938 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			938 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:38 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 228 FP additions, 166 FP multiplications, | ||
|  |  * (or, 136 additions, 74 multiplications, 92 fused multiply/add), | ||
|  |  * 91 stack variables, 4 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cf.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       E T1, T2, Tw, Ty, Th, Tj, T4, T5, TY, T6, Tk, T1o, T1d, Tz, T1j; | ||
|  | 	       E Tq, TF, T18, TR, TL, T13, T1A, T1K, T1E, T1H, Tc, T25, T2k, T29, T2h; | ||
|  | 	       { | ||
|  | 		    E Tx, TE, Ti, TK, Tp, TQ, Tb, T3; | ||
|  | 		    T1 = W[0]; | ||
|  | 		    T2 = W[2]; | ||
|  | 		    T3 = T1 * T2; | ||
|  | 		    Tw = W[6]; | ||
|  | 		    Tx = T1 * Tw; | ||
|  | 		    Ty = W[7]; | ||
|  | 		    TE = T1 * Ty; | ||
|  | 		    Th = W[4]; | ||
|  | 		    Ti = T1 * Th; | ||
|  | 		    TK = T2 * Th; | ||
|  | 		    Tj = W[5]; | ||
|  | 		    Tp = T1 * Tj; | ||
|  | 		    TQ = T2 * Tj; | ||
|  | 		    T4 = W[1]; | ||
|  | 		    T5 = W[3]; | ||
|  | 		    Tb = T1 * T5; | ||
|  | 		    TY = FNMS(T4, T5, T3); | ||
|  | 		    T6 = FMA(T4, T5, T3); | ||
|  | 		    Tk = FNMS(T4, Tj, Ti); | ||
|  | 		    T1o = FNMS(T4, Th, Tp); | ||
|  | 		    T1d = FMA(T5, Th, TQ); | ||
|  | 		    Tz = FMA(T4, Ty, Tx); | ||
|  | 		    T1j = FMA(T4, Tj, Ti); | ||
|  | 		    Tq = FMA(T4, Th, Tp); | ||
|  | 		    TF = FNMS(T4, Tw, TE); | ||
|  | 		    T18 = FNMS(T5, Tj, TK); | ||
|  | 		    TR = FNMS(T5, Th, TQ); | ||
|  | 		    TL = FMA(T5, Tj, TK); | ||
|  | 		    { | ||
|  | 			 E T1z, T1D, T24, T28; | ||
|  | 			 T1z = TY * Th; | ||
|  | 			 T1D = TY * Tj; | ||
|  | 			 T13 = FMA(T4, T2, Tb); | ||
|  | 			 T1A = FMA(T13, Tj, T1z); | ||
|  | 			 T1K = FMA(T13, Th, T1D); | ||
|  | 			 T1E = FNMS(T13, Th, T1D); | ||
|  | 			 T1H = FNMS(T13, Tj, T1z); | ||
|  | 			 T24 = T6 * Th; | ||
|  | 			 T28 = T6 * Tj; | ||
|  | 			 Tc = FNMS(T4, T2, Tb); | ||
|  | 			 T25 = FNMS(Tc, Tj, T24); | ||
|  | 			 T2k = FNMS(Tc, Th, T28); | ||
|  | 			 T29 = FMA(Tc, Th, T28); | ||
|  | 			 T2h = FMA(Tc, Tj, T24); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1v, T2q, T1s, T2s, T38, T3T, T1Y, T3P, T17, T1h, T2x, T2v, T33, T3Q, T1N; | ||
|  | 		    E T3S, Tg, Tu, T3A, T2B, T2D, T3B, T2c, T3L, T2S, T3I, TJ, TV, T3E, T2G; | ||
|  | 		    E T2I, T3D, T2n, T3J, T2X, T3M; | ||
|  | 		    { | ||
|  | 			 E T1t, T1u, T1W, T1m, T1Q, T1S, T1T, T1V, T36, T1r, T34, T1P, T1k, T1l, T1n; | ||
|  | 			 E T2r; | ||
|  | 			 T1t = Ip[0]; | ||
|  | 			 T1u = Im[0]; | ||
|  | 			 T1W = T1t + T1u; | ||
|  | 			 T1k = Ip[WS(rs, 4)]; | ||
|  | 			 T1l = Im[WS(rs, 4)]; | ||
|  | 			 T1m = T1k - T1l; | ||
|  | 			 T1Q = T1k + T1l; | ||
|  | 			 { | ||
|  | 			      E T1U, T1p, T1q, T1O; | ||
|  | 			      T1S = Rm[0]; | ||
|  | 			      T1T = Rp[0]; | ||
|  | 			      T1U = T1S - T1T; | ||
|  | 			      T1V = T1 * T1U; | ||
|  | 			      T36 = T4 * T1U; | ||
|  | 			      T1p = Rp[WS(rs, 4)]; | ||
|  | 			      T1q = Rm[WS(rs, 4)]; | ||
|  | 			      T1O = T1q - T1p; | ||
|  | 			      T1r = T1p + T1q; | ||
|  | 			      T34 = Tj * T1O; | ||
|  | 			      T1P = Th * T1O; | ||
|  | 			 } | ||
|  | 			 T1v = T1t - T1u; | ||
|  | 			 T2q = T1T + T1S; | ||
|  | 			 T1n = T1j * T1m; | ||
|  | 			 T1s = FNMS(T1o, T1r, T1n); | ||
|  | 			 T2r = T1j * T1r; | ||
|  | 			 T2s = FMA(T1o, T1m, T2r); | ||
|  | 			 { | ||
|  | 			      E T35, T37, T1R, T1X; | ||
|  | 			      T35 = FMA(Th, T1Q, T34); | ||
|  | 			      T37 = FMA(T1, T1W, T36); | ||
|  | 			      T38 = T35 + T37; | ||
|  | 			      T3T = T37 - T35; | ||
|  | 			      T1R = FNMS(Tj, T1Q, T1P); | ||
|  | 			      T1X = FNMS(T4, T1W, T1V); | ||
|  | 			      T1Y = T1R + T1X; | ||
|  | 			      T3P = T1X - T1R; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T11, T1F, T16, T2Z, T1C, T1b, T1L, T1g, T31, T1J; | ||
|  | 			 { | ||
|  | 			      E TZ, T10, T14, T15, T1B; | ||
|  | 			      TZ = Ip[WS(rs, 2)]; | ||
|  | 			      T10 = Im[WS(rs, 2)]; | ||
|  | 			      T11 = TZ - T10; | ||
|  | 			      T1F = TZ + T10; | ||
|  | 			      T14 = Rp[WS(rs, 2)]; | ||
|  | 			      T15 = Rm[WS(rs, 2)]; | ||
|  | 			      T1B = T15 - T14; | ||
|  | 			      T16 = T14 + T15; | ||
|  | 			      T2Z = T1E * T1B; | ||
|  | 			      T1C = T1A * T1B; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T19, T1a, T1e, T1f, T1I; | ||
|  | 			      T19 = Ip[WS(rs, 6)]; | ||
|  | 			      T1a = Im[WS(rs, 6)]; | ||
|  | 			      T1b = T19 - T1a; | ||
|  | 			      T1L = T19 + T1a; | ||
|  | 			      T1e = Rp[WS(rs, 6)]; | ||
|  | 			      T1f = Rm[WS(rs, 6)]; | ||
|  | 			      T1I = T1f - T1e; | ||
|  | 			      T1g = T1e + T1f; | ||
|  | 			      T31 = T1K * T1I; | ||
|  | 			      T1J = T1H * T1I; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T12, T1c, T2w, T2u; | ||
|  | 			      T12 = TY * T11; | ||
|  | 			      T17 = FNMS(T13, T16, T12); | ||
|  | 			      T1c = T18 * T1b; | ||
|  | 			      T1h = FNMS(T1d, T1g, T1c); | ||
|  | 			      T2w = T18 * T1g; | ||
|  | 			      T2x = FMA(T1d, T1b, T2w); | ||
|  | 			      T2u = TY * T16; | ||
|  | 			      T2v = FMA(T13, T11, T2u); | ||
|  | 			      { | ||
|  | 				   E T30, T32, T1G, T1M; | ||
|  | 				   T30 = FMA(T1A, T1F, T2Z); | ||
|  | 				   T32 = FMA(T1H, T1L, T31); | ||
|  | 				   T33 = T30 + T32; | ||
|  | 				   T3Q = T30 - T32; | ||
|  | 				   T1G = FNMS(T1E, T1F, T1C); | ||
|  | 				   T1M = FNMS(T1K, T1L, T1J); | ||
|  | 				   T1N = T1G + T1M; | ||
|  | 				   T3S = T1G - T1M; | ||
|  | 			      } | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9, T22, Ta, T2O, Tf, T20, T21, T2A, Tn, T2a, To, T2Q, Tt, T26, T27; | ||
|  | 			 E T2C; | ||
|  | 			 { | ||
|  | 			      E T7, T8, Td, Te; | ||
|  | 			      T7 = Ip[WS(rs, 1)]; | ||
|  | 			      T8 = Im[WS(rs, 1)]; | ||
|  | 			      T9 = T7 - T8; | ||
|  | 			      T22 = T7 + T8; | ||
|  | 			      Ta = T6 * T9; | ||
|  | 			      T2O = T2 * T22; | ||
|  | 			      Td = Rp[WS(rs, 1)]; | ||
|  | 			      Te = Rm[WS(rs, 1)]; | ||
|  | 			      Tf = Td + Te; | ||
|  | 			      T20 = Td - Te; | ||
|  | 			      T21 = T2 * T20; | ||
|  | 			      T2A = T6 * Tf; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tl, Tm, Tr, Ts; | ||
|  | 			      Tl = Ip[WS(rs, 5)]; | ||
|  | 			      Tm = Im[WS(rs, 5)]; | ||
|  | 			      Tn = Tl - Tm; | ||
|  | 			      T2a = Tl + Tm; | ||
|  | 			      To = Tk * Tn; | ||
|  | 			      T2Q = T25 * T2a; | ||
|  | 			      Tr = Rp[WS(rs, 5)]; | ||
|  | 			      Ts = Rm[WS(rs, 5)]; | ||
|  | 			      Tt = Tr + Ts; | ||
|  | 			      T26 = Tr - Ts; | ||
|  | 			      T27 = T25 * T26; | ||
|  | 			      T2C = Tk * Tt; | ||
|  | 			 } | ||
|  | 			 Tg = FNMS(Tc, Tf, Ta); | ||
|  | 			 Tu = FNMS(Tq, Tt, To); | ||
|  | 			 T3A = Tg - Tu; | ||
|  | 			 T2B = FMA(Tc, T9, T2A); | ||
|  | 			 T2D = FMA(Tq, Tn, T2C); | ||
|  | 			 T3B = T2B - T2D; | ||
|  | 			 { | ||
|  | 			      E T23, T2b, T2P, T2R; | ||
|  | 			      T23 = FMA(T5, T22, T21); | ||
|  | 			      T2b = FMA(T29, T2a, T27); | ||
|  | 			      T2c = T23 + T2b; | ||
|  | 			      T3L = T2b - T23; | ||
|  | 			      T2P = FNMS(T5, T20, T2O); | ||
|  | 			      T2R = FNMS(T29, T26, T2Q); | ||
|  | 			      T2S = T2P + T2R; | ||
|  | 			      T3I = T2R - T2P; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TC, T2f, TD, T2T, TI, T2d, T2e, T2F, TO, T2l, TP, T2V, TU, T2i, T2j; | ||
|  | 			 E T2H; | ||
|  | 			 { | ||
|  | 			      E TA, TB, TG, TH; | ||
|  | 			      TA = Ip[WS(rs, 7)]; | ||
|  | 			      TB = Im[WS(rs, 7)]; | ||
|  | 			      TC = TA - TB; | ||
|  | 			      T2f = TA + TB; | ||
|  | 			      TD = Tz * TC; | ||
|  | 			      T2T = Tw * T2f; | ||
|  | 			      TG = Rp[WS(rs, 7)]; | ||
|  | 			      TH = Rm[WS(rs, 7)]; | ||
|  | 			      TI = TG + TH; | ||
|  | 			      T2d = TG - TH; | ||
|  | 			      T2e = Tw * T2d; | ||
|  | 			      T2F = Tz * TI; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TM, TN, TS, TT; | ||
|  | 			      TM = Ip[WS(rs, 3)]; | ||
|  | 			      TN = Im[WS(rs, 3)]; | ||
|  | 			      TO = TM - TN; | ||
|  | 			      T2l = TM + TN; | ||
|  | 			      TP = TL * TO; | ||
|  | 			      T2V = T2h * T2l; | ||
|  | 			      TS = Rp[WS(rs, 3)]; | ||
|  | 			      TT = Rm[WS(rs, 3)]; | ||
|  | 			      TU = TS + TT; | ||
|  | 			      T2i = TS - TT; | ||
|  | 			      T2j = T2h * T2i; | ||
|  | 			      T2H = TL * TU; | ||
|  | 			 } | ||
|  | 			 TJ = FNMS(TF, TI, TD); | ||
|  | 			 TV = FNMS(TR, TU, TP); | ||
|  | 			 T3E = TJ - TV; | ||
|  | 			 T2G = FMA(TF, TC, T2F); | ||
|  | 			 T2I = FMA(TR, TO, T2H); | ||
|  | 			 T3D = T2G - T2I; | ||
|  | 			 { | ||
|  | 			      E T2g, T2m, T2U, T2W; | ||
|  | 			      T2g = FMA(Ty, T2f, T2e); | ||
|  | 			      T2m = FMA(T2k, T2l, T2j); | ||
|  | 			      T2n = T2g + T2m; | ||
|  | 			      T3J = T2m - T2g; | ||
|  | 			      T2U = FNMS(Ty, T2d, T2T); | ||
|  | 			      T2W = FNMS(T2k, T2i, T2V); | ||
|  | 			      T2X = T2U + T2W; | ||
|  | 			      T3M = T2U - T2W; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TX, T3o, T3i, T3s, T3l, T3t, T1x, T3e, T2p, T2M, T2K, T3d, T3a, T3c, T2z; | ||
|  | 			 E T3n; | ||
|  | 			 { | ||
|  | 			      E Tv, TW, T3g, T3h; | ||
|  | 			      Tv = Tg + Tu; | ||
|  | 			      TW = TJ + TV; | ||
|  | 			      TX = Tv + TW; | ||
|  | 			      T3o = Tv - TW; | ||
|  | 			      T3g = T2X - T2S; | ||
|  | 			      T3h = T2c - T2n; | ||
|  | 			      T3i = T3g + T3h; | ||
|  | 			      T3s = T3g - T3h; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3j, T3k, T1i, T1w; | ||
|  | 			      T3j = T1Y - T1N; | ||
|  | 			      T3k = T38 - T33; | ||
|  | 			      T3l = T3j - T3k; | ||
|  | 			      T3t = T3j + T3k; | ||
|  | 			      T1i = T17 + T1h; | ||
|  | 			      T1w = T1s + T1v; | ||
|  | 			      T1x = T1i + T1w; | ||
|  | 			      T3e = T1w - T1i; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1Z, T2o, T2E, T2J; | ||
|  | 			      T1Z = T1N + T1Y; | ||
|  | 			      T2o = T2c + T2n; | ||
|  | 			      T2p = T1Z - T2o; | ||
|  | 			      T2M = T2o + T1Z; | ||
|  | 			      T2E = T2B + T2D; | ||
|  | 			      T2J = T2G + T2I; | ||
|  | 			      T2K = T2E + T2J; | ||
|  | 			      T3d = T2J - T2E; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2Y, T39, T2t, T2y; | ||
|  | 			      T2Y = T2S + T2X; | ||
|  | 			      T39 = T33 + T38; | ||
|  | 			      T3a = T2Y - T39; | ||
|  | 			      T3c = T2Y + T39; | ||
|  | 			      T2t = T2q + T2s; | ||
|  | 			      T2y = T2v + T2x; | ||
|  | 			      T2z = T2t + T2y; | ||
|  | 			      T3n = T2t - T2y; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1y, T3b, T2L, T2N; | ||
|  | 			      T1y = TX + T1x; | ||
|  | 			      Ip[0] = KP500000000 * (T1y + T2p); | ||
|  | 			      Im[WS(rs, 7)] = KP500000000 * (T2p - T1y); | ||
|  | 			      T3b = T2z + T2K; | ||
|  | 			      Rm[WS(rs, 7)] = KP500000000 * (T3b - T3c); | ||
|  | 			      Rp[0] = KP500000000 * (T3b + T3c); | ||
|  | 			      T2L = T2z - T2K; | ||
|  | 			      Rm[WS(rs, 3)] = KP500000000 * (T2L - T2M); | ||
|  | 			      Rp[WS(rs, 4)] = KP500000000 * (T2L + T2M); | ||
|  | 			      T2N = T1x - TX; | ||
|  | 			      Ip[WS(rs, 4)] = KP500000000 * (T2N + T3a); | ||
|  | 			      Im[WS(rs, 3)] = KP500000000 * (T3a - T2N); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3f, T3m, T3v, T3w; | ||
|  | 			      T3f = T3d + T3e; | ||
|  | 			      T3m = T3i + T3l; | ||
|  | 			      Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3m, T3f)); | ||
|  | 			      Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3m, T3f))); | ||
|  | 			      T3v = T3n + T3o; | ||
|  | 			      T3w = T3s + T3t; | ||
|  | 			      Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3w, T3v)); | ||
|  | 			      Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3w, T3v)); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3p, T3q, T3r, T3u; | ||
|  | 			      T3p = T3n - T3o; | ||
|  | 			      T3q = T3l - T3i; | ||
|  | 			      Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3q, T3p)); | ||
|  | 			      Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3q, T3p)); | ||
|  | 			      T3r = T3e - T3d; | ||
|  | 			      T3u = T3s - T3t; | ||
|  | 			      Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3u, T3r)); | ||
|  | 			      Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3u, T3r))); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3z, T4b, T4g, T4q, T4j, T4r, T3G, T4m, T3O, T46, T3Z, T4l, T42, T4c, T3V; | ||
|  | 			 E T47; | ||
|  | 			 { | ||
|  | 			      E T3x, T3y, T4e, T4f; | ||
|  | 			      T3x = T1v - T1s; | ||
|  | 			      T3y = T2v - T2x; | ||
|  | 			      T3z = T3x - T3y; | ||
|  | 			      T4b = T3y + T3x; | ||
|  | 			      T4e = T3I - T3J; | ||
|  | 			      T4f = T3M - T3L; | ||
|  | 			      T4g = FMA(KP414213562, T4f, T4e); | ||
|  | 			      T4q = FNMS(KP414213562, T4e, T4f); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4h, T4i, T3C, T3F; | ||
|  | 			      T4h = T3Q + T3P; | ||
|  | 			      T4i = T3T - T3S; | ||
|  | 			      T4j = FMA(KP414213562, T4i, T4h); | ||
|  | 			      T4r = FNMS(KP414213562, T4h, T4i); | ||
|  | 			      T3C = T3A - T3B; | ||
|  | 			      T3F = T3D + T3E; | ||
|  | 			      T3G = T3C + T3F; | ||
|  | 			      T4m = T3C - T3F; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3K, T3N, T3X, T3Y; | ||
|  | 			      T3K = T3I + T3J; | ||
|  | 			      T3N = T3L + T3M; | ||
|  | 			      T3O = FMA(KP414213562, T3N, T3K); | ||
|  | 			      T46 = FNMS(KP414213562, T3K, T3N); | ||
|  | 			      T3X = T2q - T2s; | ||
|  | 			      T3Y = T17 - T1h; | ||
|  | 			      T3Z = T3X + T3Y; | ||
|  | 			      T4l = T3X - T3Y; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T40, T41, T3R, T3U; | ||
|  | 			      T40 = T3B + T3A; | ||
|  | 			      T41 = T3D - T3E; | ||
|  | 			      T42 = T40 + T41; | ||
|  | 			      T4c = T41 - T40; | ||
|  | 			      T3R = T3P - T3Q; | ||
|  | 			      T3U = T3S + T3T; | ||
|  | 			      T3V = FNMS(KP414213562, T3U, T3R); | ||
|  | 			      T47 = FMA(KP414213562, T3R, T3U); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3H, T3W, T49, T4a; | ||
|  | 			      T3H = FMA(KP707106781, T3G, T3z); | ||
|  | 			      T3W = T3O + T3V; | ||
|  | 			      Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3W, T3H)); | ||
|  | 			      Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3H))); | ||
|  | 			      T49 = FMA(KP707106781, T42, T3Z); | ||
|  | 			      T4a = T46 + T47; | ||
|  | 			      Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T4a, T49)); | ||
|  | 			      Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T4a, T49)); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T43, T44, T45, T48; | ||
|  | 			      T43 = FNMS(KP707106781, T42, T3Z); | ||
|  | 			      T44 = T3V - T3O; | ||
|  | 			      Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T44, T43)); | ||
|  | 			      Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T44, T43)); | ||
|  | 			      T45 = FNMS(KP707106781, T3G, T3z); | ||
|  | 			      T48 = T46 - T47; | ||
|  | 			      Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T48, T45)); | ||
|  | 			      Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T48, T45))); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4d, T4k, T4t, T4u; | ||
|  | 			      T4d = FNMS(KP707106781, T4c, T4b); | ||
|  | 			      T4k = T4g - T4j; | ||
|  | 			      Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T4k, T4d)); | ||
|  | 			      Im[0] = -(KP500000000 * (FNMS(KP923879532, T4k, T4d))); | ||
|  | 			      T4t = FNMS(KP707106781, T4m, T4l); | ||
|  | 			      T4u = T4q + T4r; | ||
|  | 			      Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4u, T4t)); | ||
|  | 			      Rm[0] = KP500000000 * (FMA(KP923879532, T4u, T4t)); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4n, T4o, T4p, T4s; | ||
|  | 			      T4n = FMA(KP707106781, T4m, T4l); | ||
|  | 			      T4o = T4g + T4j; | ||
|  | 			      Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4o, T4n)); | ||
|  | 			      Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4o, T4n)); | ||
|  | 			      T4p = FMA(KP707106781, T4c, T4b); | ||
|  | 			      T4s = T4q - T4r; | ||
|  | 			      Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4s, T4p)); | ||
|  | 			      Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4s, T4p))); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_CEXP, 1, 1 }, | ||
|  |      { TW_CEXP, 1, 3 }, | ||
|  |      { TW_CEXP, 1, 9 }, | ||
|  |      { TW_CEXP, 1, 15 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, { 136, 74, 92, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cfdft2_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 228 FP additions, 124 FP multiplications, | ||
|  |  * (or, 188 additions, 84 multiplications, 40 fused multiply/add), | ||
|  |  * 91 stack variables, 4 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cf.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP461939766, +0.461939766255643378064091594698394143411208313); | ||
|  |      DK(KP191341716, +0.191341716182544885864229992015199433380672281); | ||
|  |      DK(KP353553390, +0.353553390593273762200422181052424519642417969); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       E T1, T4, T2, T5, T7, Td, T12, TY, Tk, Ti, Tm, T1l, T1b, TL, T1h; | ||
|  | 	       E Ts, TR, T17, Ty, Tz, TA, TE, T1L, T1Q, T1H, T1O, T24, T2d, T20, T2b; | ||
|  | 	       { | ||
|  | 		    E Tl, TP, Tq, TK, Tj, TQ, Tr, TJ; | ||
|  | 		    { | ||
|  | 			 E T3, Tc, T6, Tb; | ||
|  | 			 T1 = W[0]; | ||
|  | 			 T4 = W[1]; | ||
|  | 			 T2 = W[2]; | ||
|  | 			 T5 = W[3]; | ||
|  | 			 T3 = T1 * T2; | ||
|  | 			 Tc = T4 * T2; | ||
|  | 			 T6 = T4 * T5; | ||
|  | 			 Tb = T1 * T5; | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 Td = Tb - Tc; | ||
|  | 			 T12 = Tb + Tc; | ||
|  | 			 TY = T3 - T6; | ||
|  | 			 Tk = W[5]; | ||
|  | 			 Tl = T4 * Tk; | ||
|  | 			 TP = T2 * Tk; | ||
|  | 			 Tq = T1 * Tk; | ||
|  | 			 TK = T5 * Tk; | ||
|  | 			 Ti = W[4]; | ||
|  | 			 Tj = T1 * Ti; | ||
|  | 			 TQ = T5 * Ti; | ||
|  | 			 Tr = T4 * Ti; | ||
|  | 			 TJ = T2 * Ti; | ||
|  | 		    } | ||
|  | 		    Tm = Tj - Tl; | ||
|  | 		    T1l = Tq - Tr; | ||
|  | 		    T1b = TP + TQ; | ||
|  | 		    TL = TJ + TK; | ||
|  | 		    T1h = Tj + Tl; | ||
|  | 		    Ts = Tq + Tr; | ||
|  | 		    TR = TP - TQ; | ||
|  | 		    T17 = TJ - TK; | ||
|  | 		    Ty = W[6]; | ||
|  | 		    Tz = W[7]; | ||
|  | 		    TA = FMA(T1, Ty, T4 * Tz); | ||
|  | 		    TE = FNMS(T4, Ty, T1 * Tz); | ||
|  | 		    { | ||
|  | 			 E T1J, T1K, T1F, T1G; | ||
|  | 			 T1J = TY * Tk; | ||
|  | 			 T1K = T12 * Ti; | ||
|  | 			 T1L = T1J - T1K; | ||
|  | 			 T1Q = T1J + T1K; | ||
|  | 			 T1F = TY * Ti; | ||
|  | 			 T1G = T12 * Tk; | ||
|  | 			 T1H = T1F + T1G; | ||
|  | 			 T1O = T1F - T1G; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T22, T23, T1Y, T1Z; | ||
|  | 			 T22 = T7 * Tk; | ||
|  | 			 T23 = Td * Ti; | ||
|  | 			 T24 = T22 + T23; | ||
|  | 			 T2d = T22 - T23; | ||
|  | 			 T1Y = T7 * Ti; | ||
|  | 			 T1Z = Td * Tk; | ||
|  | 			 T20 = T1Y - T1Z; | ||
|  | 			 T2b = T1Y + T1Z; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1t, T3i, T2l, T3B, T1E, T3t, T2M, T3x, T1g, T3C, T2J, T3u, T1T, T3w, T2o; | ||
|  | 		    E T3j, Tx, T3b, T2C, T3q, T27, T3m, T2s, T3c, TW, T3f, T2F, T3n, T2g, T3p; | ||
|  | 		    E T2v, T3e; | ||
|  | 		    { | ||
|  | 			 E T1k, T1C, T1o, T1B, T1s, T1z, T1y, T2j, T1p, T2k; | ||
|  | 			 { | ||
|  | 			      E T1i, T1j, T1m, T1n; | ||
|  | 			      T1i = Ip[WS(rs, 4)]; | ||
|  | 			      T1j = Im[WS(rs, 4)]; | ||
|  | 			      T1k = T1i - T1j; | ||
|  | 			      T1C = T1i + T1j; | ||
|  | 			      T1m = Rp[WS(rs, 4)]; | ||
|  | 			      T1n = Rm[WS(rs, 4)]; | ||
|  | 			      T1o = T1m + T1n; | ||
|  | 			      T1B = T1m - T1n; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1q, T1r, T1w, T1x; | ||
|  | 			      T1q = Ip[0]; | ||
|  | 			      T1r = Im[0]; | ||
|  | 			      T1s = T1q - T1r; | ||
|  | 			      T1z = T1q + T1r; | ||
|  | 			      T1w = Rm[0]; | ||
|  | 			      T1x = Rp[0]; | ||
|  | 			      T1y = T1w - T1x; | ||
|  | 			      T2j = T1x + T1w; | ||
|  | 			 } | ||
|  | 			 T1p = FNMS(T1l, T1o, T1h * T1k); | ||
|  | 			 T1t = T1p + T1s; | ||
|  | 			 T3i = T1s - T1p; | ||
|  | 			 T2k = FMA(T1h, T1o, T1l * T1k); | ||
|  | 			 T2l = T2j + T2k; | ||
|  | 			 T3B = T2j - T2k; | ||
|  | 			 { | ||
|  | 			      E T1A, T1D, T2K, T2L; | ||
|  | 			      T1A = FNMS(T4, T1z, T1 * T1y); | ||
|  | 			      T1D = FMA(Ti, T1B, Tk * T1C); | ||
|  | 			      T1E = T1A - T1D; | ||
|  | 			      T3t = T1D + T1A; | ||
|  | 			      T2K = FNMS(Tk, T1B, Ti * T1C); | ||
|  | 			      T2L = FMA(T4, T1y, T1 * T1z); | ||
|  | 			      T2M = T2K + T2L; | ||
|  | 			      T3x = T2L - T2K; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T11, T1M, T15, T1I, T1a, T1R, T1e, T1P; | ||
|  | 			 { | ||
|  | 			      E TZ, T10, T13, T14; | ||
|  | 			      TZ = Ip[WS(rs, 2)]; | ||
|  | 			      T10 = Im[WS(rs, 2)]; | ||
|  | 			      T11 = TZ - T10; | ||
|  | 			      T1M = TZ + T10; | ||
|  | 			      T13 = Rp[WS(rs, 2)]; | ||
|  | 			      T14 = Rm[WS(rs, 2)]; | ||
|  | 			      T15 = T13 + T14; | ||
|  | 			      T1I = T13 - T14; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T18, T19, T1c, T1d; | ||
|  | 			      T18 = Ip[WS(rs, 6)]; | ||
|  | 			      T19 = Im[WS(rs, 6)]; | ||
|  | 			      T1a = T18 - T19; | ||
|  | 			      T1R = T18 + T19; | ||
|  | 			      T1c = Rp[WS(rs, 6)]; | ||
|  | 			      T1d = Rm[WS(rs, 6)]; | ||
|  | 			      T1e = T1c + T1d; | ||
|  | 			      T1P = T1c - T1d; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T16, T1f, T2H, T2I; | ||
|  | 			      T16 = FNMS(T12, T15, TY * T11); | ||
|  | 			      T1f = FNMS(T1b, T1e, T17 * T1a); | ||
|  | 			      T1g = T16 + T1f; | ||
|  | 			      T3C = T16 - T1f; | ||
|  | 			      T2H = FNMS(T1L, T1I, T1H * T1M); | ||
|  | 			      T2I = FNMS(T1Q, T1P, T1O * T1R); | ||
|  | 			      T2J = T2H + T2I; | ||
|  | 			      T3u = T2H - T2I; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1N, T1S, T2m, T2n; | ||
|  | 			      T1N = FMA(T1H, T1I, T1L * T1M); | ||
|  | 			      T1S = FMA(T1O, T1P, T1Q * T1R); | ||
|  | 			      T1T = T1N + T1S; | ||
|  | 			      T3w = T1S - T1N; | ||
|  | 			      T2m = FMA(TY, T15, T12 * T11); | ||
|  | 			      T2n = FMA(T17, T1e, T1b * T1a); | ||
|  | 			      T2o = T2m + T2n; | ||
|  | 			      T3j = T2m - T2n; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta, T1W, Tg, T1V, Tp, T25, Tv, T21; | ||
|  | 			 { | ||
|  | 			      E T8, T9, Te, Tf; | ||
|  | 			      T8 = Ip[WS(rs, 1)]; | ||
|  | 			      T9 = Im[WS(rs, 1)]; | ||
|  | 			      Ta = T8 - T9; | ||
|  | 			      T1W = T8 + T9; | ||
|  | 			      Te = Rp[WS(rs, 1)]; | ||
|  | 			      Tf = Rm[WS(rs, 1)]; | ||
|  | 			      Tg = Te + Tf; | ||
|  | 			      T1V = Te - Tf; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tn, To, Tt, Tu; | ||
|  | 			      Tn = Ip[WS(rs, 5)]; | ||
|  | 			      To = Im[WS(rs, 5)]; | ||
|  | 			      Tp = Tn - To; | ||
|  | 			      T25 = Tn + To; | ||
|  | 			      Tt = Rp[WS(rs, 5)]; | ||
|  | 			      Tu = Rm[WS(rs, 5)]; | ||
|  | 			      Tv = Tt + Tu; | ||
|  | 			      T21 = Tt - Tu; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Th, Tw, T2A, T2B; | ||
|  | 			      Th = FNMS(Td, Tg, T7 * Ta); | ||
|  | 			      Tw = FNMS(Ts, Tv, Tm * Tp); | ||
|  | 			      Tx = Th + Tw; | ||
|  | 			      T3b = Th - Tw; | ||
|  | 			      T2A = FNMS(T5, T1V, T2 * T1W); | ||
|  | 			      T2B = FNMS(T24, T21, T20 * T25); | ||
|  | 			      T2C = T2A + T2B; | ||
|  | 			      T3q = T2A - T2B; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1X, T26, T2q, T2r; | ||
|  | 			      T1X = FMA(T2, T1V, T5 * T1W); | ||
|  | 			      T26 = FMA(T20, T21, T24 * T25); | ||
|  | 			      T27 = T1X + T26; | ||
|  | 			      T3m = T26 - T1X; | ||
|  | 			      T2q = FMA(T7, Tg, Td * Ta); | ||
|  | 			      T2r = FMA(Tm, Tv, Ts * Tp); | ||
|  | 			      T2s = T2q + T2r; | ||
|  | 			      T3c = T2q - T2r; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TD, T29, TH, T28, TO, T2e, TU, T2c; | ||
|  | 			 { | ||
|  | 			      E TB, TC, TF, TG; | ||
|  | 			      TB = Ip[WS(rs, 7)]; | ||
|  | 			      TC = Im[WS(rs, 7)]; | ||
|  | 			      TD = TB - TC; | ||
|  | 			      T29 = TB + TC; | ||
|  | 			      TF = Rp[WS(rs, 7)]; | ||
|  | 			      TG = Rm[WS(rs, 7)]; | ||
|  | 			      TH = TF + TG; | ||
|  | 			      T28 = TF - TG; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TM, TN, TS, TT; | ||
|  | 			      TM = Ip[WS(rs, 3)]; | ||
|  | 			      TN = Im[WS(rs, 3)]; | ||
|  | 			      TO = TM - TN; | ||
|  | 			      T2e = TM + TN; | ||
|  | 			      TS = Rp[WS(rs, 3)]; | ||
|  | 			      TT = Rm[WS(rs, 3)]; | ||
|  | 			      TU = TS + TT; | ||
|  | 			      T2c = TS - TT; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TI, TV, T2D, T2E; | ||
|  | 			      TI = FNMS(TE, TH, TA * TD); | ||
|  | 			      TV = FNMS(TR, TU, TL * TO); | ||
|  | 			      TW = TI + TV; | ||
|  | 			      T3f = TI - TV; | ||
|  | 			      T2D = FNMS(Tz, T28, Ty * T29); | ||
|  | 			      T2E = FNMS(T2d, T2c, T2b * T2e); | ||
|  | 			      T2F = T2D + T2E; | ||
|  | 			      T3n = T2D - T2E; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2a, T2f, T2t, T2u; | ||
|  | 			      T2a = FMA(Ty, T28, Tz * T29); | ||
|  | 			      T2f = FMA(T2b, T2c, T2d * T2e); | ||
|  | 			      T2g = T2a + T2f; | ||
|  | 			      T3p = T2f - T2a; | ||
|  | 			      T2t = FMA(TA, TH, TE * TD); | ||
|  | 			      T2u = FMA(TL, TU, TR * TO); | ||
|  | 			      T2v = T2t + T2u; | ||
|  | 			      T3e = T2t - T2u; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1v, T2z, T2O, T2Q, T2i, T2y, T2x, T2P; | ||
|  | 			 { | ||
|  | 			      E TX, T1u, T2G, T2N; | ||
|  | 			      TX = Tx + TW; | ||
|  | 			      T1u = T1g + T1t; | ||
|  | 			      T1v = TX + T1u; | ||
|  | 			      T2z = T1u - TX; | ||
|  | 			      T2G = T2C + T2F; | ||
|  | 			      T2N = T2J + T2M; | ||
|  | 			      T2O = T2G - T2N; | ||
|  | 			      T2Q = T2G + T2N; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1U, T2h, T2p, T2w; | ||
|  | 			      T1U = T1E - T1T; | ||
|  | 			      T2h = T27 + T2g; | ||
|  | 			      T2i = T1U - T2h; | ||
|  | 			      T2y = T2h + T1U; | ||
|  | 			      T2p = T2l + T2o; | ||
|  | 			      T2w = T2s + T2v; | ||
|  | 			      T2x = T2p - T2w; | ||
|  | 			      T2P = T2p + T2w; | ||
|  | 			 } | ||
|  | 			 Ip[0] = KP500000000 * (T1v + T2i); | ||
|  | 			 Rp[0] = KP500000000 * (T2P + T2Q); | ||
|  | 			 Im[WS(rs, 7)] = KP500000000 * (T2i - T1v); | ||
|  | 			 Rm[WS(rs, 7)] = KP500000000 * (T2P - T2Q); | ||
|  | 			 Rm[WS(rs, 3)] = KP500000000 * (T2x - T2y); | ||
|  | 			 Im[WS(rs, 3)] = KP500000000 * (T2O - T2z); | ||
|  | 			 Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y); | ||
|  | 			 Ip[WS(rs, 4)] = KP500000000 * (T2z + T2O); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2T, T35, T33, T39, T2W, T36, T2Z, T37; | ||
|  | 			 { | ||
|  | 			      E T2R, T2S, T31, T32; | ||
|  | 			      T2R = T2v - T2s; | ||
|  | 			      T2S = T1t - T1g; | ||
|  | 			      T2T = KP500000000 * (T2R + T2S); | ||
|  | 			      T35 = KP500000000 * (T2S - T2R); | ||
|  | 			      T31 = T2l - T2o; | ||
|  | 			      T32 = Tx - TW; | ||
|  | 			      T33 = KP500000000 * (T31 - T32); | ||
|  | 			      T39 = KP500000000 * (T31 + T32); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2U, T2V, T2X, T2Y; | ||
|  | 			      T2U = T2F - T2C; | ||
|  | 			      T2V = T27 - T2g; | ||
|  | 			      T2W = T2U + T2V; | ||
|  | 			      T36 = T2U - T2V; | ||
|  | 			      T2X = T1T + T1E; | ||
|  | 			      T2Y = T2M - T2J; | ||
|  | 			      T2Z = T2X - T2Y; | ||
|  | 			      T37 = T2X + T2Y; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T30, T3a, T34, T38; | ||
|  | 			      T30 = KP353553390 * (T2W + T2Z); | ||
|  | 			      Ip[WS(rs, 2)] = T2T + T30; | ||
|  | 			      Im[WS(rs, 5)] = T30 - T2T; | ||
|  | 			      T3a = KP353553390 * (T36 + T37); | ||
|  | 			      Rm[WS(rs, 5)] = T39 - T3a; | ||
|  | 			      Rp[WS(rs, 2)] = T39 + T3a; | ||
|  | 			      T34 = KP353553390 * (T2Z - T2W); | ||
|  | 			      Rm[WS(rs, 1)] = T33 - T34; | ||
|  | 			      Rp[WS(rs, 6)] = T33 + T34; | ||
|  | 			      T38 = KP353553390 * (T36 - T37); | ||
|  | 			      Ip[WS(rs, 6)] = T35 + T38; | ||
|  | 			      Im[WS(rs, 1)] = T38 - T35; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3k, T3Q, T3Z, T3D, T3h, T40, T3X, T45, T3G, T3P, T3s, T3K, T3U, T44, T3z; | ||
|  | 			 E T3L; | ||
|  | 			 { | ||
|  | 			      E T3d, T3g, T3o, T3r; | ||
|  | 			      T3k = KP500000000 * (T3i - T3j); | ||
|  | 			      T3Q = KP500000000 * (T3j + T3i); | ||
|  | 			      T3Z = KP500000000 * (T3B - T3C); | ||
|  | 			      T3D = KP500000000 * (T3B + T3C); | ||
|  | 			      T3d = T3b - T3c; | ||
|  | 			      T3g = T3e + T3f; | ||
|  | 			      T3h = KP353553390 * (T3d + T3g); | ||
|  | 			      T40 = KP353553390 * (T3d - T3g); | ||
|  | 			      { | ||
|  | 				   E T3V, T3W, T3E, T3F; | ||
|  | 				   T3V = T3u + T3t; | ||
|  | 				   T3W = T3x - T3w; | ||
|  | 				   T3X = FNMS(KP461939766, T3W, KP191341716 * T3V); | ||
|  | 				   T45 = FMA(KP461939766, T3V, KP191341716 * T3W); | ||
|  | 				   T3E = T3c + T3b; | ||
|  | 				   T3F = T3e - T3f; | ||
|  | 				   T3G = KP353553390 * (T3E + T3F); | ||
|  | 				   T3P = KP353553390 * (T3F - T3E); | ||
|  | 			      } | ||
|  | 			      T3o = T3m + T3n; | ||
|  | 			      T3r = T3p - T3q; | ||
|  | 			      T3s = FMA(KP191341716, T3o, KP461939766 * T3r); | ||
|  | 			      T3K = FNMS(KP191341716, T3r, KP461939766 * T3o); | ||
|  | 			      { | ||
|  | 				   E T3S, T3T, T3v, T3y; | ||
|  | 				   T3S = T3n - T3m; | ||
|  | 				   T3T = T3q + T3p; | ||
|  | 				   T3U = FMA(KP461939766, T3S, KP191341716 * T3T); | ||
|  | 				   T44 = FNMS(KP461939766, T3T, KP191341716 * T3S); | ||
|  | 				   T3v = T3t - T3u; | ||
|  | 				   T3y = T3w + T3x; | ||
|  | 				   T3z = FNMS(KP191341716, T3y, KP461939766 * T3v); | ||
|  | 				   T3L = FMA(KP191341716, T3v, KP461939766 * T3y); | ||
|  | 			      } | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3l, T3A, T3N, T3O; | ||
|  | 			      T3l = T3h + T3k; | ||
|  | 			      T3A = T3s + T3z; | ||
|  | 			      Ip[WS(rs, 1)] = T3l + T3A; | ||
|  | 			      Im[WS(rs, 6)] = T3A - T3l; | ||
|  | 			      T3N = T3D + T3G; | ||
|  | 			      T3O = T3K + T3L; | ||
|  | 			      Rm[WS(rs, 6)] = T3N - T3O; | ||
|  | 			      Rp[WS(rs, 1)] = T3N + T3O; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3H, T3I, T3J, T3M; | ||
|  | 			      T3H = T3D - T3G; | ||
|  | 			      T3I = T3z - T3s; | ||
|  | 			      Rm[WS(rs, 2)] = T3H - T3I; | ||
|  | 			      Rp[WS(rs, 5)] = T3H + T3I; | ||
|  | 			      T3J = T3k - T3h; | ||
|  | 			      T3M = T3K - T3L; | ||
|  | 			      Ip[WS(rs, 5)] = T3J + T3M; | ||
|  | 			      Im[WS(rs, 2)] = T3M - T3J; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3R, T3Y, T47, T48; | ||
|  | 			      T3R = T3P + T3Q; | ||
|  | 			      T3Y = T3U + T3X; | ||
|  | 			      Ip[WS(rs, 3)] = T3R + T3Y; | ||
|  | 			      Im[WS(rs, 4)] = T3Y - T3R; | ||
|  | 			      T47 = T3Z + T40; | ||
|  | 			      T48 = T44 + T45; | ||
|  | 			      Rm[WS(rs, 4)] = T47 - T48; | ||
|  | 			      Rp[WS(rs, 3)] = T47 + T48; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T41, T42, T43, T46; | ||
|  | 			      T41 = T3Z - T40; | ||
|  | 			      T42 = T3X - T3U; | ||
|  | 			      Rm[0] = T41 - T42; | ||
|  | 			      Rp[WS(rs, 7)] = T41 + T42; | ||
|  | 			      T43 = T3Q - T3P; | ||
|  | 			      T46 = T44 - T45; | ||
|  | 			      Ip[WS(rs, 7)] = T43 + T46; | ||
|  | 			      Im[0] = T46 - T43; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_CEXP, 1, 1 }, | ||
|  |      { TW_CEXP, 1, 3 }, | ||
|  |      { TW_CEXP, 1, 9 }, | ||
|  |      { TW_CEXP, 1, 15 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, { 188, 84, 40, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cfdft2_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |