T2Q; | ||
|  | 			 T5V = T2Z - T36; | ||
|  | 			 T5W = FMA(KP382683432, T5U, KP923879532 * T5V); | ||
|  | 			 T6j = FNMS(KP923879532, T5U, KP382683432 * T5V); | ||
|  | 			 TaS = TaQ - TaR; | ||
|  | 			 TaZ = KP707106781 * (TaV + TaY); | ||
|  | 			 Tb0 = TaS - TaZ; | ||
|  | 			 TdK = TaS + TaZ; | ||
|  | 		    } | ||
|  | 		    Tfq = Tb2 - Tb1; | ||
|  | 		    Tfr = KP707106781 * (TaV - TaY); | ||
|  | 		    Tfs = Tfq + Tfr; | ||
|  | 		    Tho = Tfq - Tfr; | ||
|  | 		    { | ||
|  | 			 E T8I, T8J, Tb3, Tb6; | ||
|  | 			 T8I = TC - TJ; | ||
|  | 			 T8J = T7m - T7n; | ||
|  | 			 T8K = T8I + T8J; | ||
|  | 			 T97 = T8I - T8J; | ||
|  | 			 Tb3 = Tb1 + Tb2; | ||
|  | 			 Tb6 = KP707106781 * (Tb4 - Tb5); | ||
|  | 			 Tb7 = Tb3 - Tb6; | ||
|  | 			 TdL = Tb3 + Tb6; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TR, TaI, T2G, Tax, T2E, TaJ, T7j, Tay, TY, TaL, TaM, T2x, T2N, TaC, TaF; | ||
|  | 		    E T7k, Tfj, Tfk; | ||
|  | 		    { | ||
|  | 			 E TL, TM, TN, TO, TP, TQ; | ||
|  | 			 TL = ci[WS(rs, 1)]; | ||
|  | 			 TM = cr[WS(rs, 30)]; | ||
|  | 			 TN = TL + TM; | ||
|  | 			 TO = cr[WS(rs, 14)]; | ||
|  | 			 TP = ci[WS(rs, 17)]; | ||
|  | 			 TQ = TO + TP; | ||
|  | 			 TR = TN + TQ; | ||
|  | 			 TaI = TL - TM; | ||
|  | 			 T2G = TN - TQ; | ||
|  | 			 Tax = TO - TP; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2y, T2z, T2A, T2B, T2C, T2D; | ||
|  | 			 T2y = ci[WS(rs, 33)]; | ||
|  | 			 T2z = cr[WS(rs, 62)]; | ||
|  | 			 T2A = T2y - T2z; | ||
|  | 			 T2B = ci[WS(rs, 49)]; | ||
|  | 			 T2C = cr[WS(rs, 46)]; | ||
|  | 			 T2D = T2B - T2C; | ||
|  | 			 T2E = T2A - T2D; | ||
|  | 			 TaJ = T2B + T2C; | ||
|  | 			 T7j = T2A + T2D; | ||
|  | 			 Tay = T2y + T2z; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TU, TaA, T2M, TaB, TX, TaD, T2J, TaE; | ||
|  | 			 { | ||
|  | 			      E TS, TT, T2K, T2L; | ||
|  | 			      TS = cr[WS(rs, 6)]; | ||
|  | 			      TT = ci[WS(rs, 25)]; | ||
|  | 			      TU = TS + TT; | ||
|  | 			      TaA = TS - TT; | ||
|  | 			      T2K = ci[WS(rs, 57)]; | ||
|  | 			      T2L = cr[WS(rs, 38)]; | ||
|  | 			      T2M = T2K - T2L; | ||
|  | 			      TaB = T2K + T2L; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TV, TW, T2H, T2I; | ||
|  | 			      TV = ci[WS(rs, 9)]; | ||
|  | 			      TW = cr[WS(rs, 22)]; | ||
|  | 			      TX = TV + TW; | ||
|  | 			      TaD = TV - TW; | ||
|  | 			      T2H = ci[WS(rs, 41)]; | ||
|  | 			      T2I = cr[WS(rs, 54)]; | ||
|  | 			      T2J = T2H - T2I; | ||
|  | 			      TaE = T2H + T2I; | ||
|  | 			 } | ||
|  | 			 TY = TU + TX; | ||
|  | 			 TaL = TaA - TaB; | ||
|  | 			 TaM = TaD - TaE; | ||
|  | 			 T2x = TU - TX; | ||
|  | 			 T2N = T2J - T2M; | ||
|  | 			 TaC = TaA + TaB; | ||
|  | 			 TaF = TaD + TaE; | ||
|  | 			 T7k = T2M + T2J; | ||
|  | 		    } | ||
|  | 		    TZ = TR + TY; | ||
|  | 		    T7l = T7j + T7k; | ||
|  | 		    { | ||
|  | 			 E T2F, T2O, Tfm, Tfn; | ||
|  | 			 T2F = T2x + T2E; | ||
|  | 			 T2O = T2G + T2N; | ||
|  | 			 T2P = FNMS(KP382683432, T2O, KP923879532 * T2F); | ||
|  | 			 T4Q = FMA(KP382683432, T2F, KP923879532 * T2O); | ||
|  | 			 Tfm = TaI + TaJ; | ||
|  | 			 Tfn = KP707106781 * (TaC + TaF); | ||
|  | 			 Tfo = Tfm - Tfn; | ||
|  | 			 Thq = Tfm + Tfn; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5R, T5S, Taz, TaG; | ||
|  | 			 T5R = T2E - T2x; | ||
|  | 			 T5S = T2G - T2N; | ||
|  | 			 T5T = FNMS(KP923879532, T5S, KP382683432 * T5R); | ||
|  | 			 T6k = FMA(KP923879532, T5R, KP382683432 * T5S); | ||
|  | 			 Taz = Tax - Tay; | ||
|  | 			 TaG = KP707106781 * (TaC - TaF); | ||
|  | 			 TaH = Taz - TaG; | ||
|  | 			 TdH = Taz + TaG; | ||
|  | 		    } | ||
|  | 		    Tfj = KP707106781 * (TaL - TaM); | ||
|  | 		    Tfk = Tax + Tay; | ||
|  | 		    Tfl = Tfj - Tfk; | ||
|  | 		    Thr = Tfk + Tfj; | ||
|  | 		    { | ||
|  | 			 E T8F, T8G, TaK, TaN; | ||
|  | 			 T8F = T7j - T7k; | ||
|  | 			 T8G = TR - TY; | ||
|  | 			 T8H = T8F - T8G; | ||
|  | 			 T98 = T8G + T8F; | ||
|  | 			 TaK = TaI - TaJ; | ||
|  | 			 TaN = KP707106781 * (TaL + TaM); | ||
|  | 			 TaO = TaK - TaN; | ||
|  | 			 TdI = TaK + TaN; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, T2j, Tl, T2g, T2d, T2k, Tfc, Tfb, Tat, Taq, Tp, T2s, Ts, T2p, T2m; | ||
|  | 		    E T2t, Tff, Tfe, Tam, Taj; | ||
|  | 		    { | ||
|  | 			 E Tar, Tas, Tao, Tap; | ||
|  | 			 { | ||
|  | 			      E Tg, Th, T2h, T2i; | ||
|  | 			      Tg = cr[WS(rs, 4)]; | ||
|  | 			      Th = ci[WS(rs, 27)]; | ||
|  | 			      Ti = Tg + Th; | ||
|  | 			      Tar = Tg - Th; | ||
|  | 			      T2h = ci[WS(rs, 43)]; | ||
|  | 			      T2i = cr[WS(rs, 52)]; | ||
|  | 			      T2j = T2h - T2i; | ||
|  | 			      Tas = T2h + T2i; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tj, Tk, T2e, T2f; | ||
|  | 			      Tj = cr[WS(rs, 20)]; | ||
|  | 			      Tk = ci[WS(rs, 11)]; | ||
|  | 			      Tl = Tj + Tk; | ||
|  | 			      Tao = Tj - Tk; | ||
|  | 			      T2e = ci[WS(rs, 59)]; | ||
|  | 			      T2f = cr[WS(rs, 36)]; | ||
|  | 			      T2g = T2e - T2f; | ||
|  | 			      Tap = T2e + T2f; | ||
|  | 			 } | ||
|  | 			 T2d = Ti - Tl; | ||
|  | 			 T2k = T2g - T2j; | ||
|  | 			 Tfc = Tap - Tao; | ||
|  | 			 Tfb = Tar + Tas; | ||
|  | 			 Tat = Tar - Tas; | ||
|  | 			 Taq = Tao + Tap; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tak, Tal, Tah, Tai; | ||
|  | 			 { | ||
|  | 			      E Tn, To, T2q, T2r; | ||
|  | 			      Tn = ci[WS(rs, 3)]; | ||
|  | 			      To = cr[WS(rs, 28)]; | ||
|  | 			      Tp = Tn + To; | ||
|  | 			      Tak = Tn - To; | ||
|  | 			      T2q = ci[WS(rs, 51)]; | ||
|  | 			      T2r = cr[WS(rs, 44)]; | ||
|  | 			      T2s = T2q - T2r; | ||
|  | 			      Tal = T2q + T2r; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tq, Tr, T2n, T2o; | ||
|  | 			      Tq = cr[WS(rs, 12)]; | ||
|  | 			      Tr = ci[WS(rs, 19)]; | ||
|  | 			      Ts = Tq + Tr; | ||
|  | 			      Tah = Tq - Tr; | ||
|  | 			      T2n = ci[WS(rs, 35)]; | ||
|  | 			      T2o = cr[WS(rs, 60)]; | ||
|  | 			      T2p = T2n - T2o; | ||
|  | 			      Tai = T2n + T2o; | ||
|  | 			 } | ||
|  | 			 T2m = Tp - Ts; | ||
|  | 			 T2t = T2p - T2s; | ||
|  | 			 Tff = Tah + Tai; | ||
|  | 			 Tfe = Tak + Tal; | ||
|  | 			 Tam = Tak - Tal; | ||
|  | 			 Taj = Tah - Tai; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tm, Tt, Tfd, Tfg; | ||
|  | 			 Tm = Ti + Tl; | ||
|  | 			 Tt = Tp + Ts; | ||
|  | 			 Tu = Tm + Tt; | ||
|  | 			 T95 = Tm - Tt; | ||
|  | 			 Tfd = FNMS(KP923879532, Tfc, KP382683432 * Tfb); | ||
|  | 			 Tfg = FNMS(KP923879532, Tff, KP382683432 * Tfe); | ||
|  | 			 Tfh = Tfd + Tfg; | ||
|  | 			 ThN = Tfd - Tfg; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgh, Tgi, T2l, T2u; | ||
|  | 			 Tgh = FMA(KP382683432, Tfc, KP923879532 * Tfb); | ||
|  | 			 Tgi = FMA(KP382683432, Tff, KP923879532 * Tfe); | ||
|  | 			 Tgj = Tgh - Tgi; | ||
|  | 			 Thl = Tgh + Tgi; | ||
|  | 			 T2l = T2d - T2k; | ||
|  | 			 T2u = T2m + T2t; | ||
|  | 			 T2v = KP707106781 * (T2l + T2u); | ||
|  | 			 T6h = KP707106781 * (T2l - T2u); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4L, T4M, Tan, Tau; | ||
|  | 			 T4L = T2d + T2k; | ||
|  | 			 T4M = T2t - T2m; | ||
|  | 			 T4N = KP707106781 * (T4L + T4M); | ||
|  | 			 T5P = KP707106781 * (T4M - T4L); | ||
|  | 			 Tan = FNMS(KP382683432, Tam, KP923879532 * Taj); | ||
|  | 			 Tau = FMA(KP923879532, Taq, KP382683432 * Tat); | ||
|  | 			 Tav = Tan - Tau; | ||
|  | 			 Te7 = Tau + Tan; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcB, TcC, T7Q, T7R; | ||
|  | 			 TcB = FNMS(KP382683432, Taq, KP923879532 * Tat); | ||
|  | 			 TcC = FMA(KP382683432, Taj, KP923879532 * Tam); | ||
|  | 			 TcD = TcB - TcC; | ||
|  | 			 TdF = TcB + TcC; | ||
|  | 			 T7Q = T2g + T2j; | ||
|  | 			 T7R = T2p + T2s; | ||
|  | 			 T7S = T7Q + T7R; | ||
|  | 			 T8D = T7R - T7Q; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1z, T1C, T1D, Tcf, TbO, T4o, T4r, T7B, Tcg, TbP, T1G, T3Y, T1J, T3V, T1K; | ||
|  | 		    E T7C, Tcj, Tci, TbW, TbT, T1S, TfV, TfW, T41, T48, Tc8, Tcb, T7E, T1Z, TfY; | ||
|  | 		    E TfZ, T4a, T4h, Tc1, Tc4, T7F; | ||
|  | 		    { | ||
|  | 			 E T1x, T1y, T1A, T1B; | ||
|  | 			 T1x = ci[0]; | ||
|  | 			 T1y = cr[WS(rs, 31)]; | ||
|  | 			 T1z = T1x + T1y; | ||
|  | 			 T1A = cr[WS(rs, 15)]; | ||
|  | 			 T1B = ci[WS(rs, 16)]; | ||
|  | 			 T1C = T1A + T1B; | ||
|  | 			 T1D = T1z + T1C; | ||
|  | 			 Tcf = T1A - T1B; | ||
|  | 			 TbO = T1x - T1y; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4m, T4n, T4p, T4q; | ||
|  | 			 T4m = ci[WS(rs, 32)]; | ||
|  | 			 T4n = cr[WS(rs, 63)]; | ||
|  | 			 T4o = T4m - T4n; | ||
|  | 			 T4p = ci[WS(rs, 48)]; | ||
|  | 			 T4q = cr[WS(rs, 47)]; | ||
|  | 			 T4r = T4p - T4q; | ||
|  | 			 T7B = T4o + T4r; | ||
|  | 			 Tcg = T4m + T4n; | ||
|  | 			 TbP = T4p + T4q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbR, TbS, TbU, TbV; | ||
|  | 			 { | ||
|  | 			      E T1E, T1F, T3W, T3X; | ||
|  | 			      T1E = cr[WS(rs, 7)]; | ||
|  | 			      T1F = ci[WS(rs, 24)]; | ||
|  | 			      T1G = T1E + T1F; | ||
|  | 			      TbR = T1E - T1F; | ||
|  | 			      T3W = ci[WS(rs, 56)]; | ||
|  | 			      T3X = cr[WS(rs, 39)]; | ||
|  | 			      T3Y = T3W - T3X; | ||
|  | 			      TbS = T3W + T3X; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1H, T1I, T3T, T3U; | ||
|  | 			      T1H = ci[WS(rs, 8)]; | ||
|  | 			      T1I = cr[WS(rs, 23)]; | ||
|  | 			      T1J = T1H + T1I; | ||
|  | 			      TbU = T1H - T1I; | ||
|  | 			      T3T = ci[WS(rs, 40)]; | ||
|  | 			      T3U = cr[WS(rs, 55)]; | ||
|  | 			      T3V = T3T - T3U; | ||
|  | 			      TbV = T3T + T3U; | ||
|  | 			 } | ||
|  | 			 T1K = T1G + T1J; | ||
|  | 			 T7C = T3Y + T3V; | ||
|  | 			 Tcj = TbU + TbV; | ||
|  | 			 Tci = TbR + TbS; | ||
|  | 			 TbW = TbU - TbV; | ||
|  | 			 TbT = TbR - TbS; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1O, Tc9, T47, Tca, T1R, Tc6, T44, Tc7; | ||
|  | 			 { | ||
|  | 			      E T1M, T1N, T45, T46; | ||
|  | 			      T1M = cr[WS(rs, 3)]; | ||
|  | 			      T1N = ci[WS(rs, 28)]; | ||
|  | 			      T1O = T1M + T1N; | ||
|  | 			      Tc9 = T1M - T1N; | ||
|  | 			      T45 = ci[WS(rs, 44)]; | ||
|  | 			      T46 = cr[WS(rs, 51)]; | ||
|  | 			      T47 = T45 - T46; | ||
|  | 			      Tca = T45 + T46; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1P, T1Q, T42, T43; | ||
|  | 			      T1P = cr[WS(rs, 19)]; | ||
|  | 			      T1Q = ci[WS(rs, 12)]; | ||
|  | 			      T1R = T1P + T1Q; | ||
|  | 			      Tc6 = T1P - T1Q; | ||
|  | 			      T42 = ci[WS(rs, 60)]; | ||
|  | 			      T43 = cr[WS(rs, 35)]; | ||
|  | 			      T44 = T42 - T43; | ||
|  | 			      Tc7 = T42 + T43; | ||
|  | 			 } | ||
|  | 			 T1S = T1O + T1R; | ||
|  | 			 TfV = Tc9 + Tca; | ||
|  | 			 TfW = Tc7 - Tc6; | ||
|  | 			 T41 = T1O - T1R; | ||
|  | 			 T48 = T44 - T47; | ||
|  | 			 Tc8 = Tc6 + Tc7; | ||
|  | 			 Tcb = Tc9 - Tca; | ||
|  | 			 T7E = T44 + T47; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1V, Tc2, T4g, Tc3, T1Y, TbZ, T4d, Tc0; | ||
|  | 			 { | ||
|  | 			      E T1T, T1U, T4e, T4f; | ||
|  | 			      T1T = ci[WS(rs, 4)]; | ||
|  | 			      T1U = cr[WS(rs, 27)]; | ||
|  | 			      T1V = T1T + T1U; | ||
|  | 			      Tc2 = T1T - T1U; | ||
|  | 			      T4e = ci[WS(rs, 52)]; | ||
|  | 			      T4f = cr[WS(rs, 43)]; | ||
|  | 			      T4g = T4e - T4f; | ||
|  | 			      Tc3 = T4e + T4f; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1W, T1X, T4b, T4c; | ||
|  | 			      T1W = cr[WS(rs, 11)]; | ||
|  | 			      T1X = ci[WS(rs, 20)]; | ||
|  | 			      T1Y = T1W + T1X; | ||
|  | 			      TbZ = T1W - T1X; | ||
|  | 			      T4b = ci[WS(rs, 36)]; | ||
|  | 			      T4c = cr[WS(rs, 59)]; | ||
|  | 			      T4d = T4b - T4c; | ||
|  | 			      Tc0 = T4b + T4c; | ||
|  | 			 } | ||
|  | 			 T1Z = T1V + T1Y; | ||
|  | 			 TfY = Tc2 + Tc3; | ||
|  | 			 TfZ = TbZ + Tc0; | ||
|  | 			 T4a = T1V - T1Y; | ||
|  | 			 T4h = T4d - T4g; | ||
|  | 			 Tc1 = TbZ - Tc0; | ||
|  | 			 Tc4 = Tc2 - Tc3; | ||
|  | 			 T7F = T4d + T4g; | ||
|  | 		    } | ||
|  | 		    T1L = T1D + T1K; | ||
|  | 		    T20 = T1S + T1Z; | ||
|  | 		    T7A = T1L - T20; | ||
|  | 		    T7D = T7B + T7C; | ||
|  | 		    T7G = T7E + T7F; | ||
|  | 		    T7H = T7D - T7G; | ||
|  | 		    { | ||
|  | 			 E T3S, T3Z, TfX, Tg0; | ||
|  | 			 T3S = T1z - T1C; | ||
|  | 			 T3Z = T3V - T3Y; | ||
|  | 			 T40 = T3S + T3Z; | ||
|  | 			 T62 = T3S - T3Z; | ||
|  | 			 TfX = FNMS(KP923879532, TfW, KP382683432 * TfV); | ||
|  | 			 Tg0 = FNMS(KP923879532, TfZ, KP382683432 * TfY); | ||
|  | 			 Tg1 = TfX + Tg0; | ||
|  | 			 Thv = TfX - Tg0; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tg6, Tg7, Tg3, Tg4; | ||
|  | 			 Tg6 = FMA(KP382683432, TfW, KP923879532 * TfV); | ||
|  | 			 Tg7 = FMA(KP382683432, TfZ, KP923879532 * TfY); | ||
|  | 			 Tg8 = Tg6 - Tg7; | ||
|  | 			 Thz = Tg6 + Tg7; | ||
|  | 			 Tg3 = KP707106781 * (TbT - TbW); | ||
|  | 			 Tg4 = Tcf + Tcg; | ||
|  | 			 Tg5 = Tg3 - Tg4; | ||
|  | 			 Thw = Tg4 + Tg3; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4l, T4s, T49, T4i; | ||
|  | 			 T4l = T1G - T1J; | ||
|  | 			 T4s = T4o - T4r; | ||
|  | 			 T4t = T4l + T4s; | ||
|  | 			 T5Z = T4s - T4l; | ||
|  | 			 T49 = T41 - T48; | ||
|  | 			 T4i = T4a + T4h; | ||
|  | 			 T4j = KP707106781 * (T49 + T4i); | ||
|  | 			 T60 = KP707106781 * (T49 - T4i); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4u, T4v, TbQ, TbX; | ||
|  | 			 T4u = T41 + T48; | ||
|  | 			 T4v = T4h - T4a; | ||
|  | 			 T4w = KP707106781 * (T4u + T4v); | ||
|  | 			 T63 = KP707106781 * (T4v - T4u); | ||
|  | 			 TbQ = TbO - TbP; | ||
|  | 			 TbX = KP707106781 * (TbT + TbW); | ||
|  | 			 TbY = TbQ - TbX; | ||
|  | 			 TdS = TbQ + TbX; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tc5, Tcc, TfS, TfT; | ||
|  | 			 Tc5 = FNMS(KP382683432, Tc4, KP923879532 * Tc1); | ||
|  | 			 Tcc = FMA(KP923879532, Tc8, KP382683432 * Tcb); | ||
|  | 			 Tcd = Tc5 - Tcc; | ||
|  | 			 TdQ = Tcc + Tc5; | ||
|  | 			 TfS = TbO + TbP; | ||
|  | 			 TfT = KP707106781 * (Tci + Tcj); | ||
|  | 			 TfU = TfS - TfT; | ||
|  | 			 Thy = TfS + TfT; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8N, T8O, T8Q, T8R; | ||
|  | 			 T8N = T7B - T7C; | ||
|  | 			 T8O = T1S - T1Z; | ||
|  | 			 T8P = T8N - T8O; | ||
|  | 			 T9z = T8O + T8N; | ||
|  | 			 T8Q = T1D - T1K; | ||
|  | 			 T8R = T7F - T7E; | ||
|  | 			 T8S = T8Q - T8R; | ||
|  | 			 T9A = T8Q + T8R; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tch, Tck, Tcm, Tcn; | ||
|  | 			 Tch = Tcf - Tcg; | ||
|  | 			 Tck = KP707106781 * (Tci - Tcj); | ||
|  | 			 Tcl = Tch - Tck; | ||
|  | 			 TdP = Tch + Tck; | ||
|  | 			 Tcm = FNMS(KP382683432, Tc8, KP923879532 * Tcb); | ||
|  | 			 Tcn = FMA(KP382683432, Tc1, KP923879532 * Tc4); | ||
|  | 			 Tco = Tcm - Tcn; | ||
|  | 			 TdT = Tcm + Tcn; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T14, T17, T18, TbC, Tbb, T3H, T3K, T7s, TbD, Tbc, T1b, T3h, T1e, T3e, T1f; | ||
|  | 		    E T7t, TbG, TbF, Tbj, Tbg, T1n, TfC, TfD, T3k, T3r, Tbv, Tby, T7v, T1u, TfF; | ||
|  | 		    E TfG, T3t, T3A, Tbo, Tbr, T7w; | ||
|  | 		    { | ||
|  | 			 E T12, T13, T15, T16; | ||
|  | 			 T12 = cr[WS(rs, 1)]; | ||
|  | 			 T13 = ci[WS(rs, 30)]; | ||
|  | 			 T14 = T12 + T13; | ||
|  | 			 T15 = cr[WS(rs, 17)]; | ||
|  | 			 T16 = ci[WS(rs, 14)]; | ||
|  | 			 T17 = T15 + T16; | ||
|  | 			 T18 = T14 + T17; | ||
|  | 			 TbC = T15 - T16; | ||
|  | 			 Tbb = T12 - T13; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3F, T3G, T3I, T3J; | ||
|  | 			 T3F = ci[WS(rs, 62)]; | ||
|  | 			 T3G = cr[WS(rs, 33)]; | ||
|  | 			 T3H = T3F - T3G; | ||
|  | 			 T3I = ci[WS(rs, 46)]; | ||
|  | 			 T3J = cr[WS(rs, 49)]; | ||
|  | 			 T3K = T3I - T3J; | ||
|  | 			 T7s = T3H + T3K; | ||
|  | 			 TbD = T3F + T3G; | ||
|  | 			 Tbc = T3I + T3J; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tbe, Tbf, Tbh, Tbi; | ||
|  | 			 { | ||
|  | 			      E T19, T1a, T3f, T3g; | ||
|  | 			      T19 = cr[WS(rs, 9)]; | ||
|  | 			      T1a = ci[WS(rs, 22)]; | ||
|  | 			      T1b = T19 + T1a; | ||
|  | 			      Tbe = T19 - T1a; | ||
|  | 			      T3f = ci[WS(rs, 54)]; | ||
|  | 			      T3g = cr[WS(rs, 41)]; | ||
|  | 			      T3h = T3f - T3g; | ||
|  | 			      Tbf = T3f + T3g; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1c, T1d, T3c, T3d; | ||
|  | 			      T1c = ci[WS(rs, 6)]; | ||
|  | 			      T1d = cr[WS(rs, 25)]; | ||
|  | 			      T1e = T1c + T1d; | ||
|  | 			      Tbh = T1c - T1d; | ||
|  | 			      T3c = ci[WS(rs, 38)]; | ||
|  | 			      T3d = cr[WS(rs, 57)]; | ||
|  | 			      T3e = T3c - T3d; | ||
|  | 			      Tbi = T3c + T3d; | ||
|  | 			 } | ||
|  | 			 T1f = T1b + T1e; | ||
|  | 			 T7t = T3h + T3e; | ||
|  | 			 TbG = Tbh + Tbi; | ||
|  | 			 TbF = Tbe + Tbf; | ||
|  | 			 Tbj = Tbh - Tbi; | ||
|  | 			 Tbg = Tbe - Tbf; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1j, Tbw, T3q, Tbx, T1m, Tbt, T3n, Tbu; | ||
|  | 			 { | ||
|  | 			      E T1h, T1i, T3o, T3p; | ||
|  | 			      T1h = cr[WS(rs, 5)]; | ||
|  | 			      T1i = ci[WS(rs, 26)]; | ||
|  | 			      T1j = T1h + T1i; | ||
|  | 			      Tbw = T1h - T1i; | ||
|  | 			      T3o = ci[WS(rs, 42)]; | ||
|  | 			      T3p = cr[WS(rs, 53)]; | ||
|  | 			      T3q = T3o - T3p; | ||
|  | 			      Tbx = T3o + T3p; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1k, T1l, T3l, T3m; | ||
|  | 			      T1k = cr[WS(rs, 21)]; | ||
|  | 			      T1l = ci[WS(rs, 10)]; | ||
|  | 			      T1m = T1k + T1l; | ||
|  | 			      Tbt = T1k - T1l; | ||
|  | 			      T3l = ci[WS(rs, 58)]; | ||
|  | 			      T3m = cr[WS(rs, 37)]; | ||
|  | 			      T3n = T3l - T3m; | ||
|  | 			      Tbu = T3l + T3m; | ||
|  | 			 } | ||
|  | 			 T1n = T1j + T1m; | ||
|  | 			 TfC = Tbw + Tbx; | ||
|  | 			 TfD = Tbu - Tbt; | ||
|  | 			 T3k = T1j - T1m; | ||
|  | 			 T3r = T3n - T3q; | ||
|  | 			 Tbv = Tbt + Tbu; | ||
|  | 			 Tby = Tbw - Tbx; | ||
|  | 			 T7v = T3n + T3q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1q, Tbp, T3z, Tbq, T1t, Tbm, T3w, Tbn; | ||
|  | 			 { | ||
|  | 			      E T1o, T1p, T3x, T3y; | ||
|  | 			      T1o = ci[WS(rs, 2)]; | ||
|  | 			      T1p = cr[WS(rs, 29)]; | ||
|  | 			      T1q = T1o + T1p; | ||
|  | 			      Tbp = T1o - T1p; | ||
|  | 			      T3x = ci[WS(rs, 50)]; | ||
|  | 			      T3y = cr[WS(rs, 45)]; | ||
|  | 			      T3z = T3x - T3y; | ||
|  | 			      Tbq = T3x + T3y; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1r, T1s, T3u, T3v; | ||
|  | 			      T1r = cr[WS(rs, 13)]; | ||
|  | 			      T1s = ci[WS(rs, 18)]; | ||
|  | 			      T1t = T1r + T1s; | ||
|  | 			      Tbm = T1r - T1s; | ||
|  | 			      T3u = ci[WS(rs, 34)]; | ||
|  | 			      T3v = cr[WS(rs, 61)]; | ||
|  | 			      T3w = T3u - T3v; | ||
|  | 			      Tbn = T3u + T3v; | ||
|  | 			 } | ||
|  | 			 T1u = T1q + T1t; | ||
|  | 			 TfF = Tbp + Tbq; | ||
|  | 			 TfG = Tbm + Tbn; | ||
|  | 			 T3t = T1q - T1t; | ||
|  | 			 T3A = T3w - T3z; | ||
|  | 			 Tbo = Tbm - Tbn; | ||
|  | 			 Tbr = Tbp - Tbq; | ||
|  | 			 T7w = T3w + T3z; | ||
|  | 		    } | ||
|  | 		    T1g = T18 + T1f; | ||
|  | 		    T1v = T1n + T1u; | ||
|  | 		    T7r = T1g - T1v; | ||
|  | 		    T7u = T7s + T7t; | ||
|  | 		    T7x = T7v + T7w; | ||
|  | 		    T7y = T7u - T7x; | ||
|  | 		    { | ||
|  | 			 E T3b, T3i, TfE, TfH; | ||
|  | 			 T3b = T14 - T17; | ||
|  | 			 T3i = T3e - T3h; | ||
|  | 			 T3j = T3b + T3i; | ||
|  | 			 T69 = T3b - T3i; | ||
|  | 			 TfE = FNMS(KP923879532, TfD, KP382683432 * TfC); | ||
|  | 			 TfH = FNMS(KP923879532, TfG, KP382683432 * TfF); | ||
|  | 			 TfI = TfE + TfH; | ||
|  | 			 ThD = TfE - TfH; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfN, TfO, TfK, TfL; | ||
|  | 			 TfN = FMA(KP382683432, TfD, KP923879532 * TfC); | ||
|  | 			 TfO = FMA(KP382683432, TfG, KP923879532 * TfF); | ||
|  | 			 TfP = TfN - TfO; | ||
|  | 			 ThG = TfN + TfO; | ||
|  | 			 TfK = TbD - TbC; | ||
|  | 			 TfL = KP707106781 * (Tbg - Tbj); | ||
|  | 			 TfM = TfK + TfL; | ||
|  | 			 ThC = TfK - TfL; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3E, T3L, T3s, T3B; | ||
|  | 			 T3E = T1b - T1e; | ||
|  | 			 T3L = T3H - T3K; | ||
|  | 			 T3M = T3E + T3L; | ||
|  | 			 T66 = T3L - T3E; | ||
|  | 			 T3s = T3k - T3r; | ||
|  | 			 T3B = T3t + T3A; | ||
|  | 			 T3C = KP707106781 * (T3s + T3B); | ||
|  | 			 T67 = KP707106781 * (T3s - T3B); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3N, T3O, Tbd, Tbk; | ||
|  | 			 T3N = T3k + T3r; | ||
|  | 			 T3O = T3A - T3t; | ||
|  | 			 T3P = KP707106781 * (T3N + T3O); | ||
|  | 			 T6a = KP707106781 * (T3O - T3N); | ||
|  | 			 Tbd = Tbb - Tbc; | ||
|  | 			 Tbk = KP707106781 * (Tbg + Tbj); | ||
|  | 			 Tbl = Tbd - Tbk; | ||
|  | 			 TdZ = Tbd + Tbk; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tbs, Tbz, Tfz, TfA; | ||
|  | 			 Tbs = FNMS(KP382683432, Tbr, KP923879532 * Tbo); | ||
|  | 			 Tbz = FMA(KP923879532, Tbv, KP382683432 * Tby); | ||
|  | 			 TbA = Tbs - Tbz; | ||
|  | 			 TdX = Tbz + Tbs; | ||
|  | 			 Tfz = Tbb + Tbc; | ||
|  | 			 TfA = KP707106781 * (TbF + TbG); | ||
|  | 			 TfB = Tfz - TfA; | ||
|  | 			 ThF = Tfz + TfA; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8U, T8V, T8X, T8Y; | ||
|  | 			 T8U = T7s - T7t; | ||
|  | 			 T8V = T1n - T1u; | ||
|  | 			 T8W = T8U - T8V; | ||
|  | 			 T9C = T8V + T8U; | ||
|  | 			 T8X = T18 - T1f; | ||
|  | 			 T8Y = T7w - T7v; | ||
|  | 			 T8Z = T8X - T8Y; | ||
|  | 			 T9D = T8X + T8Y; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbE, TbH, TbJ, TbK; | ||
|  | 			 TbE = TbC + TbD; | ||
|  | 			 TbH = KP707106781 * (TbF - TbG); | ||
|  | 			 TbI = TbE - TbH; | ||
|  | 			 TdW = TbE + TbH; | ||
|  | 			 TbJ = FNMS(KP382683432, Tbv, KP923879532 * Tby); | ||
|  | 			 TbK = FMA(KP382683432, Tbo, KP923879532 * Tbr); | ||
|  | 			 TbL = TbJ - TbK; | ||
|  | 			 Te0 = TbJ + TbK; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T11, T8q, T8n, T8r, T22, T8v, T8k, T8u; | ||
|  | 		    { | ||
|  | 			 E Tv, T10, T8l, T8m; | ||
|  | 			 Tv = Tf + Tu; | ||
|  | 			 T10 = TK + TZ; | ||
|  | 			 T11 = Tv + T10; | ||
|  | 			 T8q = Tv - T10; | ||
|  | 			 T8l = T7u + T7x; | ||
|  | 			 T8m = T7D + T7G; | ||
|  | 			 T8n = T8l + T8m; | ||
|  | 			 T8r = T8m - T8l; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1w, T21, T8i, T8j; | ||
|  | 			 T1w = T1g + T1v; | ||
|  | 			 T21 = T1L + T20; | ||
|  | 			 T22 = T1w + T21; | ||
|  | 			 T8v = T1w - T21; | ||
|  | 			 T8i = T7P + T7S; | ||
|  | 			 T8j = T7o + T7l; | ||
|  | 			 T8k = T8i + T8j; | ||
|  | 			 T8u = T8i - T8j; | ||
|  | 		    } | ||
|  | 		    cr[0] = T11 + T22; | ||
|  | 		    ci[0] = T8k + T8n; | ||
|  | 		    { | ||
|  | 			 E T8g, T8o, T8f, T8h; | ||
|  | 			 T8g = T11 - T22; | ||
|  | 			 T8o = T8k - T8n; | ||
|  | 			 T8f = W[62]; | ||
|  | 			 T8h = W[63]; | ||
|  | 			 cr[WS(rs, 32)] = FNMS(T8h, T8o, T8f * T8g); | ||
|  | 			 ci[WS(rs, 32)] = FMA(T8h, T8g, T8f * T8o); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8s, T8w, T8p, T8t; | ||
|  | 			 T8s = T8q - T8r; | ||
|  | 			 T8w = T8u - T8v; | ||
|  | 			 T8p = W[94]; | ||
|  | 			 T8t = W[95]; | ||
|  | 			 cr[WS(rs, 48)] = FNMS(T8t, T8w, T8p * T8s); | ||
|  | 			 ci[WS(rs, 48)] = FMA(T8p, T8w, T8t * T8s); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8y, T8A, T8x, T8z; | ||
|  | 			 T8y = T8q + T8r; | ||
|  | 			 T8A = T8v + T8u; | ||
|  | 			 T8x = W[30]; | ||
|  | 			 T8z = W[31]; | ||
|  | 			 cr[WS(rs, 16)] = FNMS(T8z, T8A, T8x * T8y); | ||
|  | 			 ci[WS(rs, 16)] = FMA(T8x, T8A, T8z * T8y); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9y, T9U, T9N, T9V, T9F, T9Z, T9K, T9Y; | ||
|  | 		    { | ||
|  | 			 E T9w, T9x, T9L, T9M; | ||
|  | 			 T9w = T8C + T8D; | ||
|  | 			 T9x = KP707106781 * (T97 + T98); | ||
|  | 			 T9y = T9w - T9x; | ||
|  | 			 T9U = T9w + T9x; | ||
|  | 			 T9L = FNMS(KP382683432, T9C, KP923879532 * T9D); | ||
|  | 			 T9M = FMA(KP382683432, T9z, KP923879532 * T9A); | ||
|  | 			 T9N = T9L - T9M; | ||
|  | 			 T9V = T9L + T9M; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9B, T9E, T9I, T9J; | ||
|  | 			 T9B = FNMS(KP382683432, T9A, KP923879532 * T9z); | ||
|  | 			 T9E = FMA(KP923879532, T9C, KP382683432 * T9D); | ||
|  | 			 T9F = T9B - T9E; | ||
|  | 			 T9Z = T9E + T9B; | ||
|  | 			 T9I = T95 + T94; | ||
|  | 			 T9J = KP707106781 * (T8K + T8H); | ||
|  | 			 T9K = T9I - T9J; | ||
|  | 			 T9Y = T9I + T9J; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9G, T9O, T9v, T9H; | ||
|  | 			 T9G = T9y - T9F; | ||
|  | 			 T9O = T9K - T9N; | ||
|  | 			 T9v = W[102]; | ||
|  | 			 T9H = W[103]; | ||
|  | 			 cr[WS(rs, 52)] = FNMS(T9H, T9O, T9v * T9G); | ||
|  | 			 ci[WS(rs, 52)] = FMA(T9H, T9G, T9v * T9O); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta2, Ta4, Ta1, Ta3; | ||
|  | 			 Ta2 = T9U + T9V; | ||
|  | 			 Ta4 = T9Y + T9Z; | ||
|  | 			 Ta1 = W[6]; | ||
|  | 			 Ta3 = W[7]; | ||
|  | 			 cr[WS(rs, 4)] = FNMS(Ta3, Ta4, Ta1 * Ta2); | ||
|  | 			 ci[WS(rs, 4)] = FMA(Ta1, Ta4, Ta3 * Ta2); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9Q, T9S, T9P, T9R; | ||
|  | 			 T9Q = T9y + T9F; | ||
|  | 			 T9S = T9K + T9N; | ||
|  | 			 T9P = W[38]; | ||
|  | 			 T9R = W[39]; | ||
|  | 			 cr[WS(rs, 20)] = FNMS(T9R, T9S, T9P * T9Q); | ||
|  | 			 ci[WS(rs, 20)] = FMA(T9R, T9Q, T9P * T9S); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9W, Ta0, T9T, T9X; | ||
|  | 			 T9W = T9U - T9V; | ||
|  | 			 Ta0 = T9Y - T9Z; | ||
|  | 			 T9T = W[70]; | ||
|  | 			 T9X = W[71]; | ||
|  | 			 cr[WS(rs, 36)] = FNMS(T9X, Ta0, T9T * T9W); | ||
|  | 			 ci[WS(rs, 36)] = FMA(T9T, Ta0, T9X * T9W); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8M, T9k, T9d, T9l, T91, T9p, T9a, T9o; | ||
|  | 		    { | ||
|  | 			 E T8E, T8L, T9b, T9c; | ||
|  | 			 T8E = T8C - T8D; | ||
|  | 			 T8L = KP707106781 * (T8H - T8K); | ||
|  | 			 T8M = T8E - T8L; | ||
|  | 			 T9k = T8E + T8L; | ||
|  | 			 T9b = FNMS(KP923879532, T8W, KP382683432 * T8Z); | ||
|  | 			 T9c = FMA(KP923879532, T8P, KP382683432 * T8S); | ||
|  | 			 T9d = T9b - T9c; | ||
|  | 			 T9l = T9b + T9c; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8T, T90, T96, T99; | ||
|  | 			 T8T = FNMS(KP923879532, T8S, KP382683432 * T8P); | ||
|  | 			 T90 = FMA(KP382683432, T8W, KP923879532 * T8Z); | ||
|  | 			 T91 = T8T - T90; | ||
|  | 			 T9p = T90 + T8T; | ||
|  | 			 T96 = T94 - T95; | ||
|  | 			 T99 = KP707106781 * (T97 - T98); | ||
|  | 			 T9a = T96 - T99; | ||
|  | 			 T9o = T96 + T99; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T92, T9e, T8B, T93; | ||
|  | 			 T92 = T8M - T91; | ||
|  | 			 T9e = T9a - T9d; | ||
|  | 			 T8B = W[118]; | ||
|  | 			 T93 = W[119]; | ||
|  | 			 cr[WS(rs, 60)] = FNMS(T93, T9e, T8B * T92); | ||
|  | 			 ci[WS(rs, 60)] = FMA(T93, T92, T8B * T9e); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9s, T9u, T9r, T9t; | ||
|  | 			 T9s = T9k + T9l; | ||
|  | 			 T9u = T9o + T9p; | ||
|  | 			 T9r = W[22]; | ||
|  | 			 T9t = W[23]; | ||
|  | 			 cr[WS(rs, 12)] = FNMS(T9t, T9u, T9r * T9s); | ||
|  | 			 ci[WS(rs, 12)] = FMA(T9r, T9u, T9t * T9s); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9g, T9i, T9f, T9h; | ||
|  | 			 T9g = T8M + T91; | ||
|  | 			 T9i = T9a + T9d; | ||
|  | 			 T9f = W[54]; | ||
|  | 			 T9h = W[55]; | ||
|  | 			 cr[WS(rs, 28)] = FNMS(T9h, T9i, T9f * T9g); | ||
|  | 			 ci[WS(rs, 28)] = FMA(T9h, T9g, T9f * T9i); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9m, T9q, T9j, T9n; | ||
|  | 			 T9m = T9k - T9l; | ||
|  | 			 T9q = T9o - T9p; | ||
|  | 			 T9j = W[86]; | ||
|  | 			 T9n = W[87]; | ||
|  | 			 cr[WS(rs, 44)] = FNMS(T9n, T9q, T9j * T9m); | ||
|  | 			 ci[WS(rs, 44)] = FMA(T9j, T9q, T9n * T9m); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7q, T84, T7X, T85, T7J, T89, T7U, T88; | ||
|  | 		    { | ||
|  | 			 E T7i, T7p, T7V, T7W; | ||
|  | 			 T7i = Tf - Tu; | ||
|  | 			 T7p = T7l - T7o; | ||
|  | 			 T7q = T7i + T7p; | ||
|  | 			 T84 = T7i - T7p; | ||
|  | 			 T7V = T7r + T7y; | ||
|  | 			 T7W = T7H - T7A; | ||
|  | 			 T7X = KP707106781 * (T7V + T7W); | ||
|  | 			 T85 = KP707106781 * (T7W - T7V); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7z, T7I, T7M, T7T; | ||
|  | 			 T7z = T7r - T7y; | ||
|  | 			 T7I = T7A + T7H; | ||
|  | 			 T7J = KP707106781 * (T7z + T7I); | ||
|  | 			 T89 = KP707106781 * (T7z - T7I); | ||
|  | 			 T7M = TK - TZ; | ||
|  | 			 T7T = T7P - T7S; | ||
|  | 			 T7U = T7M + T7T; | ||
|  | 			 T88 = T7T - T7M; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7K, T7Y, T7h, T7L; | ||
|  | 			 T7K = T7q - T7J; | ||
|  | 			 T7Y = T7U - T7X; | ||
|  | 			 T7h = W[78]; | ||
|  | 			 T7L = W[79]; | ||
|  | 			 cr[WS(rs, 40)] = FNMS(T7L, T7Y, T7h * T7K); | ||
|  | 			 ci[WS(rs, 40)] = FMA(T7L, T7K, T7h * T7Y); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8c, T8e, T8b, T8d; | ||
|  | 			 T8c = T84 + T85; | ||
|  | 			 T8e = T88 + T89; | ||
|  | 			 T8b = W[46]; | ||
|  | 			 T8d = W[47]; | ||
|  | 			 cr[WS(rs, 24)] = FNMS(T8d, T8e, T8b * T8c); | ||
|  | 			 ci[WS(rs, 24)] = FMA(T8b, T8e, T8d * T8c); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T80, T82, T7Z, T81; | ||
|  | 			 T80 = T7q + T7J; | ||
|  | 			 T82 = T7U + T7X; | ||
|  | 			 T7Z = W[14]; | ||
|  | 			 T81 = W[15]; | ||
|  | 			 cr[WS(rs, 8)] = FNMS(T81, T82, T7Z * T80); | ||
|  | 			 ci[WS(rs, 8)] = FMA(T81, T80, T7Z * T82); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T86, T8a, T83, T87; | ||
|  | 			 T86 = T84 - T85; | ||
|  | 			 T8a = T88 - T89; | ||
|  | 			 T83 = W[110]; | ||
|  | 			 T87 = W[111]; | ||
|  | 			 cr[WS(rs, 56)] = FNMS(T87, T8a, T83 * T86); | ||
|  | 			 ci[WS(rs, 56)] = FMA(T83, T8a, T87 * T86); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6K, T76, T6W, T7a, T6R, T7b, T6Z, T77; | ||
|  | 		    { | ||
|  | 			 E T6I, T6J, T6U, T6V; | ||
|  | 			 T6I = T5O + T5P; | ||
|  | 			 T6J = T6j + T6k; | ||
|  | 			 T6K = T6I - T6J; | ||
|  | 			 T76 = T6I + T6J; | ||
|  | 			 T6U = T6g + T6h; | ||
|  | 			 T6V = T5W + T5T; | ||
|  | 			 T6W = T6U - T6V; | ||
|  | 			 T7a = T6U + T6V; | ||
|  | 			 { | ||
|  | 			      E T6N, T6Y, T6Q, T6X; | ||
|  | 			      { | ||
|  | 				   E T6L, T6M, T6O, T6P; | ||
|  | 				   T6L = T5Z + T60; | ||
|  | 				   T6M = T62 + T63; | ||
|  | 				   T6N = FNMS(KP555570233, T6M, KP831469612 * T6L); | ||
|  | 				   T6Y = FMA(KP555570233, T6L, KP831469612 * T6M); | ||
|  | 				   T6O = T66 + T67; | ||
|  | 				   T6P = T69 + T6a; | ||
|  | 				   T6Q = FMA(KP831469612, T6O, KP555570233 * T6P); | ||
|  | 				   T6X = FNMS(KP555570233, T6O, KP831469612 * T6P); | ||
|  | 			      } | ||
|  | 			      T6R = T6N - T6Q; | ||
|  | 			      T7b = T6Q + T6N; | ||
|  | 			      T6Z = T6X - T6Y; | ||
|  | 			      T77 = T6X + T6Y; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6S, T70, T6H, T6T; | ||
|  | 			 T6S = T6K - T6R; | ||
|  | 			 T70 = T6W - T6Z; | ||
|  | 			 T6H = W[106]; | ||
|  | 			 T6T = W[107]; | ||
|  | 			 cr[WS(rs, 54)] = FNMS(T6T, T70, T6H * T6S); | ||
|  | 			 ci[WS(rs, 54)] = FMA(T6T, T6S, T6H * T70); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7e, T7g, T7d, T7f; | ||
|  | 			 T7e = T76 + T77; | ||
|  | 			 T7g = T7a + T7b; | ||
|  | 			 T7d = W[10]; | ||
|  | 			 T7f = W[11]; | ||
|  | 			 cr[WS(rs, 6)] = FNMS(T7f, T7g, T7d * T7e); | ||
|  | 			 ci[WS(rs, 6)] = FMA(T7d, T7g, T7f * T7e); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T72, T74, T71, T73; | ||
|  | 			 T72 = T6K + T6R; | ||
|  | 			 T74 = T6W + T6Z; | ||
|  | 			 T71 = W[42]; | ||
|  | 			 T73 = W[43]; | ||
|  | 			 cr[WS(rs, 22)] = FNMS(T73, T74, T71 * T72); | ||
|  | 			 ci[WS(rs, 22)] = FMA(T73, T72, T71 * T74); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T78, T7c, T75, T79; | ||
|  | 			 T78 = T76 - T77; | ||
|  | 			 T7c = T7a - T7b; | ||
|  | 			 T75 = W[74]; | ||
|  | 			 T79 = W[75]; | ||
|  | 			 cr[WS(rs, 38)] = FNMS(T79, T7c, T75 * T78); | ||
|  | 			 ci[WS(rs, 38)] = FMA(T75, T7c, T79 * T78); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3a, T52, T4S, T56, T4z, T57, T4V, T53; | ||
|  | 		    { | ||
|  | 			 E T2w, T39, T4O, T4R; | ||
|  | 			 T2w = T2c - T2v; | ||
|  | 			 T39 = T2P - T38; | ||
|  | 			 T3a = T2w + T39; | ||
|  | 			 T52 = T2w - T39; | ||
|  | 			 T4O = T4K - T4N; | ||
|  | 			 T4R = T4P - T4Q; | ||
|  | 			 T4S = T4O + T4R; | ||
|  | 			 T56 = T4O - T4R; | ||
|  | 			 { | ||
|  | 			      E T3R, T4T, T4y, T4U; | ||
|  | 			      { | ||
|  | 				   E T3D, T3Q, T4k, T4x; | ||
|  | 				   T3D = T3j - T3C; | ||
|  | 				   T3Q = T3M - T3P; | ||
|  | 				   T3R = FNMS(KP831469612, T3Q, KP555570233 * T3D); | ||
|  | 				   T4T = FMA(KP831469612, T3D, KP555570233 * T3Q); | ||
|  | 				   T4k = T40 - T4j; | ||
|  | 				   T4x = T4t - T4w; | ||
|  | 				   T4y = FMA(KP555570233, T4k, KP831469612 * T4x); | ||
|  | 				   T4U = FNMS(KP831469612, T4k, KP555570233 * T4x); | ||
|  | 			      } | ||
|  | 			      T4z = T3R + T4y; | ||
|  | 			      T57 = T3R - T4y; | ||
|  | 			      T4V = T4T + T4U; | ||
|  | 			      T53 = T4U - T4T; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4A, T4W, T23, T4B; | ||
|  | 			 T4A = T3a - T4z; | ||
|  | 			 T4W = T4S - T4V; | ||
|  | 			 T23 = W[82]; | ||
|  | 			 T4B = W[83]; | ||
|  | 			 cr[WS(rs, 42)] = FNMS(T4B, T4W, T23 * T4A); | ||
|  | 			 ci[WS(rs, 42)] = FMA(T4B, T4A, T23 * T4W); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5a, T5c, T59, T5b; | ||
|  | 			 T5a = T52 + T53; | ||
|  | 			 T5c = T56 + T57; | ||
|  | 			 T59 = W[50]; | ||
|  | 			 T5b = W[51]; | ||
|  | 			 cr[WS(rs, 26)] = FNMS(T5b, T5c, T59 * T5a); | ||
|  | 			 ci[WS(rs, 26)] = FMA(T59, T5c, T5b * T5a); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4Y, T50, T4X, T4Z; | ||
|  | 			 T4Y = T3a + T4z; | ||
|  | 			 T50 = T4S + T4V; | ||
|  | 			 T4X = W[18]; | ||
|  | 			 T4Z = W[19]; | ||
|  | 			 cr[WS(rs, 10)] = FNMS(T4Z, T50, T4X * T4Y); | ||
|  | 			 ci[WS(rs, 10)] = FMA(T4Z, T4Y, T4X * T50); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T54, T58, T51, T55; | ||
|  | 			 T54 = T52 - T53; | ||
|  | 			 T58 = T56 - T57; | ||
|  | 			 T51 = W[114]; | ||
|  | 			 T55 = W[115]; | ||
|  | 			 cr[WS(rs, 58)] = FNMS(T55, T58, T51 * T54); | ||
|  | 			 ci[WS(rs, 58)] = FMA(T51, T58, T55 * T54); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5g, T5C, T5s, T5G, T5n, T5H, T5v, T5D; | ||
|  | 		    { | ||
|  | 			 E T5e, T5f, T5q, T5r; | ||
|  | 			 T5e = T2c + T2v; | ||
|  | 			 T5f = T4P + T4Q; | ||
|  | 			 T5g = T5e + T5f; | ||
|  | 			 T5C = T5e - T5f; | ||
|  | 			 T5q = T4K + T4N; | ||
|  | 			 T5r = T38 + T2P; | ||
|  | 			 T5s = T5q + T5r; | ||
|  | 			 T5G = T5q - T5r; | ||
|  | 			 { | ||
|  | 			      E T5j, T5t, T5m, T5u; | ||
|  | 			      { | ||
|  | 				   E T5h, T5i, T5k, T5l; | ||
|  | 				   T5h = T3j + T3C; | ||
|  | 				   T5i = T3M + T3P; | ||
|  | 				   T5j = FNMS(KP195090322, T5i, KP980785280 * T5h); | ||
|  | 				   T5t = FMA(KP195090322, T5h, KP980785280 * T5i); | ||
|  | 				   T5k = T40 + T4j; | ||
|  | 				   T5l = T4t + T4w; | ||
|  | 				   T5m = FMA(KP980785280, T5k, KP195090322 * T5l); | ||
|  | 				   T5u = FNMS(KP195090322, T5k, KP980785280 * T5l); | ||
|  | 			      } | ||
|  | 			      T5n = T5j + T5m; | ||
|  | 			      T5H = T5j - T5m; | ||
|  | 			      T5v = T5t + T5u; | ||
|  | 			      T5D = T5u - T5t; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5o, T5w, T5d, T5p; | ||
|  | 			 T5o = T5g - T5n; | ||
|  | 			 T5w = T5s - T5v; | ||
|  | 			 T5d = W[66]; | ||
|  | 			 T5p = W[67]; | ||
|  | 			 cr[WS(rs, 34)] = FNMS(T5p, T5w, T5d * T5o); | ||
|  | 			 ci[WS(rs, 34)] = FMA(T5p, T5o, T5d * T5w); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5K, T5M, T5J, T5L; | ||
|  | 			 T5K = T5C + T5D; | ||
|  | 			 T5M = T5G + T5H; | ||
|  | 			 T5J = W[34]; | ||
|  | 			 T5L = W[35]; | ||
|  | 			 cr[WS(rs, 18)] = FNMS(T5L, T5M, T5J * T5K); | ||
|  | 			 ci[WS(rs, 18)] = FMA(T5J, T5M, T5L * T5K); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5y, T5A, T5x, T5z; | ||
|  | 			 T5y = T5g + T5n; | ||
|  | 			 T5A = T5s + T5v; | ||
|  | 			 T5x = W[2]; | ||
|  | 			 T5z = W[3]; | ||
|  | 			 cr[WS(rs, 2)] = FNMS(T5z, T5A, T5x * T5y); | ||
|  | 			 ci[WS(rs, 2)] = FMA(T5z, T5y, T5x * T5A); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5E, T5I, T5B, T5F; | ||
|  | 			 T5E = T5C - T5D; | ||
|  | 			 T5I = T5G - T5H; | ||
|  | 			 T5B = W[98]; | ||
|  | 			 T5F = W[99]; | ||
|  | 			 cr[WS(rs, 50)] = FNMS(T5F, T5I, T5B * T5E); | ||
|  | 			 ci[WS(rs, 50)] = FMA(T5B, T5I, T5F * T5E); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5Y, T6w, T6m, T6A, T6d, T6B, T6p, T6x; | ||
|  | 		    { | ||
|  | 			 E T5Q, T5X, T6i, T6l; | ||
|  | 			 T5Q = T5O - T5P; | ||
|  | 			 T5X = T5T - T5W; | ||
|  | 			 T5Y = T5Q - T5X; | ||
|  | 			 T6w = T5Q + T5X; | ||
|  | 			 T6i = T6g - T6h; | ||
|  | 			 T6l = T6j - T6k; | ||
|  | 			 T6m = T6i - T6l; | ||
|  | 			 T6A = T6i + T6l; | ||
|  | 			 { | ||
|  | 			      E T65, T6o, T6c, T6n; | ||
|  | 			      { | ||
|  | 				   E T61, T64, T68, T6b; | ||
|  | 				   T61 = T5Z - T60; | ||
|  | 				   T64 = T62 - T63; | ||
|  | 				   T65 = FNMS(KP980785280, T64, KP195090322 * T61); | ||
|  | 				   T6o = FMA(KP980785280, T61, KP195090322 * T64); | ||
|  | 				   T68 = T66 - T67; | ||
|  | 				   T6b = T69 - T6a; | ||
|  | 				   T6c = FMA(KP195090322, T68, KP980785280 * T6b); | ||
|  | 				   T6n = FNMS(KP980785280, T68, KP195090322 * T6b); | ||
|  | 			      } | ||
|  | 			      T6d = T65 - T6c; | ||
|  | 			      T6B = T6c + T65; | ||
|  | 			      T6p = T6n - T6o; | ||
|  | 			      T6x = T6n + T6o; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6e, T6q, T5N, T6f; | ||
|  | 			 T6e = T5Y - T6d; | ||
|  | 			 T6q = T6m - T6p; | ||
|  | 			 T5N = W[122]; | ||
|  | 			 T6f = W[123]; | ||
|  | 			 cr[WS(rs, 62)] = FNMS(T6f, T6q, T5N * T6e); | ||
|  | 			 ci[WS(rs, 62)] = FMA(T6f, T6e, T5N * T6q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6E, T6G, T6D, T6F; | ||
|  | 			 T6E = T6w + T6x; | ||
|  | 			 T6G = T6A + T6B; | ||
|  | 			 T6D = W[26]; | ||
|  | 			 T6F = W[27]; | ||
|  | 			 cr[WS(rs, 14)] = FNMS(T6F, T6G, T6D * T6E); | ||
|  | 			 ci[WS(rs, 14)] = FMA(T6D, T6G, T6F * T6E); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6s, T6u, T6r, T6t; | ||
|  | 			 T6s = T5Y + T6d; | ||
|  | 			 T6u = T6m + T6p; | ||
|  | 			 T6r = W[58]; | ||
|  | 			 T6t = W[59]; | ||
|  | 			 cr[WS(rs, 30)] = FNMS(T6t, T6u, T6r * T6s); | ||
|  | 			 ci[WS(rs, 30)] = FMA(T6t, T6s, T6r * T6u); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6y, T6C, T6v, T6z; | ||
|  | 			 T6y = T6w - T6x; | ||
|  | 			 T6C = T6A - T6B; | ||
|  | 			 T6v = W[90]; | ||
|  | 			 T6z = W[91]; | ||
|  | 			 cr[WS(rs, 46)] = FNMS(T6z, T6C, T6v * T6y); | ||
|  | 			 ci[WS(rs, 46)] = FMA(T6v, T6C, T6z * T6y); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tba, Tdw, TcS, Tdi, TcI, Tds, TcW, Td6, Tcr, TcX, TcL, TcT, Tdd, Tdx, Tdl; | ||
|  | 		    E Tdt; | ||
|  | 		    { | ||
|  | 			 E Taw, Tdg, Tb9, Tdh, TaP, Tb8; | ||
|  | 			 Taw = Tag - Tav; | ||
|  | 			 Tdg = TcA + TcD; | ||
|  | 			 TaP = FNMS(KP831469612, TaO, KP555570233 * TaH); | ||
|  | 			 Tb8 = FMA(KP831469612, Tb0, KP555570233 * Tb7); | ||
|  | 			 Tb9 = TaP - Tb8; | ||
|  | 			 Tdh = Tb8 + TaP; | ||
|  | 			 Tba = Taw + Tb9; | ||
|  | 			 Tdw = Tdg - Tdh; | ||
|  | 			 TcS = Taw - Tb9; | ||
|  | 			 Tdi = Tdg + Tdh; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcE, Td4, TcH, Td5, TcF, TcG; | ||
|  | 			 TcE = TcA - TcD; | ||
|  | 			 Td4 = Tag + Tav; | ||
|  | 			 TcF = FNMS(KP831469612, Tb7, KP555570233 * Tb0); | ||
|  | 			 TcG = FMA(KP555570233, TaO, KP831469612 * TaH); | ||
|  | 			 TcH = TcF - TcG; | ||
|  | 			 Td5 = TcF + TcG; | ||
|  | 			 TcI = TcE + TcH; | ||
|  | 			 Tds = Td4 - Td5; | ||
|  | 			 TcW = TcE - TcH; | ||
|  | 			 Td6 = Td4 + Td5; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbN, TcJ, Tcq, TcK; | ||
|  | 			 { | ||
|  | 			      E TbB, TbM, Tce, Tcp; | ||
|  | 			      TbB = Tbl - TbA; | ||
|  | 			      TbM = TbI - TbL; | ||
|  | 			      TbN = FNMS(KP956940335, TbM, KP290284677 * TbB); | ||
|  | 			      TcJ = FMA(KP956940335, TbB, KP290284677 * TbM); | ||
|  | 			      Tce = TbY - Tcd; | ||
|  | 			      Tcp = Tcl - Tco; | ||
|  | 			      Tcq = FMA(KP290284677, Tce, KP956940335 * Tcp); | ||
|  | 			      TcK = FNMS(KP956940335, Tce, KP290284677 * Tcp); | ||
|  | 			 } | ||
|  | 			 Tcr = TbN + Tcq; | ||
|  | 			 TcX = TbN - Tcq; | ||
|  | 			 TcL = TcJ + TcK; | ||
|  | 			 TcT = TcK - TcJ; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Td9, Tdj, Tdc, Tdk; | ||
|  | 			 { | ||
|  | 			      E Td7, Td8, Tda, Tdb; | ||
|  | 			      Td7 = Tbl + TbA; | ||
|  | 			      Td8 = TbI + TbL; | ||
|  | 			      Td9 = FNMS(KP471396736, Td8, KP881921264 * Td7); | ||
|  | 			      Tdj = FMA(KP471396736, Td7, KP881921264 * Td8); | ||
|  | 			      Tda = TbY + Tcd; | ||
|  | 			      Tdb = Tcl + Tco; | ||
|  | 			      Tdc = FMA(KP881921264, Tda, KP471396736 * Tdb); | ||
|  | 			      Tdk = FNMS(KP471396736, Tda, KP881921264 * Tdb); | ||
|  | 			 } | ||
|  | 			 Tdd = Td9 + Tdc; | ||
|  | 			 Tdx = Td9 - Tdc; | ||
|  | 			 Tdl = Tdj + Tdk; | ||
|  | 			 Tdt = Tdk - Tdj; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcs, TcM, Ta5, Tct; | ||
|  | 			 Tcs = Tba - Tcr; | ||
|  | 			 TcM = TcI - TcL; | ||
|  | 			 Ta5 = W[88]; | ||
|  | 			 Tct = W[89]; | ||
|  | 			 cr[WS(rs, 45)] = FNMS(Tct, TcM, Ta5 * Tcs); | ||
|  | 			 ci[WS(rs, 45)] = FMA(Tct, Tcs, Ta5 * TcM); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdu, Tdy, Tdr, Tdv; | ||
|  | 			 Tdu = Tds - Tdt; | ||
|  | 			 Tdy = Tdw - Tdx; | ||
|  | 			 Tdr = W[104]; | ||
|  | 			 Tdv = W[105]; | ||
|  | 			 cr[WS(rs, 53)] = FNMS(Tdv, Tdy, Tdr * Tdu); | ||
|  | 			 ci[WS(rs, 53)] = FMA(Tdr, Tdy, Tdv * Tdu); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdA, TdC, Tdz, TdB; | ||
|  | 			 TdA = Tds + Tdt; | ||
|  | 			 TdC = Tdw + Tdx; | ||
|  | 			 Tdz = W[40]; | ||
|  | 			 TdB = W[41]; | ||
|  | 			 cr[WS(rs, 21)] = FNMS(TdB, TdC, Tdz * TdA); | ||
|  | 			 ci[WS(rs, 21)] = FMA(Tdz, TdC, TdB * TdA); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcO, TcQ, TcN, TcP; | ||
|  | 			 TcO = Tba + Tcr; | ||
|  | 			 TcQ = TcI + TcL; | ||
|  | 			 TcN = W[24]; | ||
|  | 			 TcP = W[25]; | ||
|  | 			 cr[WS(rs, 13)] = FNMS(TcP, TcQ, TcN * TcO); | ||
|  | 			 ci[WS(rs, 13)] = FMA(TcP, TcO, TcN * TcQ); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcU, TcY, TcR, TcV; | ||
|  | 			 TcU = TcS - TcT; | ||
|  | 			 TcY = TcW - TcX; | ||
|  | 			 TcR = W[120]; | ||
|  | 			 TcV = W[121]; | ||
|  | 			 cr[WS(rs, 61)] = FNMS(TcV, TcY, TcR * TcU); | ||
|  | 			 ci[WS(rs, 61)] = FMA(TcR, TcY, TcV * TcU); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tde, Tdm, Td3, Tdf; | ||
|  | 			 Tde = Td6 - Tdd; | ||
|  | 			 Tdm = Tdi - Tdl; | ||
|  | 			 Td3 = W[72]; | ||
|  | 			 Tdf = W[73]; | ||
|  | 			 cr[WS(rs, 37)] = FNMS(Tdf, Tdm, Td3 * Tde); | ||
|  | 			 ci[WS(rs, 37)] = FMA(Tdf, Tde, Td3 * Tdm); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdo, Tdq, Tdn, Tdp; | ||
|  | 			 Tdo = Td6 + Tdd; | ||
|  | 			 Tdq = Tdi + Tdl; | ||
|  | 			 Tdn = W[8]; | ||
|  | 			 Tdp = W[9]; | ||
|  | 			 cr[WS(rs, 5)] = FNMS(Tdp, Tdq, Tdn * Tdo); | ||
|  | 			 ci[WS(rs, 5)] = FMA(Tdp, Tdo, Tdn * Tdq); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Td0, Td2, TcZ, Td1; | ||
|  | 			 Td0 = TcS + TcT; | ||
|  | 			 Td2 = TcW + TcX; | ||
|  | 			 TcZ = W[56]; | ||
|  | 			 Td1 = W[57]; | ||
|  | 			 cr[WS(rs, 29)] = FNMS(Td1, Td2, TcZ * Td0); | ||
|  | 			 ci[WS(rs, 29)] = FMA(TcZ, Td2, Td1 * Td0); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tfy, Thc, Tgy, TgY, Tgo, Th8, TgC, TgM, Tgb, TgD, Tgr, Tgz, TgT, Thd, Th1; | ||
|  | 		    E Th9; | ||
|  | 		    { | ||
|  | 			 E Tfi, TgW, Tfx, TgX, Tfp, Tfw; | ||
|  | 			 Tfi = Tfa - Tfh; | ||
|  | 			 TgW = Tgg + Tgj; | ||
|  | 			 Tfp = FNMS(KP555570233, Tfo, KP831469612 * Tfl); | ||
|  | 			 Tfw = FMA(KP831469612, Tfs, KP555570233 * Tfv); | ||
|  | 			 Tfx = Tfp - Tfw; | ||
|  | 			 TgX = Tfw + Tfp; | ||
|  | 			 Tfy = Tfi + Tfx; | ||
|  | 			 Thc = TgW - TgX; | ||
|  | 			 Tgy = Tfi - Tfx; | ||
|  | 			 TgY = TgW + TgX; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgk, TgK, Tgn, TgL, Tgl, Tgm; | ||
|  | 			 Tgk = Tgg - Tgj; | ||
|  | 			 TgK = Tfa + Tfh; | ||
|  | 			 Tgl = FNMS(KP555570233, Tfs, KP831469612 * Tfv); | ||
|  | 			 Tgm = FMA(KP555570233, Tfl, KP831469612 * Tfo); | ||
|  | 			 Tgn = Tgl - Tgm; | ||
|  | 			 TgL = Tgl + Tgm; | ||
|  | 			 Tgo = Tgk + Tgn; | ||
|  | 			 Th8 = TgK - TgL; | ||
|  | 			 TgC = Tgk - Tgn; | ||
|  | 			 TgM = TgK + TgL; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfR, Tgp, Tga, Tgq; | ||
|  | 			 { | ||
|  | 			      E TfJ, TfQ, Tg2, Tg9; | ||
|  | 			      TfJ = TfB - TfI; | ||
|  | 			      TfQ = TfM - TfP; | ||
|  | 			      TfR = FNMS(KP881921264, TfQ, KP471396736 * TfJ); | ||
|  | 			      Tgp = FMA(KP881921264, TfJ, KP471396736 * TfQ); | ||
|  | 			      Tg2 = TfU - Tg1; | ||
|  | 			      Tg9 = Tg5 - Tg8; | ||
|  | 			      Tga = FMA(KP471396736, Tg2, KP881921264 * Tg9); | ||
|  | 			      Tgq = FNMS(KP881921264, Tg2, KP471396736 * Tg9); | ||
|  | 			 } | ||
|  | 			 Tgb = TfR + Tga; | ||
|  | 			 TgD = TfR - Tga; | ||
|  | 			 Tgr = Tgp + Tgq; | ||
|  | 			 Tgz = Tgq - Tgp; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgP, TgZ, TgS, Th0; | ||
|  | 			 { | ||
|  | 			      E TgN, TgO, TgQ, TgR; | ||
|  | 			      TgN = TfB + TfI; | ||
|  | 			      TgO = TfM + TfP; | ||
|  | 			      TgP = FNMS(KP290284677, TgO, KP956940335 * TgN); | ||
|  | 			      TgZ = FMA(KP290284677, TgN, KP956940335 * TgO); | ||
|  | 			      TgQ = TfU + Tg1; | ||
|  | 			      TgR = Tg5 + Tg8; | ||
|  | 			      TgS = FMA(KP956940335, TgQ, KP290284677 * TgR); | ||
|  | 			      Th0 = FNMS(KP290284677, TgQ, KP956940335 * TgR); | ||
|  | 			 } | ||
|  | 			 TgT = TgP + TgS; | ||
|  | 			 Thd = TgP - TgS; | ||
|  | 			 Th1 = TgZ + Th0; | ||
|  | 			 Th9 = Th0 - TgZ; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgc, Tgs, Tf7, Tgd; | ||
|  | 			 Tgc = Tfy - Tgb; | ||
|  | 			 Tgs = Tgo - Tgr; | ||
|  | 			 Tf7 = W[84]; | ||
|  | 			 Tgd = W[85]; | ||
|  | 			 cr[WS(rs, 43)] = FNMS(Tgd, Tgs, Tf7 * Tgc); | ||
|  | 			 ci[WS(rs, 43)] = FMA(Tgd, Tgc, Tf7 * Tgs); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tha, The, Th7, Thb; | ||
|  | 			 Tha = Th8 - Th9; | ||
|  | 			 The = Thc - Thd; | ||
|  | 			 Th7 = W[100]; | ||
|  | 			 Thb = W[101]; | ||
|  | 			 cr[WS(rs, 51)] = FNMS(Thb, The, Th7 * Tha); | ||
|  | 			 ci[WS(rs, 51)] = FMA(Th7, The, Thb * Tha); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Thg, Thi, Thf, Thh; | ||
|  | 			 Thg = Th8 + Th9; | ||
|  | 			 Thi = Thc + Thd; | ||
|  | 			 Thf = W[36]; | ||
|  | 			 Thh = W[37]; | ||
|  | 			 cr[WS(rs, 19)] = FNMS(Thh, Thi, Thf * Thg); | ||
|  | 			 ci[WS(rs, 19)] = FMA(Thf, Thi, Thh * Thg); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgu, Tgw, Tgt, Tgv; | ||
|  | 			 Tgu = Tfy + Tgb; | ||
|  | 			 Tgw = Tgo + Tgr; | ||
|  | 			 Tgt = W[20]; | ||
|  | 			 Tgv = W[21]; | ||
|  | 			 cr[WS(rs, 11)] = FNMS(Tgv, Tgw, Tgt * Tgu); | ||
|  | 			 ci[WS(rs, 11)] = FMA(Tgv, Tgu, Tgt * Tgw); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgA, TgE, Tgx, TgB; | ||
|  | 			 TgA = Tgy - Tgz; | ||
|  | 			 TgE = TgC - TgD; | ||
|  | 			 Tgx = W[116]; | ||
|  | 			 TgB = W[117]; | ||
|  | 			 cr[WS(rs, 59)] = FNMS(TgB, TgE, Tgx * TgA); | ||
|  | 			 ci[WS(rs, 59)] = FMA(Tgx, TgE, TgB * TgA); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgU, Th2, TgJ, TgV; | ||
|  | 			 TgU = TgM - TgT; | ||
|  | 			 Th2 = TgY - Th1; | ||
|  | 			 TgJ = W[68]; | ||
|  | 			 TgV = W[69]; | ||
|  | 			 cr[WS(rs, 35)] = FNMS(TgV, Th2, TgJ * TgU); | ||
|  | 			 ci[WS(rs, 35)] = FMA(TgV, TgU, TgJ * Th2); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Th4, Th6, Th3, Th5; | ||
|  | 			 Th4 = TgM + TgT; | ||
|  | 			 Th6 = TgY + Th1; | ||
|  | 			 Th3 = W[4]; | ||
|  | 			 Th5 = W[5]; | ||
|  | 			 cr[WS(rs, 3)] = FNMS(Th5, Th6, Th3 * Th4); | ||
|  | 			 ci[WS(rs, 3)] = FMA(Th5, Th4, Th3 * Th6); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgG, TgI, TgF, TgH; | ||
|  | 			 TgG = Tgy + Tgz; | ||
|  | 			 TgI = TgC + TgD; | ||
|  | 			 TgF = W[52]; | ||
|  | 			 TgH = W[53]; | ||
|  | 			 cr[WS(rs, 27)] = FNMS(TgH, TgI, TgF * TgG); | ||
|  | 			 ci[WS(rs, 27)] = FMA(TgF, TgI, TgH * TgG); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TdO, Tf0, Tem, TeM, Tec, TeW, Teq, TeA, Te3, Ter, Tef, Ten, TeH, Tf1, TeP; | ||
|  | 		    E TeX; | ||
|  | 		    { | ||
|  | 			 E TdG, TeK, TdN, TeL, TdJ, TdM; | ||
|  | 			 TdG = TdE - TdF; | ||
|  | 			 TeK = Te6 + Te7; | ||
|  | 			 TdJ = FNMS(KP195090322, TdI, KP980785280 * TdH); | ||
|  | 			 TdM = FMA(KP195090322, TdK, KP980785280 * TdL); | ||
|  | 			 TdN = TdJ - TdM; | ||
|  | 			 TeL = TdM + TdJ; | ||
|  | 			 TdO = TdG - TdN; | ||
|  | 			 Tf0 = TeK + TeL; | ||
|  | 			 Tem = TdG + TdN; | ||
|  | 			 TeM = TeK - TeL; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te8, Tey, Teb, Tez, Te9, Tea; | ||
|  | 			 Te8 = Te6 - Te7; | ||
|  | 			 Tey = TdE + TdF; | ||
|  | 			 Te9 = FNMS(KP195090322, TdL, KP980785280 * TdK); | ||
|  | 			 Tea = FMA(KP980785280, TdI, KP195090322 * TdH); | ||
|  | 			 Teb = Te9 - Tea; | ||
|  | 			 Tez = Te9 + Tea; | ||
|  | 			 Tec = Te8 - Teb; | ||
|  | 			 TeW = Tey + Tez; | ||
|  | 			 Teq = Te8 + Teb; | ||
|  | 			 TeA = Tey - Tez; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdV, Tee, Te2, Ted; | ||
|  | 			 { | ||
|  | 			      E TdR, TdU, TdY, Te1; | ||
|  | 			      TdR = TdP - TdQ; | ||
|  | 			      TdU = TdS - TdT; | ||
|  | 			      TdV = FNMS(KP773010453, TdU, KP634393284 * TdR); | ||
|  | 			      Tee = FMA(KP773010453, TdR, KP634393284 * TdU); | ||
|  | 			      TdY = TdW - TdX; | ||
|  | 			      Te1 = TdZ - Te0; | ||
|  | 			      Te2 = FMA(KP634393284, TdY, KP773010453 * Te1); | ||
|  | 			      Ted = FNMS(KP773010453, TdY, KP634393284 * Te1); | ||
|  | 			 } | ||
|  | 			 Te3 = TdV - Te2; | ||
|  | 			 Ter = Te2 + TdV; | ||
|  | 			 Tef = Ted - Tee; | ||
|  | 			 Ten = Ted + Tee; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TeD, TeO, TeG, TeN; | ||
|  | 			 { | ||
|  | 			      E TeB, TeC, TeE, TeF; | ||
|  | 			      TeB = TdP + TdQ; | ||
|  | 			      TeC = TdS + TdT; | ||
|  | 			      TeD = FNMS(KP098017140, TeC, KP995184726 * TeB); | ||
|  | 			      TeO = FMA(KP098017140, TeB, KP995184726 * TeC); | ||
|  | 			      TeE = TdW + TdX; | ||
|  | 			      TeF = TdZ + Te0; | ||
|  | 			      TeG = FMA(KP995184726, TeE, KP098017140 * TeF); | ||
|  | 			      TeN = FNMS(KP098017140, TeE, KP995184726 * TeF); | ||
|  | 			 } | ||
|  | 			 TeH = TeD - TeG; | ||
|  | 			 Tf1 = TeG + TeD; | ||
|  | 			 TeP = TeN - TeO; | ||
|  | 			 TeX = TeN + TeO; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te4, Teg, TdD, Te5; | ||
|  | 			 Te4 = TdO - Te3; | ||
|  | 			 Teg = Tec - Tef; | ||
|  | 			 TdD = W[112]; | ||
|  | 			 Te5 = W[113]; | ||
|  | 			 cr[WS(rs, 57)] = FNMS(Te5, Teg, TdD * Te4); | ||
|  | 			 ci[WS(rs, 57)] = FMA(Te5, Te4, TdD * Teg); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TeY, Tf2, TeV, TeZ; | ||
|  | 			 TeY = TeW - TeX; | ||
|  | 			 Tf2 = Tf0 - Tf1; | ||
|  | 			 TeV = W[64]; | ||
|  | 			 TeZ = W[65]; | ||
|  | 			 cr[WS(rs, 33)] = FNMS(TeZ, Tf2, TeV * TeY); | ||
|  | 			 ci[WS(rs, 33)] = FMA(TeV, Tf2, TeZ * TeY); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tf4, Tf6, Tf3, Tf5; | ||
|  | 			 Tf4 = TeW + TeX; | ||
|  | 			 Tf6 = Tf0 + Tf1; | ||
|  | 			 Tf3 = W[0]; | ||
|  | 			 Tf5 = W[1]; | ||
|  | 			 cr[WS(rs, 1)] = FNMS(Tf5, Tf6, Tf3 * Tf4); | ||
|  | 			 ci[WS(rs, 1)] = FMA(Tf3, Tf6, Tf5 * Tf4); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tei, Tek, Teh, Tej; | ||
|  | 			 Tei = TdO + Te3; | ||
|  | 			 Tek = Tec + Tef; | ||
|  | 			 Teh = W[48]; | ||
|  | 			 Tej = W[49]; | ||
|  | 			 cr[WS(rs, 25)] = FNMS(Tej, Tek, Teh * Tei); | ||
|  | 			 ci[WS(rs, 25)] = FMA(Tej, Tei, Teh * Tek); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Teo, Tes, Tel, Tep; | ||
|  | 			 Teo = Tem - Ten; | ||
|  | 			 Tes = Teq - Ter; | ||
|  | 			 Tel = W[80]; | ||
|  | 			 Tep = W[81]; | ||
|  | 			 cr[WS(rs, 41)] = FNMS(Tep, Tes, Tel * Teo); | ||
|  | 			 ci[WS(rs, 41)] = FMA(Tel, Tes, Tep * Teo); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TeI, TeQ, Tex, TeJ; | ||
|  | 			 TeI = TeA - TeH; | ||
|  | 			 TeQ = TeM - TeP; | ||
|  | 			 Tex = W[96]; | ||
|  | 			 TeJ = W[97]; | ||
|  | 			 cr[WS(rs, 49)] = FNMS(TeJ, TeQ, Tex * TeI); | ||
|  | 			 ci[WS(rs, 49)] = FMA(TeJ, TeI, Tex * TeQ); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TeS, TeU, TeR, TeT; | ||
|  | 			 TeS = TeA + TeH; | ||
|  | 			 TeU = TeM + TeP; | ||
|  | 			 TeR = W[32]; | ||
|  | 			 TeT = W[33]; | ||
|  | 			 cr[WS(rs, 17)] = FNMS(TeT, TeU, TeR * TeS); | ||
|  | 			 ci[WS(rs, 17)] = FMA(TeT, TeS, TeR * TeU); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Teu, Tew, Tet, Tev; | ||
|  | 			 Teu = Tem + Ten; | ||
|  | 			 Tew = Teq + Ter; | ||
|  | 			 Tet = W[16]; | ||
|  | 			 Tev = W[17]; | ||
|  | 			 cr[WS(rs, 9)] = FNMS(Tev, Tew, Tet * Teu); | ||
|  | 			 ci[WS(rs, 9)] = FMA(Tet, Tew, Tev * Teu); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Thu, TiG, Ti2, Tis, ThS, TiC, Ti6, Tig, ThJ, Ti7, ThV, Ti3, Tin, TiH, Tiv; | ||
|  | 		    E TiD; | ||
|  | 		    { | ||
|  | 			 E Thm, Tiq, Tht, Tir, Thp, Ths; | ||
|  | 			 Thm = Thk - Thl; | ||
|  | 			 Tiq = ThM - ThN; | ||
|  | 			 Thp = FNMS(KP980785280, Tho, KP195090322 * Thn); | ||
|  | 			 Ths = FNMS(KP980785280, Thr, KP195090322 * Thq); | ||
|  | 			 Tht = Thp + Ths; | ||
|  | 			 Tir = Thp - Ths; | ||
|  | 			 Thu = Thm - Tht; | ||
|  | 			 TiG = Tiq - Tir; | ||
|  | 			 Ti2 = Thm + Tht; | ||
|  | 			 Tis = Tiq + Tir; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThO, Tie, ThR, Tif, ThP, ThQ; | ||
|  | 			 ThO = ThM + ThN; | ||
|  | 			 Tie = Thk + Thl; | ||
|  | 			 ThP = FMA(KP195090322, Tho, KP980785280 * Thn); | ||
|  | 			 ThQ = FMA(KP195090322, Thr, KP980785280 * Thq); | ||
|  | 			 ThR = ThP - ThQ; | ||
|  | 			 Tif = ThP + ThQ; | ||
|  | 			 ThS = ThO - ThR; | ||
|  | 			 TiC = Tie + Tif; | ||
|  | 			 Ti6 = ThO + ThR; | ||
|  | 			 Tig = Tie - Tif; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThB, ThU, ThI, ThT; | ||
|  | 			 { | ||
|  | 			      E Thx, ThA, ThE, ThH; | ||
|  | 			      Thx = Thv - Thw; | ||
|  | 			      ThA = Thy - Thz; | ||
|  | 			      ThB = FNMS(KP634393284, ThA, KP773010453 * Thx); | ||
|  | 			      ThU = FMA(KP634393284, Thx, KP773010453 * ThA); | ||
|  | 			      ThE = ThC + ThD; | ||
|  | 			      ThH = ThF - ThG; | ||
|  | 			      ThI = FMA(KP773010453, ThE, KP634393284 * ThH); | ||
|  | 			      ThT = FNMS(KP634393284, ThE, KP773010453 * ThH); | ||
|  | 			 } | ||
|  | 			 ThJ = ThB - ThI; | ||
|  | 			 Ti7 = ThI + ThB; | ||
|  | 			 ThV = ThT - ThU; | ||
|  | 			 Ti3 = ThT + ThU; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tij, Tit, Tim, Tiu; | ||
|  | 			 { | ||
|  | 			      E Tih, Tii, Tik, Til; | ||
|  | 			      Tih = ThF + ThG; | ||
|  | 			      Tii = ThC - ThD; | ||
|  | 			      Tij = FNMS(KP995184726, Tii, KP098017140 * Tih); | ||
|  | 			      Tit = FMA(KP098017140, Tii, KP995184726 * Tih); | ||
|  | 			      Tik = Thy + Thz; | ||
|  | 			      Til = Thw + Thv; | ||
|  | 			      Tim = FNMS(KP995184726, Til, KP098017140 * Tik); | ||
|  | 			      Tiu = FMA(KP098017140, Til, KP995184726 * Tik); | ||
|  | 			 } | ||
|  | 			 Tin = Tij + Tim; | ||
|  | 			 TiH = Tij - Tim; | ||
|  | 			 Tiv = Tit - Tiu; | ||
|  | 			 TiD = Tit + Tiu; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThK, ThW, Thj, ThL; | ||
|  | 			 ThK = Thu - ThJ; | ||
|  | 			 ThW = ThS - ThV; | ||
|  | 			 Thj = W[108]; | ||
|  | 			 ThL = W[109]; | ||
|  | 			 cr[WS(rs, 55)] = FNMS(ThL, ThW, Thj * ThK); | ||
|  | 			 ci[WS(rs, 55)] = FMA(ThL, ThK, Thj * ThW); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TiE, TiI, TiB, TiF; | ||
|  | 			 TiE = TiC - TiD; | ||
|  | 			 TiI = TiG + TiH; | ||
|  | 			 TiB = W[60]; | ||
|  | 			 TiF = W[61]; | ||
|  | 			 cr[WS(rs, 31)] = FNMS(TiF, TiI, TiB * TiE); | ||
|  | 			 ci[WS(rs, 31)] = FMA(TiB, TiI, TiF * TiE); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TiK, TiM, TiJ, TiL; | ||
|  | 			 TiK = TiC + TiD; | ||
|  | 			 TiM = TiG - TiH; | ||
|  | 			 TiJ = W[124]; | ||
|  | 			 TiL = W[125]; | ||
|  | 			 cr[WS(rs, 63)] = FNMS(TiL, TiM, TiJ * TiK); | ||
|  | 			 ci[WS(rs, 63)] = FMA(TiJ, TiM, TiL * TiK); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThY, Ti0, ThX, ThZ; | ||
|  | 			 ThY = Thu + ThJ; | ||
|  | 			 Ti0 = ThS + ThV; | ||
|  | 			 ThX = W[44]; | ||
|  | 			 ThZ = W[45]; | ||
|  | 			 cr[WS(rs, 23)] = FNMS(ThZ, Ti0, ThX * ThY); | ||
|  | 			 ci[WS(rs, 23)] = FMA(ThZ, ThY, ThX * Ti0); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ti4, Ti8, Ti1, Ti5; | ||
|  | 			 Ti4 = Ti2 - Ti3; | ||
|  | 			 Ti8 = Ti6 - Ti7; | ||
|  | 			 Ti1 = W[76]; | ||
|  | 			 Ti5 = W[77]; | ||
|  | 			 cr[WS(rs, 39)] = FNMS(Ti5, Ti8, Ti1 * Ti4); | ||
|  | 			 ci[WS(rs, 39)] = FMA(Ti1, Ti8, Ti5 * Ti4); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tio, Tiw, Tid, Tip; | ||
|  | 			 Tio = Tig - Tin; | ||
|  | 			 Tiw = Tis - Tiv; | ||
|  | 			 Tid = W[92]; | ||
|  | 			 Tip = W[93]; | ||
|  | 			 cr[WS(rs, 47)] = FNMS(Tip, Tiw, Tid * Tio); | ||
|  | 			 ci[WS(rs, 47)] = FMA(Tip, Tio, Tid * Tiw); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tiy, TiA, Tix, Tiz; | ||
|  | 			 Tiy = Tig + Tin; | ||
|  | 			 TiA = Tis + Tiv; | ||
|  | 			 Tix = W[28]; | ||
|  | 			 Tiz = W[29]; | ||
|  | 			 cr[WS(rs, 15)] = FNMS(Tiz, TiA, Tix * Tiy); | ||
|  | 			 ci[WS(rs, 15)] = FMA(Tiz, Tiy, Tix * TiA); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tia, Tic, Ti9, Tib; | ||
|  | 			 Tia = Ti2 + Ti3; | ||
|  | 			 Tic = Ti6 + Ti7; | ||
|  | 			 Ti9 = W[12]; | ||
|  | 			 Tib = W[13]; | ||
|  | 			 cr[WS(rs, 7)] = FNMS(Tib, Tic, Ti9 * Tia); | ||
|  | 			 ci[WS(rs, 7)] = FMA(Ti9, Tic, Tib * Tia); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 64 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 64, "hb_64", twinstr, &GENUS, { 808, 270, 230, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb_64) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb_64, &desc); | ||
|  | } | ||
|  | #endif
 |