301 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			301 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size,
 | ||
|  |    with some permutations and post-processing, as described in: | ||
|  | 
 | ||
|  |      S. C. Chan and K. L. Ho, "Fast algorithms for computing the | ||
|  |      discrete cosine transform," IEEE Trans. Circuits Systems II: | ||
|  |      Analog & Digital Sig. Proc. 39 (3), 185--190 (1992). | ||
|  | 
 | ||
|  |    (For even sizes, see reodft11e-radix2.c.)   | ||
|  | 
 | ||
|  |    This algorithm is related to the 8 x n prime-factor-algorithm (PFA) | ||
|  |    decomposition of the size 8n "logical" DFT corresponding to the | ||
|  |    R{EO}DFT11. | ||
|  | 
 | ||
|  |    Aside from very confusing notation (several symbols are redefined | ||
|  |    from one line to the next), be aware that this paper has some | ||
|  |    errors.  In particular, the signs are wrong in Eqs. (34-35).  Also, | ||
|  |    Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly | ||
|  |    for S (or, equivalently, the second cases should have 2*N - 2*k - 1 | ||
|  |    instead of N - k - 1).  Note also that in their definition of the | ||
|  |    DFT, similarly to FFTW's, the exponent's sign is -1, but they | ||
|  |    forgot to correspondingly multiply S (the sine terms) by -1. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "reodft/reodft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_rdft super; | ||
|  |      plan *cld; | ||
|  |      INT is, os; | ||
|  |      INT n; | ||
|  |      INT vl; | ||
|  |      INT ivs, ovs; | ||
|  |      rdft_kind kind; | ||
|  | } P; | ||
|  | 
 | ||
|  | static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769); | ||
|  | 
 | ||
|  | #define SGN_SET(x, i) ((i) % 2 ? -(x) : (x))
 | ||
|  | 
 | ||
|  | static void apply_re11(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n, n2 = n/2; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *buf; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  { | ||
|  | 	       INT m; | ||
|  | 	       for (i = 0, m = n2; m < n; ++i, m += 4) | ||
|  | 		    buf[i] = I[is * m]; | ||
|  | 	       for (; m < 2 * n; ++i, m += 4) | ||
|  | 		    buf[i] = -I[is * (2*n - m - 1)]; | ||
|  | 	       for (; m < 3 * n; ++i, m += 4) | ||
|  | 		    buf[i] = -I[is * (m - 2*n)]; | ||
|  | 	       for (; m < 4 * n; ++i, m += 4) | ||
|  | 		    buf[i] = I[is * (4*n - m - 1)]; | ||
|  | 	       m -= 4 * n; | ||
|  | 	       for (; i < n; ++i, m += 4) | ||
|  | 		    buf[i] = I[is * m]; | ||
|  | 	  } | ||
|  | 
 | ||
|  | 	  { /* child plan: R2HC of size n */ | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ | ||
|  | 	  for (i = 0; i + i + 1 < n2; ++i) { | ||
|  | 	       INT k = i + i + 1; | ||
|  | 	       E c1, s1; | ||
|  | 	       E c2, s2; | ||
|  | 	       c1 = buf[k]; | ||
|  | 	       c2 = buf[k + 1]; | ||
|  | 	       s2 = buf[n - (k + 1)]; | ||
|  | 	       s1 = buf[n - k]; | ||
|  | 	        | ||
|  | 	       O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) + | ||
|  | 				    SGN_SET(s1, i/2)); | ||
|  | 	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) - | ||
|  | 					      SGN_SET(s1, (n-(i+1))/2)); | ||
|  | 	        | ||
|  | 	       O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) - | ||
|  | 					       SGN_SET(s2, (n2-(i+1))/2)); | ||
|  | 	       O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) + | ||
|  | 					       SGN_SET(s2, (n2+(i+1))/2)); | ||
|  | 	  } | ||
|  | 	  if (i + i + 1 == n2) { | ||
|  | 	       E c, s; | ||
|  | 	       c = buf[n2]; | ||
|  | 	       s = buf[n - n2]; | ||
|  | 	       O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) + | ||
|  | 				    SGN_SET(s, i/2)); | ||
|  | 	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) + | ||
|  | 					      SGN_SET(s, (i+1)/2)); | ||
|  | 	  } | ||
|  | 	  O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2); | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | /* like for rodft01, rodft11 is obtained from redft11 by
 | ||
|  |    reversing the input and flipping the sign of every other output. */ | ||
|  | static void apply_ro11(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n, n2 = n/2; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *buf; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  { | ||
|  | 	       INT m; | ||
|  | 	       for (i = 0, m = n2; m < n; ++i, m += 4) | ||
|  | 		    buf[i] = I[is * (n - 1 - m)]; | ||
|  | 	       for (; m < 2 * n; ++i, m += 4) | ||
|  | 		    buf[i] = -I[is * (m - n)]; | ||
|  | 	       for (; m < 3 * n; ++i, m += 4) | ||
|  | 		    buf[i] = -I[is * (3*n - 1 - m)]; | ||
|  | 	       for (; m < 4 * n; ++i, m += 4) | ||
|  | 		    buf[i] = I[is * (m - 3*n)]; | ||
|  | 	       m -= 4 * n; | ||
|  | 	       for (; i < n; ++i, m += 4) | ||
|  | 		    buf[i] = I[is * (n - 1 - m)]; | ||
|  | 	  } | ||
|  | 
 | ||
|  | 	  { /* child plan: R2HC of size n */ | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 	   | ||
|  | 	  /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ | ||
|  | 	  for (i = 0; i + i + 1 < n2; ++i) { | ||
|  | 	       INT k = i + i + 1; | ||
|  | 	       INT j; | ||
|  | 	       E c1, s1; | ||
|  | 	       E c2, s2; | ||
|  | 	       c1 = buf[k]; | ||
|  | 	       c2 = buf[k + 1]; | ||
|  | 	       s2 = buf[n - (k + 1)]; | ||
|  | 	       s1 = buf[n - k]; | ||
|  | 	        | ||
|  | 	       O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) + | ||
|  | 				    SGN_SET(s1, i/2 + i)); | ||
|  | 	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) - | ||
|  | 					      SGN_SET(s1, (n-(i+1))/2 + i)); | ||
|  | 	        | ||
|  | 	       j = n2 - (i+1); | ||
|  | 	       O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) - | ||
|  | 				    SGN_SET(s2, (n2-(i+1))/2 + j)); | ||
|  | 	       O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) + | ||
|  | 					       SGN_SET(s2, (n2+(i+1))/2 + j)); | ||
|  | 	  } | ||
|  | 	  if (i + i + 1 == n2) { | ||
|  | 	       E c, s; | ||
|  | 	       c = buf[n2]; | ||
|  | 	       s = buf[n - n2]; | ||
|  | 	       O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) + | ||
|  | 				    SGN_SET(s, i/2 + i)); | ||
|  | 	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) + | ||
|  | 					      SGN_SET(s, (i+1)/2 + i)); | ||
|  | 	  } | ||
|  | 	  O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2); | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_awake)(ego->cld, wakefulness); | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      p->print(p, "(%se-r2hc-odd-%D%v%(%p%))", | ||
|  | 	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable0(const solver *ego_, const problem *p_) | ||
|  | { | ||
|  |      const problem_rdft *p = (const problem_rdft *) p_; | ||
|  |      UNUSED(ego_); | ||
|  | 
 | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 	     && p->vecsz->rnk <= 1 | ||
|  | 	     && p->sz->dims[0].n % 2 == 1 | ||
|  | 	     && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const solver *ego, const problem *p, const planner *plnr) | ||
|  | { | ||
|  |      return (!NO_SLOWP(plnr) && applicable0(ego, p)); | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      P *pln; | ||
|  |      const problem_rdft *p; | ||
|  |      plan *cld; | ||
|  |      R *buf; | ||
|  |      INT n; | ||
|  |      opcnt ops; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(rdft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego_, p_, plnr)) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      p = (const problem_rdft *) p_; | ||
|  | 
 | ||
|  |      n = p->sz->dims[0].n; | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | ||
|  | 
 | ||
|  |      cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), | ||
|  |                                                    X(mktensor_0d)(), | ||
|  |                                                    buf, buf, R2HC)); | ||
|  |      X(ifree)(buf); | ||
|  |      if (!cld) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); | ||
|  |      pln->n = n; | ||
|  |      pln->is = p->sz->dims[0].is; | ||
|  |      pln->os = p->sz->dims[0].os; | ||
|  |      pln->cld = cld; | ||
|  |      pln->kind = p->kind[0]; | ||
|  |       | ||
|  |      X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); | ||
|  |       | ||
|  |      X(ops_zero)(&ops); | ||
|  |      ops.add = n - 1; | ||
|  |      ops.mul = n; | ||
|  |      ops.other = 4*n; | ||
|  | 
 | ||
|  |      X(ops_zero)(&pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | } | ||
|  | 
 | ||
|  | /* constructor */ | ||
|  | static solver *mksolver(void) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(reodft11e_r2hc_odd_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver()); | ||
|  | } |