255 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			255 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:04 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 48 FP additions, 20 FP multiplications, | ||
|  |  * (or, 30 additions, 2 multiplications, 18 fused multiply/add), | ||
|  |  * 27 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/n1b.h"
 | ||
|  | 
 | ||
|  | static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  const R *xi; | ||
|  | 	  R *xo; | ||
|  | 	  xi = ii; | ||
|  | 	  xo = io; | ||
|  | 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { | ||
|  | 	       V T5, Ta, TJ, TB, Tq, Tp, Tg, Tl, TG, Ty, Tt, Ts; | ||
|  | 	       { | ||
|  | 		    V T1, T6, T4, Tz, T9, TA; | ||
|  | 		    T1 = LD(&(xi[0]), ivs, &(xi[0])); | ||
|  | 		    T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | ||
|  | 		    { | ||
|  | 			 V T2, T3, T7, T8; | ||
|  | 			 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | ||
|  | 			 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | ||
|  | 			 T4 = VADD(T2, T3); | ||
|  | 			 Tz = VSUB(T2, T3); | ||
|  | 			 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | ||
|  | 			 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | ||
|  | 			 T9 = VADD(T7, T8); | ||
|  | 			 TA = VSUB(T7, T8); | ||
|  | 		    } | ||
|  | 		    T5 = VADD(T1, T4); | ||
|  | 		    Ta = VADD(T6, T9); | ||
|  | 		    TJ = VSUB(Tz, TA); | ||
|  | 		    TB = VADD(Tz, TA); | ||
|  | 		    Tq = VFNMS(LDK(KP500000000), T9, T6); | ||
|  | 		    Tp = VFNMS(LDK(KP500000000), T4, T1); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tc, Th, Tf, Tw, Tk, Tx; | ||
|  | 		    Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    { | ||
|  | 			 V Td, Te, Ti, Tj; | ||
|  | 			 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Tf = VADD(Td, Te); | ||
|  | 			 Tw = VSUB(Td, Te); | ||
|  | 			 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Tk = VADD(Ti, Tj); | ||
|  | 			 Tx = VSUB(Tj, Ti); | ||
|  | 		    } | ||
|  | 		    Tg = VADD(Tc, Tf); | ||
|  | 		    Tl = VADD(Th, Tk); | ||
|  | 		    TG = VADD(Tw, Tx); | ||
|  | 		    Ty = VSUB(Tw, Tx); | ||
|  | 		    Tt = VFNMS(LDK(KP500000000), Tk, Th); | ||
|  | 		    Ts = VFNMS(LDK(KP500000000), Tf, Tc); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tb, Tm, Tn, To; | ||
|  | 		    Tb = VSUB(T5, Ta); | ||
|  | 		    Tm = VSUB(Tg, Tl); | ||
|  | 		    ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    Tn = VADD(T5, Ta); | ||
|  | 		    To = VADD(Tg, Tl); | ||
|  | 		    ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TC, TE, Tv, TD, Tr, Tu; | ||
|  | 		    TC = VMUL(LDK(KP866025403), VSUB(Ty, TB)); | ||
|  | 		    TE = VMUL(LDK(KP866025403), VADD(TB, Ty)); | ||
|  | 		    Tr = VADD(Tp, Tq); | ||
|  | 		    Tu = VADD(Ts, Tt); | ||
|  | 		    Tv = VSUB(Tr, Tu); | ||
|  | 		    TD = VADD(Tr, Tu); | ||
|  | 		    ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TH, TL, TK, TM, TF, TI; | ||
|  | 		    TF = VSUB(Tp, Tq); | ||
|  | 		    TH = VFNMS(LDK(KP866025403), TG, TF); | ||
|  | 		    TL = VFMA(LDK(KP866025403), TG, TF); | ||
|  | 		    TI = VSUB(Ts, Tt); | ||
|  | 		    TK = VFMA(LDK(KP866025403), TJ, TI); | ||
|  | 		    TM = VFNMS(LDK(KP866025403), TJ, TI); | ||
|  | 		    ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), { 30, 2, 18, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_n1bv_12) (planner *p) { X(kdft_register) (p, n1bv_12, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 48 FP additions, 8 FP multiplications, | ||
|  |  * (or, 44 additions, 4 multiplications, 4 fused multiply/add), | ||
|  |  * 27 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/n1b.h"
 | ||
|  | 
 | ||
|  | static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  const R *xi; | ||
|  | 	  R *xo; | ||
|  | 	  xi = ii; | ||
|  | 	  xo = io; | ||
|  | 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { | ||
|  | 	       V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts; | ||
|  | 	       { | ||
|  | 		    V T1, T6, T4, Tk, T9, Tl; | ||
|  | 		    T1 = LD(&(xi[0]), ivs, &(xi[0])); | ||
|  | 		    T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | ||
|  | 		    { | ||
|  | 			 V T2, T3, T7, T8; | ||
|  | 			 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | ||
|  | 			 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | ||
|  | 			 T4 = VADD(T2, T3); | ||
|  | 			 Tk = VSUB(T2, T3); | ||
|  | 			 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | ||
|  | 			 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | ||
|  | 			 T9 = VADD(T7, T8); | ||
|  | 			 Tl = VSUB(T7, T8); | ||
|  | 		    } | ||
|  | 		    T5 = VFNMS(LDK(KP500000000), T4, T1); | ||
|  | 		    Ta = VFNMS(LDK(KP500000000), T9, T6); | ||
|  | 		    TG = VADD(T6, T9); | ||
|  | 		    TF = VADD(T1, T4); | ||
|  | 		    Ty = VADD(Tk, Tl); | ||
|  | 		    Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tn, Tq, Te, To, Th, Tr; | ||
|  | 		    Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    { | ||
|  | 			 V Tc, Td, Tf, Tg; | ||
|  | 			 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Te = VSUB(Tc, Td); | ||
|  | 			 To = VADD(Tc, Td); | ||
|  | 			 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Th = VSUB(Tf, Tg); | ||
|  | 			 Tr = VADD(Tf, Tg); | ||
|  | 		    } | ||
|  | 		    Ti = VMUL(LDK(KP866025403), VSUB(Te, Th)); | ||
|  | 		    Tp = VFNMS(LDK(KP500000000), To, Tn); | ||
|  | 		    TJ = VADD(Tq, Tr); | ||
|  | 		    TI = VADD(Tn, To); | ||
|  | 		    Tx = VADD(Te, Th); | ||
|  | 		    Ts = VFNMS(LDK(KP500000000), Tr, Tq); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TH, TK, TL, TM; | ||
|  | 		    TH = VSUB(TF, TG); | ||
|  | 		    TK = VBYI(VSUB(TI, TJ)); | ||
|  | 		    ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    TL = VADD(TF, TG); | ||
|  | 		    TM = VADD(TI, TJ); | ||
|  | 		    ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tj, Tv, Tu, Tw, Tb, Tt; | ||
|  | 		    Tb = VSUB(T5, Ta); | ||
|  | 		    Tj = VSUB(Tb, Ti); | ||
|  | 		    Tv = VADD(Tb, Ti); | ||
|  | 		    Tt = VSUB(Tp, Ts); | ||
|  | 		    Tu = VBYI(VADD(Tm, Tt)); | ||
|  | 		    Tw = VBYI(VSUB(Tt, Tm)); | ||
|  | 		    ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tz, TD, TC, TE, TA, TB; | ||
|  | 		    Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty))); | ||
|  | 		    TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx))); | ||
|  | 		    TA = VADD(T5, Ta); | ||
|  | 		    TB = VADD(Tp, Ts); | ||
|  | 		    TC = VSUB(TA, TB); | ||
|  | 		    TE = VADD(TA, TB); | ||
|  | 		    ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), { 44, 4, 4, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_n1bv_12) (planner *p) { X(kdft_register) (p, n1bv_12, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |