218 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			218 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* This file was automatically generated --- DO NOT EDIT */
							 | 
						||
| 
								 | 
							
								/* Generated on Tue Sep 14 10:46:10 EDT 2021 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "rdft/codelet-rdft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include rdft/scalar/r2cf.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 38 FP additions, 30 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 12 additions, 4 multiplications, 26 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 48 stack variables, 18 constants, and 18 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "rdft/scalar/r2cf.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DK(KP907603734, +0.907603734547952313649323976213898122064543220);
							 | 
						||
| 
								 | 
							
								     DK(KP347296355, +0.347296355333860697703433253538629592000751354);
							 | 
						||
| 
								 | 
							
								     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
							 | 
						||
| 
								 | 
							
								     DK(KP666666666, +0.666666666666666666666666666666666666666666667);
							 | 
						||
| 
								 | 
							
								     DK(KP898197570, +0.898197570222573798468955502359086394667167570);
							 | 
						||
| 
								 | 
							
								     DK(KP673648177, +0.673648177666930348851716626769314796000375677);
							 | 
						||
| 
								 | 
							
								     DK(KP879385241, +0.879385241571816768108218554649462939872416269);
							 | 
						||
| 
								 | 
							
								     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
							 | 
						||
| 
								 | 
							
								     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
							 | 
						||
| 
								 | 
							
								     DK(KP394930843, +0.394930843634698457567117349190734585290304520);
							 | 
						||
| 
								 | 
							
								     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
							 | 
						||
| 
								 | 
							
								     DK(KP586256827, +0.586256827714544512072145703099641959914944179);
							 | 
						||
| 
								 | 
							
								     DK(KP726681596, +0.726681596905677465811651808188092531873167623);
							 | 
						||
| 
								 | 
							
								     DK(KP968908795, +0.968908795874236621082202410917456709164223497);
							 | 
						||
| 
								 | 
							
								     DK(KP203604859, +0.203604859554852403062088995281827210665664861);
							 | 
						||
| 
								 | 
							
								     DK(KP152703644, +0.152703644666139302296566746461370407999248646);
							 | 
						||
| 
								 | 
							
								     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
							 | 
						||
| 
								 | 
							
								     DK(KP184792530, +0.184792530904095372701352047572203755870913560);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT i;
							 | 
						||
| 
								 | 
							
									  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
							 | 
						||
| 
								 | 
							
									       E T1, T4, To, Tk, Ta, Tu, Tf, Th, Tj, Tx, Tl, Tm, Ty, Tq, T2;
							 | 
						||
| 
								 | 
							
									       E T3, T5, Tg;
							 | 
						||
| 
								 | 
							
									       T1 = R0[0];
							 | 
						||
| 
								 | 
							
									       T2 = R1[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
									       T3 = R0[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
									       T4 = T2 + T3;
							 | 
						||
| 
								 | 
							
									       To = T3 - T2;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E T6, Tb, T9, Te, Ti;
							 | 
						||
| 
								 | 
							
										    T6 = R1[0];
							 | 
						||
| 
								 | 
							
										    Tb = R0[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
										    {
							 | 
						||
| 
								 | 
							
											 E T7, T8, Tc, Td;
							 | 
						||
| 
								 | 
							
											 T7 = R0[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
											 T8 = R1[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
											 T9 = T7 + T8;
							 | 
						||
| 
								 | 
							
											 Tk = T7 - T8;
							 | 
						||
| 
								 | 
							
											 Tc = R1[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
											 Td = R0[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
											 Te = Tc + Td;
							 | 
						||
| 
								 | 
							
											 Ti = Td - Tc;
							 | 
						||
| 
								 | 
							
										    }
							 | 
						||
| 
								 | 
							
										    Ta = T6 + T9;
							 | 
						||
| 
								 | 
							
										    Tu = FMA(KP184792530, Tk, Ti);
							 | 
						||
| 
								 | 
							
										    Tf = Tb + Te;
							 | 
						||
| 
								 | 
							
										    Th = FNMS(KP500000000, Te, Tb);
							 | 
						||
| 
								 | 
							
										    Tj = FNMS(KP152703644, Ti, Th);
							 | 
						||
| 
								 | 
							
										    Tx = FMA(KP203604859, Th, Ti);
							 | 
						||
| 
								 | 
							
										    Tl = FMS(KP500000000, T9, T6);
							 | 
						||
| 
								 | 
							
										    Tm = FNMS(KP968908795, Tl, Tk);
							 | 
						||
| 
								 | 
							
										    Ty = FMA(KP726681596, Tk, Tl);
							 | 
						||
| 
								 | 
							
										    Tq = FMA(KP586256827, Tl, Ti);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
							 | 
						||
| 
								 | 
							
									       T5 = T1 + T4;
							 | 
						||
| 
								 | 
							
									       Tg = Ta + Tf;
							 | 
						||
| 
								 | 
							
									       Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
							 | 
						||
| 
								 | 
							
									       Cr[0] = T5 + Tg;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tv, Tt, Tn, TC, TB;
							 | 
						||
| 
								 | 
							
										    Tt = FMA(KP394930843, Th, To);
							 | 
						||
| 
								 | 
							
										    Tv = FNMS(KP939692620, Tu, Tt);
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 2)] = KP984807753 * (FNMS(KP879385241, Tv, Tl));
							 | 
						||
| 
								 | 
							
										    Tn = FMA(KP673648177, Tm, Tj);
							 | 
						||
| 
								 | 
							
										    TB = FMA(KP898197570, Ty, Tx);
							 | 
						||
| 
								 | 
							
										    TC = FMA(KP666666666, Tn, TB);
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 1)] = -(KP984807753 * (FNMS(KP879385241, To, Tn)));
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 4)] = KP866025403 * (FMA(KP852868531, TC, To));
							 | 
						||
| 
								 | 
							
										    {
							 | 
						||
| 
								 | 
							
											 E Tp, Ts, Tz, TA, Tr, Tw;
							 | 
						||
| 
								 | 
							
											 Tp = FNMS(KP500000000, T4, T1);
							 | 
						||
| 
								 | 
							
											 Tr = FNMS(KP347296355, Tq, Tk);
							 | 
						||
| 
								 | 
							
											 Ts = FNMS(KP907603734, Tr, Th);
							 | 
						||
| 
								 | 
							
											 Tw = FNMS(KP673648177, Tm, Tj);
							 | 
						||
| 
								 | 
							
											 Tz = FNMS(KP898197570, Ty, Tx);
							 | 
						||
| 
								 | 
							
											 TA = FNMS(KP500000000, Tz, Tw);
							 | 
						||
| 
								 | 
							
											 Cr[WS(csr, 2)] = FNMS(KP939692620, Ts, Tp);
							 | 
						||
| 
								 | 
							
											 Cr[WS(csr, 1)] = FMA(KP852868531, Tz, Tp);
							 | 
						||
| 
								 | 
							
											 Cr[WS(csr, 4)] = FMA(KP852868531, TA, Tp);
							 | 
						||
| 
								 | 
							
										    }
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const kr2c_desc desc = { 9, "r2cf_9", { 12, 4, 26, 0 }, &GENUS };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include rdft/scalar/r2cf.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 38 FP additions, 26 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 21 additions, 9 multiplications, 17 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 36 stack variables, 14 constants, and 18 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "rdft/scalar/r2cf.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
							 | 
						||
| 
								 | 
							
								     DK(KP296198132, +0.296198132726023843175338011893050938967728390);
							 | 
						||
| 
								 | 
							
								     DK(KP342020143, +0.342020143325668733044099614682259580763083368);
							 | 
						||
| 
								 | 
							
								     DK(KP813797681, +0.813797681349373692844693217248393223289101568);
							 | 
						||
| 
								 | 
							
								     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
							 | 
						||
| 
								 | 
							
								     DK(KP150383733, +0.150383733180435296639271897612501926072238258);
							 | 
						||
| 
								 | 
							
								     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
							 | 
						||
| 
								 | 
							
								     DK(KP663413948, +0.663413948168938396205421319635891297216863310);
							 | 
						||
| 
								 | 
							
								     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
							 | 
						||
| 
								 | 
							
								     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
							 | 
						||
| 
								 | 
							
								     DK(KP556670399, +0.556670399226419366452912952047023132968291906);
							 | 
						||
| 
								 | 
							
								     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
							 | 
						||
| 
								 | 
							
								     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
							 | 
						||
| 
								 | 
							
								     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT i;
							 | 
						||
| 
								 | 
							
									  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
							 | 
						||
| 
								 | 
							
									       E T1, T4, Tr, Ta, Tl, Ti, Tf, Tk, Tj, T2, T3, T5, Tg;
							 | 
						||
| 
								 | 
							
									       T1 = R0[0];
							 | 
						||
| 
								 | 
							
									       T2 = R1[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
									       T3 = R0[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
									       T4 = T2 + T3;
							 | 
						||
| 
								 | 
							
									       Tr = T3 - T2;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E T6, T7, T8, T9;
							 | 
						||
| 
								 | 
							
										    T6 = R1[0];
							 | 
						||
| 
								 | 
							
										    T7 = R0[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
										    T8 = R1[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
										    T9 = T7 + T8;
							 | 
						||
| 
								 | 
							
										    Ta = T6 + T9;
							 | 
						||
| 
								 | 
							
										    Tl = T8 - T7;
							 | 
						||
| 
								 | 
							
										    Ti = FNMS(KP500000000, T9, T6);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tb, Tc, Td, Te;
							 | 
						||
| 
								 | 
							
										    Tb = R0[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
										    Tc = R1[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
										    Td = R0[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
										    Te = Tc + Td;
							 | 
						||
| 
								 | 
							
										    Tf = Tb + Te;
							 | 
						||
| 
								 | 
							
										    Tk = FNMS(KP500000000, Te, Tb);
							 | 
						||
| 
								 | 
							
										    Tj = Td - Tc;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
							 | 
						||
| 
								 | 
							
									       T5 = T1 + T4;
							 | 
						||
| 
								 | 
							
									       Tg = Ta + Tf;
							 | 
						||
| 
								 | 
							
									       Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
							 | 
						||
| 
								 | 
							
									       Cr[0] = T5 + Tg;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tt, Th, Tm, Tn, To, Tp, Tq, Ts;
							 | 
						||
| 
								 | 
							
										    Tt = KP866025403 * Tr;
							 | 
						||
| 
								 | 
							
										    Th = FNMS(KP500000000, T4, T1);
							 | 
						||
| 
								 | 
							
										    Tm = FMA(KP766044443, Ti, KP556670399 * Tl);
							 | 
						||
| 
								 | 
							
										    Tn = FMA(KP173648177, Tk, KP852868531 * Tj);
							 | 
						||
| 
								 | 
							
										    To = Tm + Tn;
							 | 
						||
| 
								 | 
							
										    Tp = FNMS(KP642787609, Ti, KP663413948 * Tl);
							 | 
						||
| 
								 | 
							
										    Tq = FNMS(KP984807753, Tk, KP150383733 * Tj);
							 | 
						||
| 
								 | 
							
										    Ts = Tp + Tq;
							 | 
						||
| 
								 | 
							
										    Cr[WS(csr, 1)] = Th + To;
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 1)] = Tt + Ts;
							 | 
						||
| 
								 | 
							
										    Cr[WS(csr, 4)] = FMA(KP866025403, Tp - Tq, Th) - (KP500000000 * To);
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 4)] = FNMS(KP500000000, Ts, KP866025403 * (Tr + (Tn - Tm)));
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 2)] = FNMS(KP342020143, Tk, KP813797681 * Tj) + FNMA(KP150383733, Tl, KP984807753 * Ti) - Tt;
							 | 
						||
| 
								 | 
							
										    Cr[WS(csr, 2)] = FMA(KP173648177, Ti, Th) + FNMA(KP296198132, Tj, KP939692620 * Tk) - (KP852868531 * Tl);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const kr2c_desc desc = { 9, "r2cf_9", { 21, 9, 17, 0 }, &GENUS };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif
							 |