296 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			296 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include rdft/simd/hc2cbv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 61 FP additions, 50 FP multiplications, | ||
|  |  * (or, 33 additions, 22 multiplications, 28 fused multiply/add), | ||
|  |  * 76 stack variables, 4 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cbv.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { | ||
|  | 	       V T4, Ts, Tl, TB, Tj, Tk, Tz, TA, TF, TV, Tp, TL, Te, Tw, Th; | ||
|  | 	       V Tx, Ti, Ty, T7, Tt, Ta, Tu, Tb, Tv, T2, T3, Tc, Td, Tf, Tg; | ||
|  | 	       V T5, T6, T8, T9, TD, TE, Tn, To; | ||
|  | 	       T2 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | ||
|  | 	       T4 = VFNMSCONJ(T3, T2); | ||
|  | 	       Ts = VFMACONJ(T3, T2); | ||
|  | 	       Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | ||
|  | 	       Td = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       Te = VFNMSCONJ(Td, Tc); | ||
|  | 	       Tw = VFMACONJ(Td, Tc); | ||
|  | 	       Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Th = VFMSCONJ(Tg, Tf); | ||
|  | 	       Tx = VFMACONJ(Tg, Tf); | ||
|  | 	       Ti = VADD(Te, Th); | ||
|  | 	       Ty = VADD(Tw, Tx); | ||
|  | 	       T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       T7 = VFNMSCONJ(T6, T5); | ||
|  | 	       Tt = VFMACONJ(T6, T5); | ||
|  | 	       T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Ta = VFMSCONJ(T9, T8); | ||
|  | 	       Tu = VFMACONJ(T9, T8); | ||
|  | 	       Tb = VADD(T7, Ta); | ||
|  | 	       Tv = VADD(Tt, Tu); | ||
|  | 	       Tl = VSUB(Tb, Ti); | ||
|  | 	       TB = VSUB(Tv, Ty); | ||
|  | 	       Tj = VADD(Tb, Ti); | ||
|  | 	       Tk = VFNMS(LDK(KP250000000), Tj, T4); | ||
|  | 	       Tz = VADD(Tv, Ty); | ||
|  | 	       TA = VFNMS(LDK(KP250000000), Tz, Ts); | ||
|  | 	       TD = VSUB(Tw, Tx); | ||
|  | 	       TE = VSUB(Tt, Tu); | ||
|  | 	       TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD)); | ||
|  | 	       TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE)); | ||
|  | 	       Tn = VSUB(Te, Th); | ||
|  | 	       To = VSUB(T7, Ta); | ||
|  | 	       Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn)); | ||
|  | 	       TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To)); | ||
|  | 	       { | ||
|  | 		    V T17, TS, Tq, T10, TW, T12, TM, T16, TG, TO, TR, Tm, T1, TZ, TU; | ||
|  | 		    V TT, T11, TK, TJ, T15, TC, Tr, TN, TH, TP, T19, TI, T18, T14, TY; | ||
|  | 		    V TQ, T13, TX; | ||
|  | 		    T17 = VADD(Ts, Tz); | ||
|  | 		    TR = LDW(&(W[TWVL * 8])); | ||
|  | 		    TS = VZMULI(TR, VADD(T4, Tj)); | ||
|  | 		    Tm = VFNMS(LDK(KP559016994), Tl, Tk); | ||
|  | 		    T1 = LDW(&(W[TWVL * 4])); | ||
|  | 		    Tq = VZMULI(T1, VFMAI(Tp, Tm)); | ||
|  | 		    TZ = LDW(&(W[TWVL * 12])); | ||
|  | 		    T10 = VZMULI(TZ, VFNMSI(Tp, Tm)); | ||
|  | 		    TU = VFMA(LDK(KP559016994), TB, TA); | ||
|  | 		    TT = LDW(&(W[TWVL * 6])); | ||
|  | 		    TW = VZMUL(TT, VFNMSI(TV, TU)); | ||
|  | 		    T11 = LDW(&(W[TWVL * 10])); | ||
|  | 		    T12 = VZMUL(T11, VFMAI(TV, TU)); | ||
|  | 		    TK = VFMA(LDK(KP559016994), Tl, Tk); | ||
|  | 		    TJ = LDW(&(W[TWVL * 16])); | ||
|  | 		    TM = VZMULI(TJ, VFNMSI(TL, TK)); | ||
|  | 		    T15 = LDW(&(W[0])); | ||
|  | 		    T16 = VZMULI(T15, VFMAI(TL, TK)); | ||
|  | 		    TC = VFNMS(LDK(KP559016994), TB, TA); | ||
|  | 		    Tr = LDW(&(W[TWVL * 2])); | ||
|  | 		    TG = VZMUL(Tr, VFNMSI(TF, TC)); | ||
|  | 		    TN = LDW(&(W[TWVL * 14])); | ||
|  | 		    TO = VZMUL(TN, VFMAI(TF, TC)); | ||
|  | 		    TH = VADD(Tq, TG); | ||
|  | 		    ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    TP = VADD(TM, TO); | ||
|  | 		    ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0])); | ||
|  | 		    T19 = VCONJ(VSUB(T17, T16)); | ||
|  | 		    ST(&(Rm[0]), T19, -ms, &(Rm[0])); | ||
|  | 		    TI = VCONJ(VSUB(TG, Tq)); | ||
|  | 		    ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T18 = VADD(T16, T17); | ||
|  | 		    ST(&(Rp[0]), T18, ms, &(Rp[0])); | ||
|  | 		    T14 = VCONJ(VSUB(T12, T10)); | ||
|  | 		    ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    TY = VCONJ(VSUB(TW, TS)); | ||
|  | 		    ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0])); | ||
|  | 		    TQ = VCONJ(VSUB(TO, TM)); | ||
|  | 		    ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0])); | ||
|  | 		    T13 = VADD(T10, T12); | ||
|  | 		    ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    TX = VADD(TS, TW); | ||
|  | 		    ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      VTW(1, 8), | ||
|  |      VTW(1, 9), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, { 33, 22, 28, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cbdftv_10) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include rdft/simd/hc2cbv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 61 FP additions, 30 FP multiplications, | ||
|  |  * (or, 55 additions, 24 multiplications, 6 fused multiply/add), | ||
|  |  * 81 stack variables, 4 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cbv.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { | ||
|  | 	       V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx; | ||
|  | 	       V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta; | ||
|  | 	       V Tf, Th, Tg, TF, TG, Te, Tn; | ||
|  | 	       T2 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | ||
|  | 	       T4 = VCONJ(T3); | ||
|  | 	       T5 = VSUB(T2, T4); | ||
|  | 	       TE = VADD(T2, T4); | ||
|  | 	       T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       T8 = VCONJ(T7); | ||
|  | 	       T9 = VSUB(T6, T8); | ||
|  | 	       Tx = VADD(T6, T8); | ||
|  | 	       Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Tk = VCONJ(Tj); | ||
|  | 	       Tm = VSUB(Tk, Tl); | ||
|  | 	       TB = VADD(Tk, Tl); | ||
|  | 	       Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Tb = VCONJ(Ta); | ||
|  | 	       Td = VSUB(Tb, Tc); | ||
|  | 	       Ty = VADD(Tb, Tc); | ||
|  | 	       Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | ||
|  | 	       Tg = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       Th = VCONJ(Tg); | ||
|  | 	       Ti = VSUB(Tf, Th); | ||
|  | 	       TA = VADD(Tf, Th); | ||
|  | 	       Ts = VSUB(T9, Td); | ||
|  | 	       Tt = VSUB(Ti, Tm); | ||
|  | 	       TC = VSUB(TA, TB); | ||
|  | 	       Tz = VSUB(Tx, Ty); | ||
|  | 	       TF = VADD(Tx, Ty); | ||
|  | 	       TG = VADD(TA, TB); | ||
|  | 	       TH = VADD(TF, TG); | ||
|  | 	       TJ = VMUL(LDK(KP559016994), VSUB(TF, TG)); | ||
|  | 	       Te = VADD(T9, Td); | ||
|  | 	       Tn = VADD(Ti, Tm); | ||
|  | 	       To = VADD(Te, Tn); | ||
|  | 	       Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn)); | ||
|  | 	       { | ||
|  | 		    V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP; | ||
|  | 		    V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM; | ||
|  | 		    V TU, T1e, TN, T1d, T19, T13, TV, T18, T12; | ||
|  | 		    T1c = VADD(TE, TH); | ||
|  | 		    TW = LDW(&(W[TWVL * 8])); | ||
|  | 		    TX = VZMULI(TW, VADD(T5, To)); | ||
|  | 		    Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts))); | ||
|  | 		    TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt))); | ||
|  | 		    Tp = VFNMS(LDK(KP250000000), To, T5); | ||
|  | 		    Tr = VSUB(Tp, Tq); | ||
|  | 		    TP = VADD(Tq, Tp); | ||
|  | 		    T1 = LDW(&(W[TWVL * 4])); | ||
|  | 		    Tv = VZMULI(T1, VSUB(Tr, Tu)); | ||
|  | 		    T1a = LDW(&(W[0])); | ||
|  | 		    T1b = VZMULI(T1a, VADD(TQ, TP)); | ||
|  | 		    TO = LDW(&(W[TWVL * 16])); | ||
|  | 		    TR = VZMULI(TO, VSUB(TP, TQ)); | ||
|  | 		    T14 = LDW(&(W[TWVL * 12])); | ||
|  | 		    T15 = VZMULI(T14, VADD(Tu, Tr)); | ||
|  | 		    TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz))); | ||
|  | 		    T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC))); | ||
|  | 		    TI = VFNMS(LDK(KP250000000), TH, TE); | ||
|  | 		    TK = VSUB(TI, TJ); | ||
|  | 		    TZ = VADD(TJ, TI); | ||
|  | 		    Tw = LDW(&(W[TWVL * 2])); | ||
|  | 		    TL = VZMUL(Tw, VADD(TD, TK)); | ||
|  | 		    T16 = LDW(&(W[TWVL * 10])); | ||
|  | 		    T17 = VZMUL(T16, VADD(T10, TZ)); | ||
|  | 		    TS = LDW(&(W[TWVL * 14])); | ||
|  | 		    TT = VZMUL(TS, VSUB(TK, TD)); | ||
|  | 		    TY = LDW(&(W[TWVL * 6])); | ||
|  | 		    T11 = VZMUL(TY, VSUB(TZ, T10)); | ||
|  | 		    TM = VADD(Tv, TL); | ||
|  | 		    ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    TU = VADD(TR, TT); | ||
|  | 		    ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0])); | ||
|  | 		    T1e = VCONJ(VSUB(T1c, T1b)); | ||
|  | 		    ST(&(Rm[0]), T1e, -ms, &(Rm[0])); | ||
|  | 		    TN = VCONJ(VSUB(TL, Tv)); | ||
|  | 		    ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1d = VADD(T1b, T1c); | ||
|  | 		    ST(&(Rp[0]), T1d, ms, &(Rp[0])); | ||
|  | 		    T19 = VCONJ(VSUB(T17, T15)); | ||
|  | 		    ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T13 = VCONJ(VSUB(T11, TX)); | ||
|  | 		    ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0])); | ||
|  | 		    TV = VCONJ(VSUB(TT, TR)); | ||
|  | 		    ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0])); | ||
|  | 		    T18 = VADD(T15, T17); | ||
|  | 		    ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T12 = VADD(TX, T11); | ||
|  | 		    ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      VTW(1, 8), | ||
|  |      VTW(1, 9), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, { 55, 24, 6, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cbdftv_10) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |