488 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			488 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:27 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 96 FP additions, 88 FP multiplications, | ||
|  |  * (or, 24 additions, 16 multiplications, 72 fused multiply/add), | ||
|  |  * 55 stack variables, 10 constants, and 36 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/t.h"
 | ||
|  | 
 | ||
|  | static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP852868531, +0.852868531952443209628250963940074071936020296); | ||
|  |      DK(KP492403876, +0.492403876506104029683371512294761506835321626); | ||
|  |      DK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DK(KP954188894, +0.954188894138671133499268364187245676532219158); | ||
|  |      DK(KP363970234, +0.363970234266202361351047882776834043890471784); | ||
|  |      DK(KP777861913, +0.777861913430206160028177977318626690410586096); | ||
|  |      DK(KP839099631, +0.839099631177280011763127298123181364687434283); | ||
|  |      DK(KP176326980, +0.176326980708464973471090386868618986121633062); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { | ||
|  | 	       E T1, T1R, Te, T1W, T10, T1Q, T1l, T1r, Ty, T1p, Tl, T1o, T1g, T1q, T1a; | ||
|  | 	       E T1d, TS, T18, TF, T13, T19, T1c; | ||
|  | 	       T1 = ri[0]; | ||
|  | 	       T1R = ii[0]; | ||
|  | 	       { | ||
|  | 		    E T3, T6, T4, TW, T9, Tc, Ta, TY, T2, T8; | ||
|  | 		    T3 = ri[WS(rs, 3)]; | ||
|  | 		    T6 = ii[WS(rs, 3)]; | ||
|  | 		    T2 = W[4]; | ||
|  | 		    T4 = T2 * T3; | ||
|  | 		    TW = T2 * T6; | ||
|  | 		    T9 = ri[WS(rs, 6)]; | ||
|  | 		    Tc = ii[WS(rs, 6)]; | ||
|  | 		    T8 = W[10]; | ||
|  | 		    Ta = T8 * T9; | ||
|  | 		    TY = T8 * Tc; | ||
|  | 		    { | ||
|  | 			 E T7, TX, Td, TZ, T5, Tb; | ||
|  | 			 T5 = W[5]; | ||
|  | 			 T7 = FMA(T5, T6, T4); | ||
|  | 			 TX = FNMS(T5, T3, TW); | ||
|  | 			 Tb = W[11]; | ||
|  | 			 Td = FMA(Tb, Tc, Ta); | ||
|  | 			 TZ = FNMS(Tb, T9, TY); | ||
|  | 			 Te = T7 + Td; | ||
|  | 			 T1W = Td - T7; | ||
|  | 			 T10 = TX - TZ; | ||
|  | 			 T1Q = TX + TZ; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Th, Tk, Ti, T1n, Tx, T1i, Tr, T1k, Tg, Tj; | ||
|  | 		    Th = ri[WS(rs, 1)]; | ||
|  | 		    Tk = ii[WS(rs, 1)]; | ||
|  | 		    Tg = W[0]; | ||
|  | 		    Ti = Tg * Th; | ||
|  | 		    T1n = Tg * Tk; | ||
|  | 		    { | ||
|  | 			 E Tt, Tw, Tu, T1h, Ts, Tv; | ||
|  | 			 Tt = ri[WS(rs, 7)]; | ||
|  | 			 Tw = ii[WS(rs, 7)]; | ||
|  | 			 Ts = W[12]; | ||
|  | 			 Tu = Ts * Tt; | ||
|  | 			 T1h = Ts * Tw; | ||
|  | 			 Tv = W[13]; | ||
|  | 			 Tx = FMA(Tv, Tw, Tu); | ||
|  | 			 T1i = FNMS(Tv, Tt, T1h); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tn, Tq, To, T1j, Tm, Tp; | ||
|  | 			 Tn = ri[WS(rs, 4)]; | ||
|  | 			 Tq = ii[WS(rs, 4)]; | ||
|  | 			 Tm = W[6]; | ||
|  | 			 To = Tm * Tn; | ||
|  | 			 T1j = Tm * Tq; | ||
|  | 			 Tp = W[7]; | ||
|  | 			 Tr = FMA(Tp, Tq, To); | ||
|  | 			 T1k = FNMS(Tp, Tn, T1j); | ||
|  | 		    } | ||
|  | 		    T1l = T1i - T1k; | ||
|  | 		    T1r = Tr - Tx; | ||
|  | 		    Ty = Tr + Tx; | ||
|  | 		    T1p = T1k + T1i; | ||
|  | 		    Tj = W[1]; | ||
|  | 		    Tl = FMA(Tj, Tk, Ti); | ||
|  | 		    T1o = FNMS(Tj, Th, T1n); | ||
|  | 		    T1g = FNMS(KP500000000, Ty, Tl); | ||
|  | 		    T1q = FNMS(KP500000000, T1p, T1o); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TB, TE, TC, T12, TR, T17, TL, T15, TA, TD; | ||
|  | 		    TB = ri[WS(rs, 2)]; | ||
|  | 		    TE = ii[WS(rs, 2)]; | ||
|  | 		    TA = W[2]; | ||
|  | 		    TC = TA * TB; | ||
|  | 		    T12 = TA * TE; | ||
|  | 		    { | ||
|  | 			 E TN, TQ, TO, T16, TM, TP; | ||
|  | 			 TN = ri[WS(rs, 8)]; | ||
|  | 			 TQ = ii[WS(rs, 8)]; | ||
|  | 			 TM = W[14]; | ||
|  | 			 TO = TM * TN; | ||
|  | 			 T16 = TM * TQ; | ||
|  | 			 TP = W[15]; | ||
|  | 			 TR = FMA(TP, TQ, TO); | ||
|  | 			 T17 = FNMS(TP, TN, T16); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TH, TK, TI, T14, TG, TJ; | ||
|  | 			 TH = ri[WS(rs, 5)]; | ||
|  | 			 TK = ii[WS(rs, 5)]; | ||
|  | 			 TG = W[8]; | ||
|  | 			 TI = TG * TH; | ||
|  | 			 T14 = TG * TK; | ||
|  | 			 TJ = W[9]; | ||
|  | 			 TL = FMA(TJ, TK, TI); | ||
|  | 			 T15 = FNMS(TJ, TH, T14); | ||
|  | 		    } | ||
|  | 		    T1a = TR - TL; | ||
|  | 		    T1d = T15 - T17; | ||
|  | 		    TS = TL + TR; | ||
|  | 		    T18 = T15 + T17; | ||
|  | 		    TD = W[3]; | ||
|  | 		    TF = FMA(TD, TE, TC); | ||
|  | 		    T13 = FNMS(TD, TB, T12); | ||
|  | 		    T19 = FNMS(KP500000000, T18, T13); | ||
|  | 		    T1c = FNMS(KP500000000, TS, TF); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tf, T1S, TU, T1U, T1O, T1P, T1L, T1T; | ||
|  | 		    Tf = T1 + Te; | ||
|  | 		    T1S = T1Q + T1R; | ||
|  | 		    { | ||
|  | 			 E Tz, TT, T1M, T1N; | ||
|  | 			 Tz = Tl + Ty; | ||
|  | 			 TT = TF + TS; | ||
|  | 			 TU = Tz + TT; | ||
|  | 			 T1U = TT - Tz; | ||
|  | 			 T1M = T1o + T1p; | ||
|  | 			 T1N = T13 + T18; | ||
|  | 			 T1O = T1M - T1N; | ||
|  | 			 T1P = T1M + T1N; | ||
|  | 		    } | ||
|  | 		    ri[0] = Tf + TU; | ||
|  | 		    ii[0] = T1P + T1S; | ||
|  | 		    T1L = FNMS(KP500000000, TU, Tf); | ||
|  | 		    ri[WS(rs, 6)] = FNMS(KP866025403, T1O, T1L); | ||
|  | 		    ri[WS(rs, 3)] = FMA(KP866025403, T1O, T1L); | ||
|  | 		    T1T = FNMS(KP500000000, T1P, T1S); | ||
|  | 		    ii[WS(rs, 3)] = FMA(KP866025403, T1U, T1T); | ||
|  | 		    ii[WS(rs, 6)] = FNMS(KP866025403, T1U, T1T); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T11, T1z, T1X, T21, T1f, T1w, T1t, T1x, T1u, T1Y, T1C, T1I, T1F, T1J, T1G; | ||
|  | 		    E T22, TV, T1V; | ||
|  | 		    TV = FNMS(KP500000000, Te, T1); | ||
|  | 		    T11 = FMA(KP866025403, T10, TV); | ||
|  | 		    T1z = FNMS(KP866025403, T10, TV); | ||
|  | 		    T1V = FNMS(KP500000000, T1Q, T1R); | ||
|  | 		    T1X = FMA(KP866025403, T1W, T1V); | ||
|  | 		    T21 = FNMS(KP866025403, T1W, T1V); | ||
|  | 		    { | ||
|  | 			 E T1b, T1e, T1m, T1s; | ||
|  | 			 T1b = FMA(KP866025403, T1a, T19); | ||
|  | 			 T1e = FMA(KP866025403, T1d, T1c); | ||
|  | 			 T1f = FMA(KP176326980, T1e, T1b); | ||
|  | 			 T1w = FNMS(KP176326980, T1b, T1e); | ||
|  | 			 T1m = FNMS(KP866025403, T1l, T1g); | ||
|  | 			 T1s = FNMS(KP866025403, T1r, T1q); | ||
|  | 			 T1t = FMA(KP839099631, T1s, T1m); | ||
|  | 			 T1x = FNMS(KP839099631, T1m, T1s); | ||
|  | 		    } | ||
|  | 		    T1u = FMA(KP777861913, T1t, T1f); | ||
|  | 		    T1Y = FNMS(KP777861913, T1x, T1w); | ||
|  | 		    { | ||
|  | 			 E T1A, T1B, T1D, T1E; | ||
|  | 			 T1A = FMA(KP866025403, T1r, T1q); | ||
|  | 			 T1B = FMA(KP866025403, T1l, T1g); | ||
|  | 			 T1C = FMA(KP176326980, T1B, T1A); | ||
|  | 			 T1I = FNMS(KP176326980, T1A, T1B); | ||
|  | 			 T1D = FNMS(KP866025403, T1d, T1c); | ||
|  | 			 T1E = FNMS(KP866025403, T1a, T19); | ||
|  | 			 T1F = FNMS(KP363970234, T1E, T1D); | ||
|  | 			 T1J = FMA(KP363970234, T1D, T1E); | ||
|  | 		    } | ||
|  | 		    T1G = FNMS(KP954188894, T1F, T1C); | ||
|  | 		    T22 = FMA(KP954188894, T1J, T1I); | ||
|  | 		    ri[WS(rs, 1)] = FMA(KP984807753, T1u, T11); | ||
|  | 		    ii[WS(rs, 1)] = FNMS(KP984807753, T1Y, T1X); | ||
|  | 		    ri[WS(rs, 2)] = FMA(KP984807753, T1G, T1z); | ||
|  | 		    ii[WS(rs, 2)] = FNMS(KP984807753, T22, T21); | ||
|  | 		    { | ||
|  | 			 E T1v, T1y, T1Z, T20; | ||
|  | 			 T1v = FNMS(KP492403876, T1u, T11); | ||
|  | 			 T1y = FMA(KP777861913, T1x, T1w); | ||
|  | 			 ri[WS(rs, 4)] = FMA(KP852868531, T1y, T1v); | ||
|  | 			 ri[WS(rs, 7)] = FNMS(KP852868531, T1y, T1v); | ||
|  | 			 T1Z = FMA(KP492403876, T1Y, T1X); | ||
|  | 			 T20 = FNMS(KP777861913, T1t, T1f); | ||
|  | 			 ii[WS(rs, 4)] = FMA(KP852868531, T20, T1Z); | ||
|  | 			 ii[WS(rs, 7)] = FNMS(KP852868531, T20, T1Z); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1H, T1K, T23, T24; | ||
|  | 			 T1H = FNMS(KP492403876, T1G, T1z); | ||
|  | 			 T1K = FNMS(KP954188894, T1J, T1I); | ||
|  | 			 ri[WS(rs, 5)] = FNMS(KP852868531, T1K, T1H); | ||
|  | 			 ri[WS(rs, 8)] = FMA(KP852868531, T1K, T1H); | ||
|  | 			 T23 = FMA(KP492403876, T22, T21); | ||
|  | 			 T24 = FMA(KP954188894, T1F, T1C); | ||
|  | 			 ii[WS(rs, 5)] = FNMS(KP852868531, T24, T23); | ||
|  | 			 ii[WS(rs, 8)] = FMA(KP852868531, T24, T23); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 9 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, { 24, 16, 72, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_t1_9) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1_9, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 96 FP additions, 72 FP multiplications, | ||
|  |  * (or, 60 additions, 36 multiplications, 36 fused multiply/add), | ||
|  |  * 41 stack variables, 8 constants, and 36 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/t.h"
 | ||
|  | 
 | ||
|  | static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP939692620, +0.939692620785908384054109277324731469936208134); | ||
|  |      DK(KP342020143, +0.342020143325668733044099614682259580763083368); | ||
|  |      DK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DK(KP173648177, +0.173648177666930348851716626769314796000375677); | ||
|  |      DK(KP642787609, +0.642787609686539326322643409907263432907559884); | ||
|  |      DK(KP766044443, +0.766044443118978035202392650555416673935832457); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { | ||
|  | 	       E T1, T1B, TQ, T1G, Tc, TN, T1A, T1H, TL, T1x, T17, T1o, T1c, T1n, Tu; | ||
|  | 	       E T1w, TW, T1k, T11, T1l; | ||
|  | 	       { | ||
|  | 		    E T6, TO, Tb, TP; | ||
|  | 		    T1 = ri[0]; | ||
|  | 		    T1B = ii[0]; | ||
|  | 		    { | ||
|  | 			 E T3, T5, T2, T4; | ||
|  | 			 T3 = ri[WS(rs, 3)]; | ||
|  | 			 T5 = ii[WS(rs, 3)]; | ||
|  | 			 T2 = W[4]; | ||
|  | 			 T4 = W[5]; | ||
|  | 			 T6 = FMA(T2, T3, T4 * T5); | ||
|  | 			 TO = FNMS(T4, T3, T2 * T5); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8, Ta, T7, T9; | ||
|  | 			 T8 = ri[WS(rs, 6)]; | ||
|  | 			 Ta = ii[WS(rs, 6)]; | ||
|  | 			 T7 = W[10]; | ||
|  | 			 T9 = W[11]; | ||
|  | 			 Tb = FMA(T7, T8, T9 * Ta); | ||
|  | 			 TP = FNMS(T9, T8, T7 * Ta); | ||
|  | 		    } | ||
|  | 		    TQ = KP866025403 * (TO - TP); | ||
|  | 		    T1G = KP866025403 * (Tb - T6); | ||
|  | 		    Tc = T6 + Tb; | ||
|  | 		    TN = FNMS(KP500000000, Tc, T1); | ||
|  | 		    T1A = TO + TP; | ||
|  | 		    T1H = FNMS(KP500000000, T1A, T1B); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tz, T19, TE, T14, TJ, T15, TK, T1a; | ||
|  | 		    { | ||
|  | 			 E Tw, Ty, Tv, Tx; | ||
|  | 			 Tw = ri[WS(rs, 2)]; | ||
|  | 			 Ty = ii[WS(rs, 2)]; | ||
|  | 			 Tv = W[2]; | ||
|  | 			 Tx = W[3]; | ||
|  | 			 Tz = FMA(Tv, Tw, Tx * Ty); | ||
|  | 			 T19 = FNMS(Tx, Tw, Tv * Ty); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TB, TD, TA, TC; | ||
|  | 			 TB = ri[WS(rs, 5)]; | ||
|  | 			 TD = ii[WS(rs, 5)]; | ||
|  | 			 TA = W[8]; | ||
|  | 			 TC = W[9]; | ||
|  | 			 TE = FMA(TA, TB, TC * TD); | ||
|  | 			 T14 = FNMS(TC, TB, TA * TD); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TG, TI, TF, TH; | ||
|  | 			 TG = ri[WS(rs, 8)]; | ||
|  | 			 TI = ii[WS(rs, 8)]; | ||
|  | 			 TF = W[14]; | ||
|  | 			 TH = W[15]; | ||
|  | 			 TJ = FMA(TF, TG, TH * TI); | ||
|  | 			 T15 = FNMS(TH, TG, TF * TI); | ||
|  | 		    } | ||
|  | 		    TK = TE + TJ; | ||
|  | 		    T1a = T14 + T15; | ||
|  | 		    TL = Tz + TK; | ||
|  | 		    T1x = T19 + T1a; | ||
|  | 		    { | ||
|  | 			 E T13, T16, T18, T1b; | ||
|  | 			 T13 = FNMS(KP500000000, TK, Tz); | ||
|  | 			 T16 = KP866025403 * (T14 - T15); | ||
|  | 			 T17 = T13 + T16; | ||
|  | 			 T1o = T13 - T16; | ||
|  | 			 T18 = KP866025403 * (TJ - TE); | ||
|  | 			 T1b = FNMS(KP500000000, T1a, T19); | ||
|  | 			 T1c = T18 + T1b; | ||
|  | 			 T1n = T1b - T18; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, TY, Tn, TT, Ts, TU, Tt, TZ; | ||
|  | 		    { | ||
|  | 			 E Tf, Th, Te, Tg; | ||
|  | 			 Tf = ri[WS(rs, 1)]; | ||
|  | 			 Th = ii[WS(rs, 1)]; | ||
|  | 			 Te = W[0]; | ||
|  | 			 Tg = W[1]; | ||
|  | 			 Ti = FMA(Te, Tf, Tg * Th); | ||
|  | 			 TY = FNMS(Tg, Tf, Te * Th); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tk, Tm, Tj, Tl; | ||
|  | 			 Tk = ri[WS(rs, 4)]; | ||
|  | 			 Tm = ii[WS(rs, 4)]; | ||
|  | 			 Tj = W[6]; | ||
|  | 			 Tl = W[7]; | ||
|  | 			 Tn = FMA(Tj, Tk, Tl * Tm); | ||
|  | 			 TT = FNMS(Tl, Tk, Tj * Tm); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tp, Tr, To, Tq; | ||
|  | 			 Tp = ri[WS(rs, 7)]; | ||
|  | 			 Tr = ii[WS(rs, 7)]; | ||
|  | 			 To = W[12]; | ||
|  | 			 Tq = W[13]; | ||
|  | 			 Ts = FMA(To, Tp, Tq * Tr); | ||
|  | 			 TU = FNMS(Tq, Tp, To * Tr); | ||
|  | 		    } | ||
|  | 		    Tt = Tn + Ts; | ||
|  | 		    TZ = TT + TU; | ||
|  | 		    Tu = Ti + Tt; | ||
|  | 		    T1w = TY + TZ; | ||
|  | 		    { | ||
|  | 			 E TS, TV, TX, T10; | ||
|  | 			 TS = FNMS(KP500000000, Tt, Ti); | ||
|  | 			 TV = KP866025403 * (TT - TU); | ||
|  | 			 TW = TS + TV; | ||
|  | 			 T1k = TS - TV; | ||
|  | 			 TX = KP866025403 * (Ts - Tn); | ||
|  | 			 T10 = FNMS(KP500000000, TZ, TY); | ||
|  | 			 T11 = TX + T10; | ||
|  | 			 T1l = T10 - TX; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1y, Td, TM, T1v; | ||
|  | 		    T1y = KP866025403 * (T1w - T1x); | ||
|  | 		    Td = T1 + Tc; | ||
|  | 		    TM = Tu + TL; | ||
|  | 		    T1v = FNMS(KP500000000, TM, Td); | ||
|  | 		    ri[0] = Td + TM; | ||
|  | 		    ri[WS(rs, 3)] = T1v + T1y; | ||
|  | 		    ri[WS(rs, 6)] = T1v - T1y; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1D, T1z, T1C, T1E; | ||
|  | 		    T1D = KP866025403 * (TL - Tu); | ||
|  | 		    T1z = T1w + T1x; | ||
|  | 		    T1C = T1A + T1B; | ||
|  | 		    T1E = FNMS(KP500000000, T1z, T1C); | ||
|  | 		    ii[0] = T1z + T1C; | ||
|  | 		    ii[WS(rs, 6)] = T1E - T1D; | ||
|  | 		    ii[WS(rs, 3)] = T1D + T1E; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TR, T1I, T1e, T1J, T1i, T1F, T1f, T1K; | ||
|  | 		    TR = TN + TQ; | ||
|  | 		    T1I = T1G + T1H; | ||
|  | 		    { | ||
|  | 			 E T12, T1d, T1g, T1h; | ||
|  | 			 T12 = FMA(KP766044443, TW, KP642787609 * T11); | ||
|  | 			 T1d = FMA(KP173648177, T17, KP984807753 * T1c); | ||
|  | 			 T1e = T12 + T1d; | ||
|  | 			 T1J = KP866025403 * (T1d - T12); | ||
|  | 			 T1g = FNMS(KP642787609, TW, KP766044443 * T11); | ||
|  | 			 T1h = FNMS(KP984807753, T17, KP173648177 * T1c); | ||
|  | 			 T1i = KP866025403 * (T1g - T1h); | ||
|  | 			 T1F = T1g + T1h; | ||
|  | 		    } | ||
|  | 		    ri[WS(rs, 1)] = TR + T1e; | ||
|  | 		    ii[WS(rs, 1)] = T1F + T1I; | ||
|  | 		    T1f = FNMS(KP500000000, T1e, TR); | ||
|  | 		    ri[WS(rs, 7)] = T1f - T1i; | ||
|  | 		    ri[WS(rs, 4)] = T1f + T1i; | ||
|  | 		    T1K = FNMS(KP500000000, T1F, T1I); | ||
|  | 		    ii[WS(rs, 4)] = T1J + T1K; | ||
|  | 		    ii[WS(rs, 7)] = T1K - T1J; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1j, T1M, T1q, T1N, T1u, T1L, T1r, T1O; | ||
|  | 		    T1j = TN - TQ; | ||
|  | 		    T1M = T1H - T1G; | ||
|  | 		    { | ||
|  | 			 E T1m, T1p, T1s, T1t; | ||
|  | 			 T1m = FMA(KP173648177, T1k, KP984807753 * T1l); | ||
|  | 			 T1p = FNMS(KP939692620, T1o, KP342020143 * T1n); | ||
|  | 			 T1q = T1m + T1p; | ||
|  | 			 T1N = KP866025403 * (T1p - T1m); | ||
|  | 			 T1s = FNMS(KP984807753, T1k, KP173648177 * T1l); | ||
|  | 			 T1t = FMA(KP342020143, T1o, KP939692620 * T1n); | ||
|  | 			 T1u = KP866025403 * (T1s + T1t); | ||
|  | 			 T1L = T1s - T1t; | ||
|  | 		    } | ||
|  | 		    ri[WS(rs, 2)] = T1j + T1q; | ||
|  | 		    ii[WS(rs, 2)] = T1L + T1M; | ||
|  | 		    T1r = FNMS(KP500000000, T1q, T1j); | ||
|  | 		    ri[WS(rs, 8)] = T1r - T1u; | ||
|  | 		    ri[WS(rs, 5)] = T1r + T1u; | ||
|  | 		    T1O = FNMS(KP500000000, T1L, T1M); | ||
|  | 		    ii[WS(rs, 5)] = T1N + T1O; | ||
|  | 		    ii[WS(rs, 8)] = T1O - T1N; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 9 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, { 60, 36, 36, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_t1_9) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1_9, &desc); | ||
|  | } | ||
|  | #endif
 |