295 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			295 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Do an R{E,O}DFT11 problem via an R2HC problem, with some
							 | 
						||
| 
								 | 
							
								   pre/post-processing ala FFTPACK.  Use a trick from: 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     S. C. Chan and K. L. Ho, "Direct methods for computing discrete
							 | 
						||
| 
								 | 
							
								     sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   to re-express as an REDFT01 (DCT-III) problem.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   NOTE: We no longer use this algorithm, because it turns out to suffer
							 | 
						||
| 
								 | 
							
								   a catastrophic loss of accuracy for certain inputs, apparently because
							 | 
						||
| 
								 | 
							
								   its post-processing multiplies the output by a cosine.  Near the zero
							 | 
						||
| 
								 | 
							
								   of the cosine, the REDFT01 must produce a near-singular output.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "reodft/reodft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     solver super;
							 | 
						||
| 
								 | 
							
								} S;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     plan_rdft super;
							 | 
						||
| 
								 | 
							
								     plan *cld;
							 | 
						||
| 
								 | 
							
								     twid *td, *td2;
							 | 
						||
| 
								 | 
							
								     INT is, os;
							 | 
						||
| 
								 | 
							
								     INT n;
							 | 
						||
| 
								 | 
							
								     INT vl;
							 | 
						||
| 
								 | 
							
								     INT ivs, ovs;
							 | 
						||
| 
								 | 
							
								     rdft_kind kind;
							 | 
						||
| 
								 | 
							
								} P;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void apply_re11(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     INT is = ego->is, os = ego->os;
							 | 
						||
| 
								 | 
							
								     INT i, n = ego->n;
							 | 
						||
| 
								 | 
							
								     INT iv, vl = ego->vl;
							 | 
						||
| 
								 | 
							
								     INT ivs = ego->ivs, ovs = ego->ovs;
							 | 
						||
| 
								 | 
							
								     R *W;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								     E cur;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
							 | 
						||
| 
								 | 
							
									  /* I wish that this didn't require an extra pass. */
							 | 
						||
| 
								 | 
							
									  /* FIXME: use recursive/cascade summation for better stability? */
							 | 
						||
| 
								 | 
							
									  buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
							 | 
						||
| 
								 | 
							
									  for (i = n - 1; i > 0; --i) {
							 | 
						||
| 
								 | 
							
									       E curnew;
							 | 
						||
| 
								 | 
							
									       buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
							 | 
						||
| 
								 | 
							
									       cur = curnew;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  W = ego->td->W;
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b, apb, amb, wa, wb;
							 | 
						||
| 
								 | 
							
									       a = buf[i];
							 | 
						||
| 
								 | 
							
									       b = buf[n - i];
							 | 
						||
| 
								 | 
							
									       apb = a + b;
							 | 
						||
| 
								 | 
							
									       amb = a - b;
							 | 
						||
| 
								 | 
							
									       wa = W[2*i];
							 | 
						||
| 
								 | 
							
									       wb = W[2*i + 1];
							 | 
						||
| 
								 | 
							
									       buf[i] = wa * amb + wb * apb; 
							 | 
						||
| 
								 | 
							
									       buf[n - i] = wa * apb - wb * amb; 
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       buf[i] = K(2.0) * buf[i] * W[2*i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->cld;
							 | 
						||
| 
								 | 
							
									       cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  W = ego->td2->W;
							 | 
						||
| 
								 | 
							
									  O[0] = W[0] * buf[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b;
							 | 
						||
| 
								 | 
							
									       INT k;
							 | 
						||
| 
								 | 
							
									       a = buf[i];
							 | 
						||
| 
								 | 
							
									       b = buf[n - i];
							 | 
						||
| 
								 | 
							
									       k = i + i;
							 | 
						||
| 
								 | 
							
									       O[os * (k - 1)] = W[k - 1] * (a - b);
							 | 
						||
| 
								 | 
							
									       O[os * k] = W[k] * (a + b);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       O[os * (n - 1)] = W[n - 1] * buf[i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* like for rodft01, rodft11 is obtained from redft11 by
							 | 
						||
| 
								 | 
							
								   reversing the input and flipping the sign of every other output. */
							 | 
						||
| 
								 | 
							
								static void apply_ro11(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     INT is = ego->is, os = ego->os;
							 | 
						||
| 
								 | 
							
								     INT i, n = ego->n;
							 | 
						||
| 
								 | 
							
								     INT iv, vl = ego->vl;
							 | 
						||
| 
								 | 
							
								     INT ivs = ego->ivs, ovs = ego->ovs;
							 | 
						||
| 
								 | 
							
								     R *W;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								     E cur;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
							 | 
						||
| 
								 | 
							
									  /* I wish that this didn't require an extra pass. */
							 | 
						||
| 
								 | 
							
									  /* FIXME: use recursive/cascade summation for better stability? */
							 | 
						||
| 
								 | 
							
									  buf[n - 1] = cur = K(2.0) * I[0];
							 | 
						||
| 
								 | 
							
									  for (i = n - 1; i > 0; --i) {
							 | 
						||
| 
								 | 
							
									       E curnew;
							 | 
						||
| 
								 | 
							
									       buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
							 | 
						||
| 
								 | 
							
									       cur = curnew;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  W = ego->td->W;
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b, apb, amb, wa, wb;
							 | 
						||
| 
								 | 
							
									       a = buf[i];
							 | 
						||
| 
								 | 
							
									       b = buf[n - i];
							 | 
						||
| 
								 | 
							
									       apb = a + b;
							 | 
						||
| 
								 | 
							
									       amb = a - b;
							 | 
						||
| 
								 | 
							
									       wa = W[2*i];
							 | 
						||
| 
								 | 
							
									       wb = W[2*i + 1];
							 | 
						||
| 
								 | 
							
									       buf[i] = wa * amb + wb * apb; 
							 | 
						||
| 
								 | 
							
									       buf[n - i] = wa * apb - wb * amb; 
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       buf[i] = K(2.0) * buf[i] * W[2*i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->cld;
							 | 
						||
| 
								 | 
							
									       cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  W = ego->td2->W;
							 | 
						||
| 
								 | 
							
									  O[0] = W[0] * buf[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b;
							 | 
						||
| 
								 | 
							
									       INT k;
							 | 
						||
| 
								 | 
							
									       a = buf[i];
							 | 
						||
| 
								 | 
							
									       b = buf[n - i];
							 | 
						||
| 
								 | 
							
									       k = i + i;
							 | 
						||
| 
								 | 
							
									       O[os * (k - 1)] = W[k - 1] * (b - a);
							 | 
						||
| 
								 | 
							
									       O[os * k] = W[k] * (a + b);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       O[os * (n - 1)] = -W[n - 1] * buf[i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void awake(plan *ego_, enum wakefulness wakefulness)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     static const tw_instr reodft010e_tw[] = {
							 | 
						||
| 
								 | 
							
								          { TW_COS, 0, 1 },
							 | 
						||
| 
								 | 
							
								          { TW_SIN, 0, 1 },
							 | 
						||
| 
								 | 
							
								          { TW_NEXT, 1, 0 }
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								     static const tw_instr reodft11e_tw[] = {
							 | 
						||
| 
								 | 
							
								          { TW_COS, 1, 1 },
							 | 
						||
| 
								 | 
							
								          { TW_NEXT, 2, 0 }
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld, wakefulness);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(twiddle_awake)(wakefulness,
							 | 
						||
| 
								 | 
							
										      &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
							 | 
						||
| 
								 | 
							
								     X(twiddle_awake)(wakefulness,
							 | 
						||
| 
								 | 
							
										      &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void destroy(plan *ego_)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void print(const plan *ego_, printer *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     p->print(p, "(%se-r2hc-%D%v%(%p%))",
							 | 
						||
| 
								 | 
							
									      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int applicable0(const solver *ego_, const problem *p_)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const problem_rdft *p = (const problem_rdft *) p_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     UNUSED(ego_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return (1
							 | 
						||
| 
								 | 
							
									     && p->sz->rnk == 1
							 | 
						||
| 
								 | 
							
									     && p->vecsz->rnk <= 1
							 | 
						||
| 
								 | 
							
									     && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
							 | 
						||
| 
								 | 
							
									  );
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int applicable(const solver *ego, const problem *p, const planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     return (!NO_SLOWP(plnr) && applicable0(ego, p));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *pln;
							 | 
						||
| 
								 | 
							
								     const problem_rdft *p;
							 | 
						||
| 
								 | 
							
								     plan *cld;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								     INT n;
							 | 
						||
| 
								 | 
							
								     opcnt ops;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     static const plan_adt padt = {
							 | 
						||
| 
								 | 
							
									  X(rdft_solve), awake, print, destroy
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (!applicable(ego_, p_, plnr))
							 | 
						||
| 
								 | 
							
								          return (plan *)0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     p = (const problem_rdft *) p_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     n = p->sz->dims[0].n;
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
							 | 
						||
| 
								 | 
							
								                                                   X(mktensor_0d)(),
							 | 
						||
| 
								 | 
							
								                                                   buf, buf, R2HC));
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								     if (!cld)
							 | 
						||
| 
								 | 
							
								          return (plan *)0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
							 | 
						||
| 
								 | 
							
								     pln->n = n;
							 | 
						||
| 
								 | 
							
								     pln->is = p->sz->dims[0].is;
							 | 
						||
| 
								 | 
							
								     pln->os = p->sz->dims[0].os;
							 | 
						||
| 
								 | 
							
								     pln->cld = cld;
							 | 
						||
| 
								 | 
							
								     pln->td = pln->td2 = 0;
							 | 
						||
| 
								 | 
							
								     pln->kind = p->kind[0];
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     X(ops_zero)(&ops);
							 | 
						||
| 
								 | 
							
								     ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
							 | 
						||
| 
								 | 
							
								     ops.add = (n - 1) * 1 + (n-1)/2 * 6;
							 | 
						||
| 
								 | 
							
								     ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ops_zero)(&pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return &(pln->super.super);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* constructor */
							 | 
						||
| 
								 | 
							
								static solver *mksolver(void)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
							 | 
						||
| 
								 | 
							
								     S *slv = MKSOLVER(S, &sadt);
							 | 
						||
| 
								 | 
							
								     return &(slv->super);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(reodft11e_r2hc_register)(planner *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     REGISTER_SOLVER(p, mksolver());
							 | 
						||
| 
								 | 
							
								}
							 |