308 lines
		
	
	
		
			9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			308 lines
		
	
	
		
			9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "verify.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* copy real A into real B, using output stride of A and input stride of B */
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     dotens2_closure k;
							 | 
						||
| 
								 | 
							
								     R *ra;
							 | 
						||
| 
								 | 
							
								     R *rb;
							 | 
						||
| 
								 | 
							
								} cpyr_closure;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void cpyr0(dotens2_closure *k_,
							 | 
						||
| 
								 | 
							
								                  int indxa, int ondxa, int indxb, int ondxb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     cpyr_closure *k = (cpyr_closure *)k_;
							 | 
						||
| 
								 | 
							
								     k->rb[indxb] = k->ra[ondxa];
							 | 
						||
| 
								 | 
							
								     UNUSED(indxa); UNUSED(ondxb);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void cpyr(R *ra, const bench_tensor *sza, 
							 | 
						||
| 
								 | 
							
										 R *rb, const bench_tensor *szb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     cpyr_closure k;
							 | 
						||
| 
								 | 
							
								     k.k.apply = cpyr0;
							 | 
						||
| 
								 | 
							
								     k.ra = ra; k.rb = rb;
							 | 
						||
| 
								 | 
							
								     bench_dotens2(sza, szb, &k.k);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* copy unpacked halfcomplex A[n] into packed-complex B[n], using output stride
							 | 
						||
| 
								 | 
							
								   of A and input stride of B.  Only copies non-redundant half; other
							 | 
						||
| 
								 | 
							
								   half must be copied via mkhermitian. */
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     dotens2_closure k;
							 | 
						||
| 
								 | 
							
								     int n;
							 | 
						||
| 
								 | 
							
								     int as;
							 | 
						||
| 
								 | 
							
								     int scalea;
							 | 
						||
| 
								 | 
							
								     R *ra, *ia;
							 | 
						||
| 
								 | 
							
								     R *rb, *ib;
							 | 
						||
| 
								 | 
							
								} cpyhc2_closure;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void cpyhc20(dotens2_closure *k_, 
							 | 
						||
| 
								 | 
							
										    int indxa, int ondxa, int indxb, int ondxb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     cpyhc2_closure *k = (cpyhc2_closure *)k_;
							 | 
						||
| 
								 | 
							
								     int i, n = k->n;
							 | 
						||
| 
								 | 
							
								     int scalea = k->scalea;
							 | 
						||
| 
								 | 
							
								     int as = k->as * scalea;
							 | 
						||
| 
								 | 
							
								     R *ra = k->ra + ondxa * scalea, *ia = k->ia + ondxa * scalea;
							 | 
						||
| 
								 | 
							
								     R *rb = k->rb + indxb, *ib = k->ib + indxb;
							 | 
						||
| 
								 | 
							
								     UNUSED(indxa); UNUSED(ondxb);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (i = 0; i < n/2 + 1; ++i) {
							 | 
						||
| 
								 | 
							
									  rb[2*i] = ra[as*i];
							 | 
						||
| 
								 | 
							
									  ib[2*i] = ia[as*i];
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void cpyhc2(R *ra, R *ia,
							 | 
						||
| 
								 | 
							
										   const bench_tensor *sza, const bench_tensor *vecsza,
							 | 
						||
| 
								 | 
							
										   int scalea,
							 | 
						||
| 
								 | 
							
										   R *rb, R *ib, const bench_tensor *szb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     cpyhc2_closure k;
							 | 
						||
| 
								 | 
							
								     BENCH_ASSERT(sza->rnk <= 1);
							 | 
						||
| 
								 | 
							
								     k.k.apply = cpyhc20;
							 | 
						||
| 
								 | 
							
								     k.n = tensor_sz(sza);
							 | 
						||
| 
								 | 
							
								     k.scalea = scalea;
							 | 
						||
| 
								 | 
							
								     if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0)
							 | 
						||
| 
								 | 
							
									  k.as = 0;
							 | 
						||
| 
								 | 
							
								     else
							 | 
						||
| 
								 | 
							
									  k.as = sza->dims[0].os;
							 | 
						||
| 
								 | 
							
								     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
							 | 
						||
| 
								 | 
							
								     bench_dotens2(vecsza, szb, &k.k);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* icpyhc2 is the inverse of cpyhc2 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void icpyhc20(dotens2_closure *k_, 
							 | 
						||
| 
								 | 
							
										     int indxa, int ondxa, int indxb, int ondxb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     cpyhc2_closure *k = (cpyhc2_closure *)k_;
							 | 
						||
| 
								 | 
							
								     int i, n = k->n;
							 | 
						||
| 
								 | 
							
								     int scalea = k->scalea;
							 | 
						||
| 
								 | 
							
								     int as = k->as * scalea;
							 | 
						||
| 
								 | 
							
								     R *ra = k->ra + indxa * scalea, *ia = k->ia + indxa * scalea;
							 | 
						||
| 
								 | 
							
								     R *rb = k->rb + ondxb, *ib = k->ib + ondxb;
							 | 
						||
| 
								 | 
							
								     UNUSED(ondxa); UNUSED(indxb);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (i = 0; i < n/2 + 1; ++i) {
							 | 
						||
| 
								 | 
							
									  ra[as*i] = rb[2*i];
							 | 
						||
| 
								 | 
							
									  ia[as*i] = ib[2*i];
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void icpyhc2(R *ra, R *ia, 
							 | 
						||
| 
								 | 
							
										    const bench_tensor *sza, const bench_tensor *vecsza,
							 | 
						||
| 
								 | 
							
										    int scalea,
							 | 
						||
| 
								 | 
							
										    R *rb, R *ib, const bench_tensor *szb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     cpyhc2_closure k;
							 | 
						||
| 
								 | 
							
								     BENCH_ASSERT(sza->rnk <= 1);
							 | 
						||
| 
								 | 
							
								     k.k.apply = icpyhc20;
							 | 
						||
| 
								 | 
							
								     k.n = tensor_sz(sza);
							 | 
						||
| 
								 | 
							
								     k.scalea = scalea;
							 | 
						||
| 
								 | 
							
								     if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0)
							 | 
						||
| 
								 | 
							
									  k.as = 0;
							 | 
						||
| 
								 | 
							
								     else
							 | 
						||
| 
								 | 
							
									  k.as = sza->dims[0].is;
							 | 
						||
| 
								 | 
							
								     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
							 | 
						||
| 
								 | 
							
								     bench_dotens2(vecsza, szb, &k.k);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     dofft_closure k;
							 | 
						||
| 
								 | 
							
								     bench_problem *p;
							 | 
						||
| 
								 | 
							
								} dofft_rdft2_closure;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void rdft2_apply(dofft_closure *k_, 
							 | 
						||
| 
								 | 
							
											bench_complex *in, bench_complex *out)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     dofft_rdft2_closure *k = (dofft_rdft2_closure *)k_;
							 | 
						||
| 
								 | 
							
								     bench_problem *p = k->p;
							 | 
						||
| 
								 | 
							
								     bench_tensor *totalsz, *pckdsz, *totalsz_swap, *pckdsz_swap;
							 | 
						||
| 
								 | 
							
								     bench_tensor *probsz2, *totalsz2, *pckdsz2;
							 | 
						||
| 
								 | 
							
								     bench_tensor *probsz2_swap, *totalsz2_swap, *pckdsz2_swap;
							 | 
						||
| 
								 | 
							
								     bench_real *ri, *ii, *ro, *io;
							 | 
						||
| 
								 | 
							
								     int n2, totalscale;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     totalsz = tensor_append(p->vecsz, p->sz);
							 | 
						||
| 
								 | 
							
								     pckdsz = verify_pack(totalsz, 2);
							 | 
						||
| 
								 | 
							
								     n2 = tensor_sz(totalsz);
							 | 
						||
| 
								 | 
							
								     if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0)
							 | 
						||
| 
								 | 
							
									  n2 = (n2 / p->sz->dims[p->sz->rnk - 1].n) * 
							 | 
						||
| 
								 | 
							
									       (p->sz->dims[p->sz->rnk - 1].n / 2 + 1);
							 | 
						||
| 
								 | 
							
								     ri = (bench_real *) p->in;
							 | 
						||
| 
								 | 
							
								     ro = (bench_real *) p->out;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0 && n2 > 0) {
							 | 
						||
| 
								 | 
							
									  probsz2 = tensor_copy_sub(p->sz, p->sz->rnk - 1, 1);
							 | 
						||
| 
								 | 
							
									  totalsz2 = tensor_copy_sub(totalsz, 0, totalsz->rnk - 1);
							 | 
						||
| 
								 | 
							
									  pckdsz2 = tensor_copy_sub(pckdsz, 0, pckdsz->rnk - 1);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else {
							 | 
						||
| 
								 | 
							
									  probsz2 = mktensor(0);
							 | 
						||
| 
								 | 
							
									  totalsz2 = tensor_copy(totalsz);
							 | 
						||
| 
								 | 
							
									  pckdsz2 = tensor_copy(pckdsz);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     totalsz_swap = tensor_copy_swapio(totalsz);
							 | 
						||
| 
								 | 
							
								     pckdsz_swap = tensor_copy_swapio(pckdsz);
							 | 
						||
| 
								 | 
							
								     totalsz2_swap = tensor_copy_swapio(totalsz2);
							 | 
						||
| 
								 | 
							
								     pckdsz2_swap = tensor_copy_swapio(pckdsz2);
							 | 
						||
| 
								 | 
							
								     probsz2_swap = tensor_copy_swapio(probsz2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* confusion: the stride is the distance between complex elements
							 | 
						||
| 
								 | 
							
									when using interleaved format, but it is the distance between
							 | 
						||
| 
								 | 
							
									real elements when using split format */
							 | 
						||
| 
								 | 
							
								     if (p->split) {
							 | 
						||
| 
								 | 
							
									  ii = p->ini ? (bench_real *) p->ini : ri + n2;
							 | 
						||
| 
								 | 
							
									  io = p->outi ? (bench_real *) p->outi : ro + n2;
							 | 
						||
| 
								 | 
							
									  totalscale = 1;
							 | 
						||
| 
								 | 
							
								     } else {
							 | 
						||
| 
								 | 
							
									  ii = p->ini ? (bench_real *) p->ini : ri + 1;
							 | 
						||
| 
								 | 
							
									  io = p->outi ? (bench_real *) p->outi : ro + 1;
							 | 
						||
| 
								 | 
							
									  totalscale = 2;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (p->sign < 0) { /* R2HC */
							 | 
						||
| 
								 | 
							
									  int N, vN, i;
							 | 
						||
| 
								 | 
							
									  cpyr(&c_re(in[0]), pckdsz, ri, totalsz);
							 | 
						||
| 
								 | 
							
									  after_problem_rcopy_from(p, ri);
							 | 
						||
| 
								 | 
							
									  doit(1, p);
							 | 
						||
| 
								 | 
							
									  after_problem_hccopy_to(p, ro, io);
							 | 
						||
| 
								 | 
							
									  if (k->k.recopy_input)
							 | 
						||
| 
								 | 
							
									       cpyr(ri, totalsz_swap, &c_re(in[0]), pckdsz_swap);
							 | 
						||
| 
								 | 
							
									  cpyhc2(ro, io, probsz2, totalsz2, totalscale,
							 | 
						||
| 
								 | 
							
										 &c_re(out[0]), &c_im(out[0]), pckdsz2);
							 | 
						||
| 
								 | 
							
									  N = tensor_sz(p->sz);
							 | 
						||
| 
								 | 
							
									  vN = tensor_sz(p->vecsz);
							 | 
						||
| 
								 | 
							
									  for (i = 0; i < vN; ++i)
							 | 
						||
| 
								 | 
							
									       mkhermitian(out + i*N, p->sz->rnk, p->sz->dims, 1);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else { /* HC2R */
							 | 
						||
| 
								 | 
							
									  icpyhc2(ri, ii, probsz2, totalsz2, totalscale,
							 | 
						||
| 
								 | 
							
										  &c_re(in[0]), &c_im(in[0]), pckdsz2);
							 | 
						||
| 
								 | 
							
									  after_problem_hccopy_from(p, ri, ii);
							 | 
						||
| 
								 | 
							
									  doit(1, p);
							 | 
						||
| 
								 | 
							
									  after_problem_rcopy_to(p, ro);
							 | 
						||
| 
								 | 
							
									  if (k->k.recopy_input)
							 | 
						||
| 
								 | 
							
									       cpyhc2(ri, ii, probsz2_swap, totalsz2_swap, totalscale,
							 | 
						||
| 
								 | 
							
										      &c_re(in[0]), &c_im(in[0]), pckdsz2_swap);
							 | 
						||
| 
								 | 
							
									  mkreal(out, tensor_sz(pckdsz));
							 | 
						||
| 
								 | 
							
									  cpyr(ro, totalsz, &c_re(out[0]), pckdsz);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     tensor_destroy(totalsz);
							 | 
						||
| 
								 | 
							
								     tensor_destroy(pckdsz);
							 | 
						||
| 
								 | 
							
								     tensor_destroy(totalsz_swap);
							 | 
						||
| 
								 | 
							
								     tensor_destroy(pckdsz_swap);
							 | 
						||
| 
								 | 
							
								     tensor_destroy(probsz2);
							 | 
						||
| 
								 | 
							
								     tensor_destroy(totalsz2);
							 | 
						||
| 
								 | 
							
								     tensor_destroy(pckdsz2);
							 | 
						||
| 
								 | 
							
								     tensor_destroy(probsz2_swap);
							 | 
						||
| 
								 | 
							
								     tensor_destroy(totalsz2_swap);
							 | 
						||
| 
								 | 
							
								     tensor_destroy(pckdsz2_swap);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
							 | 
						||
| 
								 | 
							
								     int n, vecn, N;
							 | 
						||
| 
								 | 
							
								     dofft_rdft2_closure k;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     BENCH_ASSERT(p->kind == PROBLEM_REAL);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (!BENCH_FINITE_RNK(p->sz->rnk) || !BENCH_FINITE_RNK(p->vecsz->rnk))
							 | 
						||
| 
								 | 
							
									  return;      /* give up */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     k.k.apply = rdft2_apply;
							 | 
						||
| 
								 | 
							
								     k.k.recopy_input = 0;
							 | 
						||
| 
								 | 
							
								     k.p = p;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (rounds == 0)
							 | 
						||
| 
								 | 
							
									  rounds = 20;  /* default value */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     n = tensor_sz(p->sz);
							 | 
						||
| 
								 | 
							
								     vecn = tensor_sz(p->vecsz);
							 | 
						||
| 
								 | 
							
								     N = n * vecn;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     inA = (C *) bench_malloc(N * sizeof(C));
							 | 
						||
| 
								 | 
							
								     inB = (C *) bench_malloc(N * sizeof(C));
							 | 
						||
| 
								 | 
							
								     inC = (C *) bench_malloc(N * sizeof(C));
							 | 
						||
| 
								 | 
							
								     outA = (C *) bench_malloc(N * sizeof(C));
							 | 
						||
| 
								 | 
							
								     outB = (C *) bench_malloc(N * sizeof(C));
							 | 
						||
| 
								 | 
							
								     outC = (C *) bench_malloc(N * sizeof(C));
							 | 
						||
| 
								 | 
							
								     tmp = (C *) bench_malloc(N * sizeof(C));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, 
							 | 
						||
| 
								 | 
							
										    tmp, rounds, tol);
							 | 
						||
| 
								 | 
							
								     e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
							 | 
						||
| 
								 | 
							
										   tmp, rounds, tol);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     e->s = 0.0;
							 | 
						||
| 
								 | 
							
								     if (p->sign < 0)
							 | 
						||
| 
								 | 
							
									  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
							 | 
						||
| 
								 | 
							
												     inA, inB, outA, outB, 
							 | 
						||
| 
								 | 
							
												     tmp, rounds, tol, TIME_SHIFT));
							 | 
						||
| 
								 | 
							
								     else
							 | 
						||
| 
								 | 
							
									  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
							 | 
						||
| 
								 | 
							
												     inA, inB, outA, outB, 
							 | 
						||
| 
								 | 
							
												     tmp, rounds, tol, FREQ_SHIFT));
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     if (!p->in_place && !p->destroy_input)
							 | 
						||
| 
								 | 
							
									  preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
							 | 
						||
| 
								 | 
							
											  N, inA, inB, outB, rounds);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     bench_free(tmp);
							 | 
						||
| 
								 | 
							
								     bench_free(outC);
							 | 
						||
| 
								 | 
							
								     bench_free(outB);
							 | 
						||
| 
								 | 
							
								     bench_free(outA);
							 | 
						||
| 
								 | 
							
								     bench_free(inC);
							 | 
						||
| 
								 | 
							
								     bench_free(inB);
							 | 
						||
| 
								 | 
							
								     bench_free(inA);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void accuracy_rdft2(bench_problem *p, int rounds, int impulse_rounds,
							 | 
						||
| 
								 | 
							
										    double t[6])
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     dofft_rdft2_closure k;
							 | 
						||
| 
								 | 
							
								     int n;
							 | 
						||
| 
								 | 
							
								     C *a, *b;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     BENCH_ASSERT(p->kind == PROBLEM_REAL);
							 | 
						||
| 
								 | 
							
								     BENCH_ASSERT(p->sz->rnk == 1);
							 | 
						||
| 
								 | 
							
								     BENCH_ASSERT(p->vecsz->rnk == 0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     k.k.apply = rdft2_apply;
							 | 
						||
| 
								 | 
							
								     k.k.recopy_input = 0;
							 | 
						||
| 
								 | 
							
								     k.p = p;
							 | 
						||
| 
								 | 
							
								     n = tensor_sz(p->sz);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     a = (C *) bench_malloc(n * sizeof(C));
							 | 
						||
| 
								 | 
							
								     b = (C *) bench_malloc(n * sizeof(C));
							 | 
						||
| 
								 | 
							
								     accuracy_test(&k.k, p->sign < 0 ? mkreal : mkhermitian1, p->sign, 
							 | 
						||
| 
								 | 
							
										   n, a, b, rounds, impulse_rounds, t);
							 | 
						||
| 
								 | 
							
								     bench_free(b);
							 | 
						||
| 
								 | 
							
								     bench_free(a);
							 | 
						||
| 
								 | 
							
								}
							 |