192 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			192 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 29 FP additions, 24 FP multiplications, | ||
|  |  * (or, 17 additions, 12 multiplications, 12 fused multiply/add), | ||
|  |  * 38 stack variables, 2 constants, and 12 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cbv.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       V T4, Te, Tj, Tp, Tb, To, Th, Ti, Ta, Tg, T7, Tf, T2, T3, T8; | ||
|  | 	       V T9, T5, T6, Tx, Tw, Tv, Ty, Tz, Tq, Ts, Tn, Tr, Tt, Tu, Tc; | ||
|  | 	       V Tk, T1, Td, Tl, Tm; | ||
|  | 	       T2 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       T4 = VFNMSCONJ(T3, T2); | ||
|  | 	       Te = VFMACONJ(T3, T2); | ||
|  | 	       T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Ta = VFMSCONJ(T9, T8); | ||
|  | 	       Tg = VFMACONJ(T9, T8); | ||
|  | 	       T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       T6 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T7 = VFNMSCONJ(T6, T5); | ||
|  | 	       Tf = VFMACONJ(T6, T5); | ||
|  | 	       Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg)); | ||
|  | 	       Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta)); | ||
|  | 	       Tb = VADD(T7, Ta); | ||
|  | 	       To = VFNMS(LDK(KP500000000), Tb, T4); | ||
|  | 	       Th = VADD(Tf, Tg); | ||
|  | 	       Ti = VFNMS(LDK(KP500000000), Th, Te); | ||
|  | 	       Tx = VADD(Te, Th); | ||
|  | 	       Tv = LDW(&(W[0])); | ||
|  | 	       Tw = VZMULI(Tv, VFMAI(Tp, To)); | ||
|  | 	       Ty = VADD(Tw, Tx); | ||
|  | 	       ST(&(Rp[0]), Ty, ms, &(Rp[0])); | ||
|  | 	       Tz = VCONJ(VSUB(Tx, Tw)); | ||
|  | 	       ST(&(Rm[0]), Tz, -ms, &(Rm[0])); | ||
|  | 	       Tn = LDW(&(W[TWVL * 8])); | ||
|  | 	       Tq = VZMULI(Tn, VFNMSI(Tp, To)); | ||
|  | 	       Tr = LDW(&(W[TWVL * 6])); | ||
|  | 	       Ts = VZMUL(Tr, VFMAI(Tj, Ti)); | ||
|  | 	       Tt = VADD(Tq, Ts); | ||
|  | 	       ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0])); | ||
|  | 	       Tu = VCONJ(VSUB(Ts, Tq)); | ||
|  | 	       ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0])); | ||
|  | 	       T1 = LDW(&(W[TWVL * 4])); | ||
|  | 	       Tc = VZMULI(T1, VADD(T4, Tb)); | ||
|  | 	       Td = LDW(&(W[TWVL * 2])); | ||
|  | 	       Tk = VZMUL(Td, VFNMSI(Tj, Ti)); | ||
|  | 	       Tl = VADD(Tc, Tk); | ||
|  | 	       ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tm = VCONJ(VSUB(Tk, Tc)); | ||
|  | 	       ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, { 17, 12, 12, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cbdftv_6) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 29 FP additions, 14 FP multiplications, | ||
|  |  * (or, 27 additions, 12 multiplications, 2 fused multiply/add), | ||
|  |  * 41 stack variables, 2 constants, and 12 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cbv.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta; | ||
|  | 	       V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr; | ||
|  | 	       V Tq, Ty, To, Tp, TC, TB, Tx, Tw; | ||
|  | 	       T2 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       T4 = VCONJ(T3); | ||
|  | 	       T5 = VSUB(T2, T4); | ||
|  | 	       Th = VADD(T2, T4); | ||
|  | 	       T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       T7 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T8 = VCONJ(T7); | ||
|  | 	       Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Tb = VCONJ(Ta); | ||
|  | 	       T9 = VSUB(T6, T8); | ||
|  | 	       Td = VSUB(Tb, Tc); | ||
|  | 	       Te = VADD(T9, Td); | ||
|  | 	       Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td))); | ||
|  | 	       Ti = VADD(T6, T8); | ||
|  | 	       Tj = VADD(Tb, Tc); | ||
|  | 	       Tk = VADD(Ti, Tj); | ||
|  | 	       Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj))); | ||
|  | 	       TA = VADD(Th, Tk); | ||
|  | 	       T1 = LDW(&(W[TWVL * 4])); | ||
|  | 	       Tf = VZMULI(T1, VADD(T5, Te)); | ||
|  | 	       Tl = VFNMS(LDK(KP500000000), Tk, Th); | ||
|  | 	       Tg = LDW(&(W[TWVL * 2])); | ||
|  | 	       Tn = VZMUL(Tg, VSUB(Tl, Tm)); | ||
|  | 	       Tu = LDW(&(W[TWVL * 6])); | ||
|  | 	       Tv = VZMUL(Tu, VADD(Tm, Tl)); | ||
|  | 	       Tr = VFNMS(LDK(KP500000000), Te, T5); | ||
|  | 	       Tq = LDW(&(W[TWVL * 8])); | ||
|  | 	       Tt = VZMULI(Tq, VSUB(Tr, Ts)); | ||
|  | 	       Ty = LDW(&(W[0])); | ||
|  | 	       Tz = VZMULI(Ty, VADD(Ts, Tr)); | ||
|  | 	       To = VADD(Tf, Tn); | ||
|  | 	       ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tp = VCONJ(VSUB(Tn, Tf)); | ||
|  | 	       ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       TC = VCONJ(VSUB(TA, Tz)); | ||
|  | 	       ST(&(Rm[0]), TC, -ms, &(Rm[0])); | ||
|  | 	       TB = VADD(Tz, TA); | ||
|  | 	       ST(&(Rp[0]), TB, ms, &(Rp[0])); | ||
|  | 	       Tx = VCONJ(VSUB(Tv, Tt)); | ||
|  | 	       ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0])); | ||
|  | 	       Tw = VADD(Tt, Tv); | ||
|  | 	       ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0])); | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, { 27, 12, 2, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cbdftv_6) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |