131 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
		
		
			
		
	
	
			131 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
|   | (*
 | ||
|  |  * Copyright (c) 1997-1999 Massachusetts Institute of Technology | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  | *) | ||
|  | 
 | ||
|  | open Complex | ||
|  | open Util | ||
|  | 
 | ||
|  | let polyphase m a ph i = a (m * i + ph) | ||
|  | 
 | ||
|  | let rec divmod n i = | ||
|  |   if (i < 0) then  | ||
|  |     let (a, b) = divmod n (i + n) | ||
|  |     in (a - 1, b) | ||
|  |   else (i / n, i mod n) | ||
|  | 
 | ||
|  | let unpolyphase m a i = let (x, y) = divmod m i in a y x | ||
|  | 
 | ||
|  | let lift2 f a b i = f (a i) (b i) | ||
|  | 
 | ||
|  | (* convolution of signals A and B *) | ||
|  | let rec conv na a nb b = | ||
|  |   let rec naive na a nb b i = | ||
|  |     sigma 0 na (fun j -> (a j) @* (b (i - j))) | ||
|  | 
 | ||
|  |   and recur na a nb b = | ||
|  |     if (na <= 1 || nb <= 1) then | ||
|  |       naive na a nb b | ||
|  |     else | ||
|  |       let p = polyphase 2 in | ||
|  |       let ee = conv (na - na / 2) (p a 0) (nb - nb / 2) (p b 0) | ||
|  |       and eo = conv (na - na / 2) (p a 0) (nb / 2) (p b 1) | ||
|  |       and oe = conv (na / 2) (p a 1) (nb - nb / 2) (p b 0) | ||
|  |       and oo = conv (na / 2) (p a 1) (nb / 2) (p b 1) in | ||
|  |       unpolyphase 2 (function | ||
|  | 	  0 -> fun i -> (ee i) @+ (oo (i - 1)) | ||
|  | 	| 1 -> fun i -> (eo i) @+ (oe i)  | ||
|  | 	| _ -> failwith "recur") | ||
|  | 
 | ||
|  | 
 | ||
|  |   (* Karatsuba variant 1: (a+bx)(c+dx) = (ac+bdxx)+((a+b)(c+d)-ac-bd)x *) | ||
|  |   and karatsuba1 na a nb b = | ||
|  |       let p = polyphase 2 in | ||
|  |       let ae = p a 0 and nae = na - na / 2 | ||
|  |       and ao = p a 1 and nao = na / 2 | ||
|  |       and be = p b 0 and nbe = nb - nb / 2 | ||
|  |       and bo = p b 1 and nbo = nb / 2 in | ||
|  |       let ae = infinite nae ae and ao = infinite nao ao | ||
|  |       and be = infinite nbe be and bo = infinite nbo bo in | ||
|  |       let aeo = lift2 (@+) ae ao and naeo = nae | ||
|  |       and beo = lift2 (@+) be bo and nbeo = nbe in | ||
|  |       let ee = conv nae ae nbe be  | ||
|  |       and oo = conv nao ao nbo bo | ||
|  |       and eoeo = conv naeo aeo nbeo beo in | ||
|  | 
 | ||
|  |       let q = function | ||
|  | 	  0 -> fun i -> (ee i)  @+ (oo (i - 1)) | ||
|  | 	| 1 -> fun i -> (eoeo i) @- ((ee i) @+ (oo i)) | ||
|  | 	| _ -> failwith "karatsuba1" in | ||
|  |       unpolyphase 2 q | ||
|  | 
 | ||
|  |   (* Karatsuba variant 2: 
 | ||
|  |      (a+bx)(c+dx) = ((a+b)c-b(c-dxx))+x((a+b)c-a(c-d)) *) | ||
|  |   and karatsuba2 na a nb b = | ||
|  |       let p = polyphase 2 in | ||
|  |       let ae = p a 0 and nae = na - na / 2 | ||
|  |       and ao = p a 1 and nao = na / 2 | ||
|  |       and be = p b 0 and nbe = nb - nb / 2 | ||
|  |       and bo = p b 1 and nbo = nb / 2 in | ||
|  |       let ae = infinite nae ae and ao = infinite nao ao | ||
|  |       and be = infinite nbe be and bo = infinite nbo bo in | ||
|  | 
 | ||
|  |       let c1 = conv nae (lift2 (@+) ae ao) nbe be | ||
|  |       and c2 = conv nao ao (nbo + 1) (fun i -> be i @- bo (i - 1)) | ||
|  |       and c3 = conv nae ae nbe (lift2 (@-) be bo) in | ||
|  | 
 | ||
|  |       let q = function | ||
|  | 	  0 -> lift2 (@-) c1 c2 | ||
|  | 	| 1 -> lift2 (@-) c1 c3 | ||
|  | 	| _ -> failwith "karatsuba2" in | ||
|  |       unpolyphase 2 q | ||
|  | 
 | ||
|  |   and karatsuba na a nb b = | ||
|  |     let m = na + nb - 1 in | ||
|  |     if (m < !Magic.karatsuba_min) then | ||
|  |       recur na a nb b | ||
|  |     else | ||
|  |       match !Magic.karatsuba_variant with | ||
|  | 	1 -> karatsuba1 na a nb b | ||
|  |       |	2 -> karatsuba2 na a nb b | ||
|  |       |	_ -> failwith "unknown karatsuba variant" | ||
|  | 
 | ||
|  |   and via_circular na a nb b = | ||
|  |     let m = na + nb - 1 in | ||
|  |     if (m < !Magic.circular_min) then | ||
|  |       karatsuba na a nb b | ||
|  |     else | ||
|  |       let rec find_min n = if n >= m then n else find_min (2 * n) in | ||
|  |       circular (find_min 1) a b | ||
|  | 
 | ||
|  |   in | ||
|  |   let a = infinite na a and b = infinite nb b in | ||
|  |   let res = array (na + nb - 1) (via_circular na a nb b) in | ||
|  |   infinite (na + nb - 1) res | ||
|  |      | ||
|  | and circular n a b = | ||
|  |   let via_dft n a b = | ||
|  |     let fa = Fft.dft (-1) n a  | ||
|  |     and fb = Fft.dft (-1) n b | ||
|  |     and scale = inverse_int n in | ||
|  |     let fab i = ((fa i) @* (fb i)) @* scale in | ||
|  |     Fft.dft 1 n fab | ||
|  | 
 | ||
|  |   in via_dft n a b |