327 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			327 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:12 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 58 FP additions, 32 FP multiplications, | ||
|  |  * (or, 36 additions, 10 multiplications, 22 fused multiply/add), | ||
|  |  * 34 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       E Tp, TD, Tj, TV, Tq, Tr, TG, TP, T4, Ts, TQ, Tb, Tc, TA, TU; | ||
|  | 	       { | ||
|  | 		    E Tf, TF, Ti, TE, Td, Te; | ||
|  | 		    Td = Ip[WS(rs, 1)]; | ||
|  | 		    Te = Im[WS(rs, 1)]; | ||
|  | 		    Tf = Td - Te; | ||
|  | 		    TF = Te + Td; | ||
|  | 		    { | ||
|  | 			 E Tn, To, Tg, Th; | ||
|  | 			 Tn = Ip[0]; | ||
|  | 			 To = Im[WS(rs, 2)]; | ||
|  | 			 Tp = Tn - To; | ||
|  | 			 TD = Tn + To; | ||
|  | 			 Tg = Ip[WS(rs, 2)]; | ||
|  | 			 Th = Im[0]; | ||
|  | 			 Ti = Tg - Th; | ||
|  | 			 TE = Tg + Th; | ||
|  | 		    } | ||
|  | 		    Tj = Tf - Ti; | ||
|  | 		    TV = TF + TE; | ||
|  | 		    Tq = Tf + Ti; | ||
|  | 		    Tr = FNMS(KP500000000, Tq, Tp); | ||
|  | 		    TG = TE - TF; | ||
|  | 		    TP = FNMS(KP500000000, TG, TD); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, Ta, Ty, T7, Tx, T2, T3, Tz; | ||
|  | 		    T2 = Rp[0]; | ||
|  | 		    T3 = Rm[WS(rs, 2)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    Tw = T2 - T3; | ||
|  | 		    { | ||
|  | 			 E T8, T9, T5, T6; | ||
|  | 			 T8 = Rm[WS(rs, 1)]; | ||
|  | 			 T9 = Rp[WS(rs, 1)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 Ty = T8 - T9; | ||
|  | 			 T5 = Rp[WS(rs, 2)]; | ||
|  | 			 T6 = Rm[0]; | ||
|  | 			 T7 = T5 + T6; | ||
|  | 			 Tx = T5 - T6; | ||
|  | 		    } | ||
|  | 		    Ts = T7 - Ta; | ||
|  | 		    TQ = Tx - Ty; | ||
|  | 		    Tb = T7 + Ta; | ||
|  | 		    Tc = FNMS(KP500000000, Tb, T4); | ||
|  | 		    Tz = Tx + Ty; | ||
|  | 		    TA = Tw + Tz; | ||
|  | 		    TU = FNMS(KP500000000, Tz, Tw); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TN, TY, TR, TW, TS, TZ, TO, TX, T10, TT; | ||
|  | 		    TN = T4 + Tb; | ||
|  | 		    TY = Tp + Tq; | ||
|  | 		    TR = FMA(KP866025403, TQ, TP); | ||
|  | 		    TW = FNMS(KP866025403, TV, TU); | ||
|  | 		    TO = W[0]; | ||
|  | 		    TS = TO * TR; | ||
|  | 		    TZ = TO * TW; | ||
|  | 		    TT = W[1]; | ||
|  | 		    TX = FMA(TT, TW, TS); | ||
|  | 		    T10 = FNMS(TT, TR, TZ); | ||
|  | 		    Rp[0] = TN - TX; | ||
|  | 		    Ip[0] = TY + T10; | ||
|  | 		    Rm[0] = TN + TX; | ||
|  | 		    Im[0] = T10 - TY; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, TH, Tv, TB, TC, TL, T1, Tl, Tm, TJ, Tk; | ||
|  | 		    Tt = FNMS(KP866025403, Ts, Tr); | ||
|  | 		    TH = TD + TG; | ||
|  | 		    Tv = W[4]; | ||
|  | 		    TB = Tv * TA; | ||
|  | 		    TC = W[5]; | ||
|  | 		    TL = TC * TA; | ||
|  | 		    Tk = FNMS(KP866025403, Tj, Tc); | ||
|  | 		    T1 = W[3]; | ||
|  | 		    Tl = T1 * Tk; | ||
|  | 		    Tm = W[2]; | ||
|  | 		    TJ = Tm * Tk; | ||
|  | 		    { | ||
|  | 			 E Tu, TI, TK, TM; | ||
|  | 			 Tu = FMA(Tm, Tt, Tl); | ||
|  | 			 TI = FNMS(TC, TH, TB); | ||
|  | 			 Ip[WS(rs, 1)] = Tu + TI; | ||
|  | 			 Im[WS(rs, 1)] = TI - Tu; | ||
|  | 			 TK = FNMS(T1, Tt, TJ); | ||
|  | 			 TM = FMA(Tv, TH, TL); | ||
|  | 			 Rp[WS(rs, 1)] = TK - TM; | ||
|  | 			 Rm[WS(rs, 1)] = TK + TM; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T15, T11, T13, T14, T1d, T18, T1b, T19, T1f, T12, T17; | ||
|  | 		    T15 = FMA(KP866025403, Ts, Tr); | ||
|  | 		    T12 = FMA(KP866025403, Tj, Tc); | ||
|  | 		    T11 = W[6]; | ||
|  | 		    T13 = T11 * T12; | ||
|  | 		    T14 = W[7]; | ||
|  | 		    T1d = T14 * T12; | ||
|  | 		    T18 = FNMS(KP866025403, TQ, TP); | ||
|  | 		    T1b = FMA(KP866025403, TV, TU); | ||
|  | 		    T17 = W[8]; | ||
|  | 		    T19 = T17 * T18; | ||
|  | 		    T1f = T17 * T1b; | ||
|  | 		    { | ||
|  | 			 E T16, T1e, T1c, T1g, T1a; | ||
|  | 			 T16 = FNMS(T14, T15, T13); | ||
|  | 			 T1e = FMA(T11, T15, T1d); | ||
|  | 			 T1a = W[9]; | ||
|  | 			 T1c = FMA(T1a, T1b, T19); | ||
|  | 			 T1g = FNMS(T1a, T18, T1f); | ||
|  | 			 Rp[WS(rs, 2)] = T16 - T1c; | ||
|  | 			 Ip[WS(rs, 2)] = T1e + T1g; | ||
|  | 			 Rm[WS(rs, 2)] = T16 + T1c; | ||
|  | 			 Im[WS(rs, 2)] = T1g - T1e; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 6 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, { 36, 10, 22, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cbdft_6) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 58 FP additions, 28 FP multiplications, | ||
|  |  * (or, 44 additions, 14 multiplications, 14 fused multiply/add), | ||
|  |  * 29 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       E T4, Tv, Tr, TL, Tb, Tc, Ty, TP, To, TB, Tj, TQ, Tp, Tq, TE; | ||
|  | 	       E TM; | ||
|  | 	       { | ||
|  | 		    E Ta, Tx, T7, Tw, T2, T3; | ||
|  | 		    T2 = Rp[0]; | ||
|  | 		    T3 = Rm[WS(rs, 2)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    Tv = T2 - T3; | ||
|  | 		    { | ||
|  | 			 E T8, T9, T5, T6; | ||
|  | 			 T8 = Rm[WS(rs, 1)]; | ||
|  | 			 T9 = Rp[WS(rs, 1)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 Tx = T8 - T9; | ||
|  | 			 T5 = Rp[WS(rs, 2)]; | ||
|  | 			 T6 = Rm[0]; | ||
|  | 			 T7 = T5 + T6; | ||
|  | 			 Tw = T5 - T6; | ||
|  | 		    } | ||
|  | 		    Tr = KP866025403 * (T7 - Ta); | ||
|  | 		    TL = KP866025403 * (Tw - Tx); | ||
|  | 		    Tb = T7 + Ta; | ||
|  | 		    Tc = FNMS(KP500000000, Tb, T4); | ||
|  | 		    Ty = Tw + Tx; | ||
|  | 		    TP = FNMS(KP500000000, Ty, Tv); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tf, TC, Ti, TD, Td, Te; | ||
|  | 		    Td = Ip[WS(rs, 1)]; | ||
|  | 		    Te = Im[WS(rs, 1)]; | ||
|  | 		    Tf = Td - Te; | ||
|  | 		    TC = Te + Td; | ||
|  | 		    { | ||
|  | 			 E Tm, Tn, Tg, Th; | ||
|  | 			 Tm = Ip[0]; | ||
|  | 			 Tn = Im[WS(rs, 2)]; | ||
|  | 			 To = Tm - Tn; | ||
|  | 			 TB = Tm + Tn; | ||
|  | 			 Tg = Ip[WS(rs, 2)]; | ||
|  | 			 Th = Im[0]; | ||
|  | 			 Ti = Tg - Th; | ||
|  | 			 TD = Tg + Th; | ||
|  | 		    } | ||
|  | 		    Tj = KP866025403 * (Tf - Ti); | ||
|  | 		    TQ = KP866025403 * (TC + TD); | ||
|  | 		    Tp = Tf + Ti; | ||
|  | 		    Tq = FNMS(KP500000000, Tp, To); | ||
|  | 		    TE = TC - TD; | ||
|  | 		    TM = FMA(KP500000000, TE, TB); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TJ, TT, TS, TU; | ||
|  | 		    TJ = T4 + Tb; | ||
|  | 		    TT = To + Tp; | ||
|  | 		    { | ||
|  | 			 E TN, TR, TK, TO; | ||
|  | 			 TN = TL + TM; | ||
|  | 			 TR = TP - TQ; | ||
|  | 			 TK = W[0]; | ||
|  | 			 TO = W[1]; | ||
|  | 			 TS = FMA(TK, TN, TO * TR); | ||
|  | 			 TU = FNMS(TO, TN, TK * TR); | ||
|  | 		    } | ||
|  | 		    Rp[0] = TJ - TS; | ||
|  | 		    Ip[0] = TT + TU; | ||
|  | 		    Rm[0] = TJ + TS; | ||
|  | 		    Im[0] = TU - TT; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TZ, T15, T14, T16; | ||
|  | 		    { | ||
|  | 			 E TW, TY, TV, TX; | ||
|  | 			 TW = Tc + Tj; | ||
|  | 			 TY = Tr + Tq; | ||
|  | 			 TV = W[6]; | ||
|  | 			 TX = W[7]; | ||
|  | 			 TZ = FNMS(TX, TY, TV * TW); | ||
|  | 			 T15 = FMA(TX, TW, TV * TY); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T11, T13, T10, T12; | ||
|  | 			 T11 = TM - TL; | ||
|  | 			 T13 = TP + TQ; | ||
|  | 			 T10 = W[8]; | ||
|  | 			 T12 = W[9]; | ||
|  | 			 T14 = FMA(T10, T11, T12 * T13); | ||
|  | 			 T16 = FNMS(T12, T11, T10 * T13); | ||
|  | 		    } | ||
|  | 		    Rp[WS(rs, 2)] = TZ - T14; | ||
|  | 		    Ip[WS(rs, 2)] = T15 + T16; | ||
|  | 		    Rm[WS(rs, 2)] = TZ + T14; | ||
|  | 		    Im[WS(rs, 2)] = T16 - T15; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, TH, TG, TI; | ||
|  | 		    { | ||
|  | 			 E Tk, Ts, T1, Tl; | ||
|  | 			 Tk = Tc - Tj; | ||
|  | 			 Ts = Tq - Tr; | ||
|  | 			 T1 = W[3]; | ||
|  | 			 Tl = W[2]; | ||
|  | 			 Tt = FMA(T1, Tk, Tl * Ts); | ||
|  | 			 TH = FNMS(T1, Ts, Tl * Tk); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tz, TF, Tu, TA; | ||
|  | 			 Tz = Tv + Ty; | ||
|  | 			 TF = TB - TE; | ||
|  | 			 Tu = W[4]; | ||
|  | 			 TA = W[5]; | ||
|  | 			 TG = FNMS(TA, TF, Tu * Tz); | ||
|  | 			 TI = FMA(TA, Tz, Tu * TF); | ||
|  | 		    } | ||
|  | 		    Ip[WS(rs, 1)] = Tt + TG; | ||
|  | 		    Rp[WS(rs, 1)] = TH - TI; | ||
|  | 		    Im[WS(rs, 1)] = TG - Tt; | ||
|  | 		    Rm[WS(rs, 1)] = TH + TI; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 6 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, { 44, 14, 14, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cbdft_6) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |